° ®
O REILLY “This is a new generation of CSS books, for a new generation
of CSS. Nobody is better at making sense of this new CSS than

Lea Verou—among the handful of truly amazing coders I've known.”
—Jeffrey Zeldman, author, Designing With Web Standards

CSS SECRETS

SET T E R SI@ICCHEIGNNR
jRemm=t R DAY WEDB
= GNP ROBLEMS

LEA VEROU

FOREWORD BY ERIC A. MEYER

CSS SECRETS

BETTER SOLUTIONS
TO EVERYDAY WEB
DESIGN PROBLEMS

In this practical guide, CSS expert Lea Verou provides 47
undocumented techniques and tips to help intermediate-to-
advanced CSS developers devise elegant solutions to a wide
range of everyday web design problems.

Rather than focus on design, CSS Secrets shows you how
to solve problems with code. You’ll learn how to apply Lea’s
analytical approach to practically every CSS problem you
face to attain DRY, maintainable, flexible, lightweight, and
standards-compliant results.

Inspired by her popular talks at over 60 international web
development conferences, Lea Verou provides a wealth
of information for topics including:

m Background & Borders m User Experience
m Shapes m Structure & Layout
m Visual Effects m Transitions & Animations

m Typography

CSS/Web Development

9 ‘

US $39.99 CAN $45.99
ISBN: 978-1-449-37263-

7

7
I i
LTI

8

“Lea Verou’s encyclopaedic

mind is one of a kind, but
thanks to this generous book,
you too can get an insight into
what it’s like to wield CSS to
do just about anything you
can think of. Even if you think
you know CSS inside-out, |
guarantee that there are still
secrets in this book waiting

to be revealed.”

—Jeremy Keith
Shepherd of Unknown
Futures, Clearleft

“If you want the inside scoop

on fascinating CSS techniques,
smart best practices, and
some flat-out brilliance, don’t
hesitate—read this book.

| loved it!”

—Eric A. Meyer

“CSS Secrets is an instant

classic—so many wonderful
tips and tricks you can use

right away to enhance your
UX designs!”

—Christopher Schmitt
Author of CSS Cookbook

“Lea is an exceedingly clever

coder. This book is absolutely
packed with clever and useful
ideas, even for people who
know CSS well. Even better,
you'll feel more clever in your
work as this book encourages
pushing beyond the obvious.”

—Chris Coyier
CodePen

OREILLY®

oreilly.com

Praise for CSS Secrets

‘ ‘ This is a new generation of CSS books, for a new generation of CSS. No longer a simple language
tied to complicated browser hacks and workarounds, CSS is now a richly powerful and deeply complex
ecosystem of over 80 W3C specifications. Nobody is better at making sense of this new CSS, and of
providing design principles that help you solve problems with it, than Lea Verou—among the handful
of truly amazing coders I've known.”

— Jeffrey Zeldman
author, Designing with Web Standards

‘ ‘ Lea Verou’s encyclopaedic mind is one of a kind, but thanks to this generous book, you too can get
an insight into what it’s like to wield CSS to do just about anything you can think of. Even if you think
you know CSS inside-out, | guarantee that there are still secrets in this book waiting to be revealed.”

— Jeremy Keith

Shepherd of Unknown Futures, Clearleft

‘ ‘ If you want the inside scoop on fascinating CSS techniques, smart best practices, and some flat-out
brilliance, don't hesitate—read this book. | loved it!”

— Eric A. Meyer

‘ ‘ Lea is an exceedingly clever coder. This book is absolutely packed with clever and useful ideas, even
for people who know CSS well. Even better, you’ll feel more clever in your work as this book encour-
ages pushing beyond the obvious.”

— Chris Coyier
CodePen

‘ ‘ CSS Secrets is an instant classic—so many wonderful tips and tricks you can use right away to enhance
your UX designs!”

— Christopher Schmitt
author of CSS Cookbook

‘ ‘ There aren’t many books that provide as many practical techniques as Lea Verou’s CSS Secrets. Filled
with dozens of solutions to common design problems, the book is a truly valuable collection of smart
tips and tricks for getting things done well, and fast. Worth reading, even if you think that you know
the ins and outs of CSS!”

— Vitaly Friedman
cofounder and editor-in-chief of Smashing Magazine

‘ ‘ Without fail, whenever | read something written by Lea Verou, | manage to learn something new.
CSS Secrets is no different. The book is broken down into easy-to-digest chunks filled with lots of
Juicy bits of knowledge. While some of the book is very forward looking, there is plenty that I've been
able to take away and apply to my own projects right away.”

— Jonathan Snook
web designer and developer

‘ ‘ Lea’s book is fantastic. She bends and contorts CSS to do things I’'m pretty sure even the spec authors
never imagined! You will learn multiple ways of accomplishing each graphic effect by trying out the
techniques she walks through in each chapter. Later, in your work, you'll find yourself saying, “hmm,
that thing Lea did will work perfectly here!” Before you know it, your site is almost image free because
your graphics are all in easy to maintain CSS components. What's more, her techniques are fun,
walking the line between practical and improbable!”

— Nicole Sullivan
Principal Software Engineer, creator of OOCSS

‘ ‘ Lea Verou’s CSS Secrets is useful not so much as a collection of CSS tips, but as a textbook on how
to solve problems with CSS. Her in-depth explanation of the thought process behind each secret will
teach you how to create your own solutions to CSS problems. And don’t miss the Introduction, which
contains some must-read CSS best practices.”

— Elika J. Etemad (aka fantasai)
W3C CSS Working Group Invited Expert

‘ ‘ Lea’s presentations have long been must-see events at web development conferences around the
world. A distillation of her years of experience, CSS Secrets provides elegant solutions for thorny web
design issues, while also—and more importantly—showing how to solve problems in CSS. It's an
absolute must-read for every frontend designer and developer.”

— Dudley Storey

designer, developer, writer, web education specialist

‘ ‘ | thought I had a pretty advanced understanding of CSS, then | read Lea Verou’s book. If you want to
take your CSS knowledge to the next level, this is a must-own.”

— Ryan Seddon
Team Lead, Zendesk

‘ ‘ CSS Secrets is by far the most technical book that | have ever read on the topic. Lea has managed to
push the boundaries of a language as simple as CSS so far that you will not be able to distinguish this
from magic. Definitely not a beginner’s read, it's heavily recommended to anyone thinking they know
CSS all too well.”

— Hugo Giraudel
frontend developer, Edenspiekermann

‘ ‘ | often think that CSS can seem a bit like magic: a few rules can transform your web pages from blah
to beautiful. In CSS Secrets, Lea takes the magic to a whole new level. She is a master magician of
CSS, and we get to explore that magical world along with her. | can’t count how many times | said
out loud while reading this book, “That’s so cool!” The only trouble with CSS Secrets is that after
reading it, | want to stop everything else I’'m doing and play with CSS all day.”

— Elisabeth Robson

cofounder of WickedlySmart.com and coauthor of Head First JavaScript Programming

‘ ‘ CSS Secrets is a book that all web developers should have in their library. Using the information it
contains you’ll learn numerous hints and tips to make CSS perform tasks you never thought possible.
| was astonished at how often the author came up with simple and elegant lateral thinking solutions
to problems that had bugged me for years.”

— Robin Nixon
web developer, online instructor, and author of several books on CSS

‘ ‘ As a master designer and programmer, Lea Verou’s book is as beautiful and as well thought out as
her code. Whether you're fairly new to CSS, or well versed in the intricacies of CSS3, this book has

something for everyone.”

— Estelle Weyl
Open Web Evangelist and coauthor of CSS: The Definitive Guide

CSS SECRETS

BETTER SOLUTIONS
TO EVERYDAY WEB
DESIGN PROBLEMS

LEA VEROU

Beijing + Boston + Farnham - Sebastopol « Tokyo [KOA=|HAG

CSS Secrets

by Lea Verou

Copyright © 2015 Lea Verou. All rights reserved.
Printed in Canada.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http:/safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Mary Treseler and Meg Foley Proofreader: Charles Roumeliotis
Production Editor: Kara Ebrahim Interior Designer: Lea Verou
Copyeditor: Jasmine Kwityn Cover Designer: Monica Kamsvaag
Indexer: WordCo Indexing Services lllustrator: Lea Verou

See http://www.oreilly.com/catalog/errata.csp?isbn=0636920031123 for release details.

The O'Reilly logo is a registered trademark of O'Reilly Media, Inc. The cover image and related trade dress are trademarks of O'Reilly
Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and instructions contained in this work
are accurate, the publisher and the author disclaim all responsibility for errors or omissions, including without limitation responsibility for
damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property
rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.

Print History: First Edition, June 2015
Revision History for the First Edition:
2015-06-03 First Release

2015-07-17 Second Release

ISBN: 978-1-4493-7263-7
[T1]

http://safaribooksonline.com
http://www.oreilly.com/catalog/errata.csp?isbn=0636920031123

In loving memory of
my mother & best friend, Maria Verou (1952—2013),
who lefl this world way too early.

Table of Contents

Foreword

Preface

Words of thanks
Making of
About this book

CHAPTER 1
Introduction

Web standards: friend or foe?

CSS coding tips

CHAPTER 2
Backgrounds & Borders

ﬁ Translucent borders

Q Multiple borders

Q Flexible background positioning
ﬁ Inner rounding

G Striped backgrounds

xix
xxii

xxiv

23
24
28
32
36
40

ﬁ Complex background patterns
ﬁ (Pseudo)random backgrounds

ﬁ Continuous image borders

CHAPTER 3
Shapes

@ Flexible ellipses

m Parallelograms

m Diamond images

m Cutout corners

m Trapezoid tabs

m Simple pie charts
CHAPTER 4

Visual Effects

m One-sided shadows
m Irregular drop shadows

m Color tinting

50
62

68

15
76
84
90
96

108

114

129
130
134

138

TABLE OF CONTENTS e

M Frosted glass effect

m Folded corner effect

CHAPTER 5
Typography

m Hyphenation

m Inserting line breaks
m Zebra-striped text lines
m Adjusting tab width

m Ligatures

a Fancy ampersands

m Custom underlines

m Realistic text effects

m Circular text

CHAPTER 6
User Experience

m Picking the right cursor

m Extending the clickable area
ﬂ Custom checkboxes

m De-emphasize by dimming
@1 De-emphasize by blurring
@I Scrolling hints

m Interactive image comparison

CHAPTER 1
Structure & Layout
m Intrinsic sizing

[37] Taming table column widths

’ TABLE OF CONTENTS

146

156

161
168
172
178
182
184
188
194
200

210

211
218
224
228
234
240
244

250

261

262

266

% Styling by sibling count

m Fluid background, fixed content

m Vertical centering

m Sticky footers

CHAPTER 8
Transitions & Animations

m Elastic transitions

@ Frame-by-frame animations
@ Blinking

@ Typing animation

m Smooth state animations

m Animation along a circular path

Index

270
216
280

288

293
294
308
314
320
328

334

341

Secrets by Specification

66EC€EECECECEECEEC €

6666666

http://w3.org/TR/css-animations
http://w3.org/TR/css-animations
http://w3.org/TR/css-backgrounds
http://w3.org/TR/css-backgrounds
http://dev.w3.org/csswg/css-backgrounds-4
http://dev.w3.org/csswg/css-backgrounds-4
http://dev.w3.org/csswg/css-backgrounds-4

CSS Basic User Interface
w3.0org/TR/css3-ui

Multiple borders

Inner rounding

Interactive image comparison
CSS Box Alignment
w3.0org/TR/css-align

Vertical centering
CSS Flexible Box Layout
w3.0org/TR/css-flexbox

Vertical centering

Sticky footers
CSS Fonts
w3.org/TR/css-fonts

Ligatures

Fancy ampersands
CSS Image Values
w3.org/TR/css-images

Striped backgrounds

Complex background patterns

(Pseudo)random backgrounds

Continuous image borders

Cutout corners

Simple pie charts

Folded corner effect

Zebra-striped text lines

Custom underlines

» SECRETS BY SPECIFICATION

28

36

250

280

280

288

184

188

40

50

62

68

96

114

156

178

194

Scrolling hints

Interactive image comparison

CSS Image Values Level 4

w3.0org/TR/css4-images
Striped backgrounds
Complex background patterns

Simple pie charts

244

250

40
50

114

CSS Intrinsic & Extrinsic Sizing

w3.0rg/TR/css3-sizing
Intrinsic sizing
CSS Masking
w3.0org/TR/css-masking
Diamond images
Cutout corners
CSS Text
w3.org/TR/css-text
Hyphenation
Adjusting tab width
CSS Text Level 4
dev.w3.org/csswg/css-text-4
Hyphenation
CSS Text Decoration
w3.org/TR/css-text-decor
Custom underlines

Realistic text effects

262

90

96

168

182

168

194

200

http://w3.org/TR/css3-ui
http://w3.org/TR/css3-ui
http://w3.org/TR/css-align
http://w3.org/TR/css-align
http://w3.org/TR/css-flexbox
http://w3.org/TR/css-flexbox
http://w3.org/TR/css-fonts
http://w3.org/TR/css-fonts
http://w3.org/TR/css-images
http://w3.org/TR/css-images
http://w3.org/TR/css4-images
http://w3.org/TR/css4-images
http://w3.org/TR/css3-sizing
http://w3.org/TR/css3-sizing
http://w3.org/TR/css-masking
http://w3.org/TR/css-masking
http://w3.org/TR/css-text
http://w3.org/TR/css-text
http://dev.w3.org/csswg/css-text-4
http://dev.w3.org/csswg/css-text-4
http://w3.org/TR/css-text-decor
http://w3.org/TR/css-text-decor

CSS Transforms Compositing and Blending

w3.org/TR/css-transforms w3.org/TR/compositing
Parallelograms 84 Color tinting 138
Diamond images 90 Interactive image comparison 250
Cutout corners 96 Filter Effects
Trapezoid tabs 108 w3.org/TR/filter-effects
Simple pie charts 114 Irregular drop shadows 134
Folded corner effect 156 Color tinting 138
Interactive image comparison 250 Frosted glass effect 146
Vertical centering 280 De-emphasize by blurring 240
Animation along a circular path 334 Interactive image comparison 250
CSS Transitions Fullscreen API
w3.org/TR/css-transitions fullscreen.spec.whatwg.org
Diamond images 90 De-emphasize by dimming 234
SHIOUECORIEES - Scalable Vector Graphics
Color tinting 138 w3.org/TR/SVG
De-emphasize by blurring 240 Complex background patterns 50
Elastic transitions 294 Simple pie charts 114
CSS Values & Units SHCHEEE =
w3.org/TR/css-values il
Flexible background positioning 32 w3.org/TR/selectors
De-emphasize by dimming 234 Custom checkboxes 228
Vertical centering 280 Styling by sibling count 210
Sticky footers 288
Typing animation 320

SECRETS BY SPECIFICATION @

http://w3.org/TR/css-transforms
http://w3.org/TR/css-transforms
http://w3.org/TR/css-transitions
http://w3.org/TR/css-transitions
http://w3.org/TR/css-values
http://w3.org/TR/css-values
http://w3.org/TR/compositing
http://w3.org/TR/compositing
http://w3.org/TR/filter-effects
http://w3.org/TR/filter-effects
http://fullscreen.spec.whatwg.org
http://fullscreen.spec.whatwg.org
http://w3.org/TR/SVG
http://w3.org/TR/SVG
http://w3.org/TR/selectors
http://w3.org/TR/selectors

Foreword

Ah, the good old days. Back in the previous millennium, we had just two
CSS-capable browsers, and what they did was a fairly limited subset of a
fairly limited specification, so you could fairly easily keep a complete map
of what worked and what didn’t in your head. That map included the bugs
in each implementation, as they had many errors and oversights, some of
them verging on the comical. Heck, some bugs were so fundamental that
they made the browsers’ layout behavior completely incompatible, forcing
us to come up with a whole army of parser-bug-exploiting hacks just to work
around the differences!

Wait a minute. The old days were horrible. Glad we're done with
all that!

Things really have gotten so much better in the last several years, CSS-
wise. Browsers have, for the most part, converged on compatibility, and
where they are incompatible, it's nearly always because one browser doesn’t
support a feature that another does, as opposed to both of them trying to
support the same thing differently, and usually badly. The specifications
have pushed capabilities forward even as they've added features that re-
create the convoluted tricks of old in much simpler, more compact ways.
CSS has far more features and far more power than ever before—but, as
we all know, with great power comes great complexity. It's not even a case
of intentional complexity: when you combine enough working parts, no

matter how simple each may be, interesting things can and do emerge. (For
more on this topic, see The LEGO Movie.)

But it's exactly that unintended complexity that gives CSS the ability to
surprise us with emergent features we never expected, or even planned.
There are secrets to be found in the intersections of properties and the
bending of values. You can carve corners with gradients, animate elements,
increase clickable areas, even create pie charts...and so much more. CSS has
capabilities that we only dreamed of back when | was but a lad, possibilities
beyond anything we imagined. It's added abilities that | once thought could
never be expressed in a compact, human-readable manner—animations, to
pick one example. It's advanced far enough that I'm confident there are
many, many secrets yet to be discovered. Perhaps you'll discover some
of them.

Until that day arrives, there are plenty of fascinating techniques that
have already been unearthed, and few have done more than Lea Verou to
find and share them with the world. From her blog posts to her open source
contributions to her dynamic, interactive talks all over the world, Lea has
amassed a formidable reserve of CSS knowledge. This book is a beautiful
distillation of that knowledge. You now possess a guide to some of the most
interesting, surprising, and useful techniques that CSS has yielded, a guide
compiled by one of the brightest minds in the field. What Lea has prepared
for you in these pages will enrich, delight, and—yes—even astonish.

Go forth, learn well, and let these discoveries be secrets no more.

— Eric A. Meyer

Preface

In the past few years, CSS has undergone a transformation, similar to
the JavaScript revolution circa 2004. It went from being a dead-simple styl-
ing language with limited power, to a complex technology defined by over
80 W3C specifications (including drafts), with its own developer ecosys-
tem, its own conferences, and its own frameworks and tooling. CSS has
grown so much that it's practically impossible for any single person
to hold all of it in their brain. Even in the W3C CSS Working Group that
defines the language, nobody is an expert on every single aspect of CSS—
and few even come close. Instead, most WG members focus on certain CSS
specifications and might know very little about others.

Up until roughly 2009, CSS expertise was not defined by how well the
language was known. This was more or less a given for any serious CSS
work. Instead, CSS prowess was defined by the number of browser bugs
and workarounds that had been committed to memory. Fast-forward to
2015, and browsers are now designed to support standards, and flimsy
browser-specific hacks are frowned upon. There are still some unavoidable
incompatibilities, but—especially because most browsers now auto-update
—the pace of change is so fast, that attempting to document them in a
book would be a waste of time and space.

The challenge in modern CSS has little to do with working around
transient browser bugs. The challenge now is using the CSS features we
have in a creative way, in order to come up with DRY, maintainable,

DRY is an acronym that stands for
“Don’t Repeat Yourself.” It's a pop-
ular programming mantra to pro-
mote an aspect of maintainable
code: being able to change its pa-
rameters with as few edits as possi-
ble, ideally one. Emphasis on DRY
CSS code is a recurring theme in this
book. The opposite of DRY is WET,
which stands for “We Enjoy Typing”
or “Write Everything Twice.”

flexible, lightweight, and as much as possible, standards-compliant
solutions. This is exactly what this book is all about.

There are many books out there that document certain CSS features
from A to Z. CSS Secrets, for better or for worse, is not one of them. Its
purpose is to fill the knowledge gaps that are left after you've already fam-
iliarized yourself with the reference material—to open your mind to new
ways to take advantage of the features you already know about, or to let
you know about useful CSS features that aren’t as shiny and popular, and
that deserve more love. However, above all, the main purpose of this book
is to teach you how to solve problems with CSS.

CSS Secrets is not a cookbook either. Each “secret” is not a canned
recipe, with rigid steps you must follow to achieve a specific effect. Instead,
I've tried to describe the thinking behind every technique in detail, as | be-
lieve that understanding the process of finding a solution is far more
valuable than the solution itself. Even if you don't think that a certain
technique is relevant to your work, learning how to reach a solution might
still prove valuable for tackling even completely different problems. Long
story short, you will hopefully get many proverbial fish from this
book, but its main goal is to “feed you for a lifetime,” by teaching
you how to catch them.

Words of thanks

This book would not have been possible without the help and support of a
number of fantastic people, to whom I'm deeply grateful. A big, heartfelt
thank you goes to:

All those who supported my work over the years, otherwise | wouldn’t have
found myself in the position of writing a book in the first place. To readers
of my blog (Lea.verou.me), Twitter (twitter.com/Leaverou), and
elsewhere, and even more to you, dear reader of my first book! To everyone
who has used my open source work (github.com/Leaverou) and even
more to those who contributed.

All the conference organizers who have invited me for talks and workshops
over the years, especially to Damian Wielgosik and Pawet Czerski who
first believed in me and invited me to the inaugural Front-Trends conference
in 2010. And to Vasilis Vassalos who trusted me to design a web devel-
opment course for Athens University of Economics and Business back in
2010, as all these experiences taught me a great deal about teaching (and
a technical book is basically teaching).

Everyone in the CSS Working Group who voted to bring me on as an
Invited Expert, which has transformed my perspective on web technologies
in general and on CSS in particular.

http://lea.verou.me
http://twitter.com/leaverou
http://github.com/leaverou

My editors, Mary Treseler and Meg Foley, who gave me control over the
entire process and have been incredibly patient with me when | missed
deadlines (which happened more often than I'd care to admit).

My production editor, Kara Ebrahim, who spent copious amounts of time
fixing layout issues and manually compensating for CSS rendering bugs and
limitations in the PDF renderer used for this book.

My technical editors: Elika Etemad, Tab Atkins, Ryan Seddon, Elisabeth
Robson, Ben Henick, Robin Nixon, and Hugo Giraudel. They not only
helped me correct factual mistakes, but also provided invaluable feedback
regarding the understandability of the prose.

Eric Meyer, who | still cannot believe agreed to write a Foreword for
my book.

My research advisor, David Karger, who was extremely understanding
when | arrived at MIT without having finished this book, which was sup-
posed to be done long before then. Without his continued patience, the
fate of this book would have been bleak.

My dad, Miltiades Komvoutis, who taught me art and aesthetics very early
on. Without him, | would probably have zero interest in design and CSS,
and this book would have been about something else, like C++ or kernel
programming.

My uncle/second dad, Stratis Veros, and his lovely wife, Maria Brere, who
put up with me when | was at my most cranky while writing this book. Also
to their kids, Leonie and Phoebe, who are the cutest little girls in the world
and without whom, this book would have finished around a month earlier.

My incredible late mother, Maria Verou, to whom this book is dedicated.
For the 27 years our lives overlapped, she was my best friend and biggest
supporter. Her own life was a huge inspiration: she moved to the other side
of the world to do postgraduate research at MIT in the 1970s, a time when
most women in Greece barely made it to college, and got her degree with
distinction. She taught me ambition, kindness, integrity, independence,
open-mindedness. But most importantly, she taught me to not take life too
seriously. | miss her sorely.

Photo credits

A big thanks to the lovely people who publish their photos with permissive
Creative Commons licenses; otherwise, every example in this book would
feature pictures of my cat (and many examples do, regardless). Here is a list
of the CC photos | used and where you can find them:

"House Made Sausage from Prairie Grass Cafe, Northbrook,” Kurman
Communications, Inc.
flickr.com/kurmanphotos/7847424816

"Cats that Webchick Is Herding,” Kathleen Murtagh

flickr.com/ceardach/4549876293

"Stone Art,” by Josef Stuefer
flickr.com/josefstuefer/5982121

“A Field of Tulips,” Roman Boed
flickr.com/romanboed/867231576

"Resting in the Sunshine,” Steve Wilson
flickr.com/pokerbrit/10780890983

“Naxos Island, Greece,” Chris Hutchison
flickr.com/employtheskinnyboy/3904743709

http://www.flickr.com/kurmanphotos/7847424816
http://www.flickr.com/kurmanphotos/7847424816
http://www.flickr.com/ceardach/4549876293
http://www.flickr.com/josefstuefer/5982121
http://www.flickr.com/romanboed/867231576
http://www.flickr.com/pokerbrit/10780890983
http://www.flickr.com/employtheskinnyboy/3904743709

Making of

This is a book that eats its own dog food, proverbially speaking. It was
written in clean HTML5, with a few data- attributes, defined by
O'Reilly's H-TMLBook standard (oreillymedia.github.i0/HTMLBOOR).
This means that everything you see in this book—the layout, the figures,
the colors—is HTMIL styled with CSS. A lot of the figures are also gener-
ated with SVG or use SVG data URIs, generated via SCSS functions. The few
math formulas were written in LaTeX and then converted to MathML be-
hind the scenes. You may find it amusing that the page numbers, chapter
numbers, and secret numbers are merely CSS counters.

Many of the books O'Reilly publishes these days are made that way.
They have built a system especially for this purpose, called Atlas
(atlas.oreilly.com). The best thing about Atlas is that it's also available
for the public, not just for official O'Reilly use.

However, this book was not a typical Atlas use case. It pushed the limits
of what is possible today with CSS for printing, in a way that—to my knowl-
edge—no other book has. It helped us find many bugs in Atlas and Antenna
House (the PDF renderer used by Atlas) and even many issues with the print-
related CSS specifications themselves, which | took to the CSS WG.

“How much code does it take to make a book like this with web tech-
nologies?” you might ask. Let’s look at a few statistics (before production):

This book is styled with 4,700 lines of SCSS, compiling to 3,800 lines of CSS.
A little over 10,000 lines of HTML.

http://oreillymedia.github.io/HTMLBook
http://atlas.oreilly.com

There are 322 figures in the entire book, but only 140 image files (including
SVG images and screenshots), as most figures are just a series of divs styled
with CSS. (Figure styling accounts for 65% of the book’s CSS and SCSS
code!)

Here is a list of tools used in making this book, besides Atlas:

Git for version control
SCSS for CSS preprocessing

The entire book was written in the Espresso (macrabbit.com/espresso)
text editor

CodeKit was used for compiling SCSS to CSS

Dabblet (dabblet. com) was used for the live demos and for the few fig-
ures that are screenshots of the demos

The SVG-based figures that were not hand coded were created in Adobe
lllustrator

Adobe Photoshop was used to edit screenshots, when needed

The fonts used were Rockwell for the headings, Frutiger for the body text,
Consolas for the code, and Baskerville for the dedication and many figures.

The book was written on a 13" MacBook Air, in a variety of countries,
including Greece, Kenya, Australia, New Zealand, the Philippines, Singa-
pore, Chile, Brazil, the United States, France, Spain, the UK, Wales, Poland,
Canada, and Austria.

http://macrabbit.com/espresso
http://dabblet.com

About this book

Who this book is for

The primary target audience for this book is intermediate to advanced
CSS developers. By getting the introductory stuff out of the way, we can
explore more advanced use cases of modern CSS features and combinations
thereof. This, however, means that quite a few assumptions have been
made about you, dear reader:

I assume you know CSS 2.1 inside out, and have a few years of experience
with it. You don’t struggle to understand how positioning works. You've
used generated content to enhance your designs without extraneous mark-
up or images. You don't resort to plastering ! important all over your code
because you actually understand specificity, inheritance, and the cascade.
You know what the different parts of the box model are, and you are not
fazed by margin collapsing. You are familiar with the different length units
and know when it's best to use each one.

You've read quite a bit about the most popular CSS3 features, online

and/or in books, and have tried them out, even if only in personal projects.
Even if you haven’t studied them in depth, you know how to create rounded
corners, add a box-shadow, or create a linear gradient. You've played with
some basic 2D transforms, and have enhanced interactions with basic tran-

sitions and animations.

You have seen SVG and know what it's used for, even if you don’t quite

know how to write it yourself.

You can read and understand basic, vanilla JavaScript, such as creating
elements, manipulating their attributes, and adding them to the document.

You've heard of CSS preprocessors and know what they can do, even if
you choose not to use one.

You're familiar with middle school level math, such as square roots, the
Pythagorean theorem, sines, cosines, and logarithms.

However, to enable readers that don't meet all these assumptions to enjoy
this book, there is a “Prerequisites” box in the beginning of some secrets,
briefly listing any CSS knowledge or previous secrets that need to be known
for the secret to make sense (excluding CSS 2.1 features, otherwise the box
would get really long). It looks like this:

Prerequisites

box-shadow, basic CSS gradients, the “Flexible ellipses” secret on
page 76

This way, even if certain things are not already known, one can read
up about them and come back to the secret afterward. As long as their
prerequisites are met, the secrets can actually be read in any order,
though there is value in reading them in the book order, as a lot of thought
has been put into what the optimal order is.

Note that | mentioned “CSS developers” and that “design skills” are
not in the list of assumptions above. It's important to note that this is not
a design book. While it unavoidably touches on certain design principles
and describes a few UX improvements, CSS Secrets is first and foremost a
book about solving problems with code. CSS might have a visual output,
but it is still code, just like SVG, WebGL/OpenGL, or the JavaScript Canvas
APl is code, not design. Writing good, flexible CSS requires the same kind
of analytical thinking that programming does. Nowadays, most people use
preprocessors for their CSS, with variables, math, conditionals, and loops,
so it's almost starting to look like programming!

This is an example sidebar figure,

introducing the great Sir Adam
Catlace

Notes, such as this one, provide ad-
ditional information or explain a
term mentioned in the text.

This is a warning. Its purpose is
to warn you (surprising, |
know!) about possible false assump-
tions and certain things that could

go wrong.

This is not to imply that designers are discouraged from reading
this book. Anybody who has sufficient coding experience with CSS can
benefit from it, and there are many talented designers who can also write
excellent CSS code. However, it's important to note that teaching you how
to improve the visual design or usability of a website is not among the goals
of this book, even if it happens as a side effect.

Format & conventions used

The book consists of 47 “secrets,” grouped by topic in seven chapters.
These secrets are more or less independent and—as long as their prerequi-
sites are met—can be read in any order. The demos in every secret are not
complete websites, or even parts thereof. They are purposefully as small and
simple as possible, in order to facilitate understanding. The assumption is
that you already know what you want to implement. The purpose of this
book is not to give design ideas, but implementation solutions.

Every secret is split into two or more sections. The first section, titled
“The problem,” introduces a common CSS challenge that we are going to
solve. Sometimes this introduction might describe widely popular solutions
that are suboptimal (e.g., solutions that require a lot of markup, hardcoded
values, etc.), and usually concludes with variations of the question “Is there
a better way to achieve this?”

After introducing the problem, one or more solutions follow. This book
was inspired by the CSS talks | have presented at various conferences so |
tried to maintain the interactive presentation format as much as a book
allows. Therefore, every solution is illustrated by a number of figures, dem-
onstrating the visual output for every step of the solution that results in a
visual change. Because figures are not always directly next to the text that
describes what they demonstrate, they are numbered and referenced in the
text. You can see an example of a figure in Figure P.1 and the current sen-
tence was an example of a reference to it.

Inline code is denoted by monospace text and colors often have a
small preview next to them as well (e.g., @ #f06). Block-level code looks
like this:

background: url("adamcatlace.jpg");

or this:
<figure>

<figcaption>Sir Adam Catlace</figcaption>
</figure>

As you might have noticed, when the language of a code block is not CSS,
it's noted in the top-right corner. Also, when the example discussed only
involves a single element, and no pseudo-classes or pseudo-elements are
involved, there is usually no selector or braces ({}) included in the code
blocks, for brevity.

All JavaScript examples in the book are vanilla JavaScript, with no
frameworks or libraries required. There is only one helper function used,
$$(), in order to make it easier to loop over a set of elements that match
a certain CSS selector. The function’s definition is:

function $$(selector, context) {
context = context || document;
var elements = context.querySelectorAll(selector);
return Array.prototype.slice.call(elements);

€N side trivia

Dark “Trivia” sections at the bottom of pages introduce tangentially related trivia, such as the historical or

technical background behind a CSS feature. They are not necessary for using or understanding the main

material, but readers might find them interesting nevertheless.

ABOUT THIS BOOK xxvii

HAT TIP

Every secret includes one or more live examples that can be accessed with
short, memorable URLs in play.csssecrets.io. The references to them
look like this:

play.csssecrets.io/polka

It is strongly recommended that you check out the “Play!” examples, espe-
cially if you are confused by the techniques described or if you get stuck
while following along.

Credit where it's due: When a technique described was first documented
by someone else in the community, credit will be given in a “Hat Tip” para-
graph like this one, referencing the URL of the source as well. We all know
that having to find the “References” section at the end of a book is a hassle,
so these essentially provide references in context.

m Future solutions

“Future” sections (positioned at the bottom of pages and set on a dark background) introduce techniques

that are already in draft specifications, but at the time of writing have no implementations. Readers should

always check if these techniques are supported, as they might have been implemented after the publication

of this book. In cases where the feature is obscure enough that browser support websites might not include

it, the section will include a test that the reader can load, in short memorable URLs, such as the one shown

here in the “Test!” example. These tests are usually designed so that shades of green appear when the

feature is supported and shades of red otherwise. The exact instructions are mentioned in the code, as a

comment.

play.csssecrets.io/test-conic-gradient

xxviii PREFACE

http://play.csssecrets.io/test-conic-gradient
http://play.csssecrets.io
http://play.csssecrets.io/polka

At the end of almost every secret you'll find a list of related specifica-
tions that looks like this:

B CSS Backgrounds & Borders RELATED
w3.org/TR/css-backgrounds SPECS

® Selectors
w3.org/TR/selectors

m Scalable Vector Graphics
w3.0org/TR/SVG

This includes references to all the specifications from which features
were mentioned. However, just like the “Prerequisites” box, this does not
apply to €SS 2.1 (w3.0rg/TR/CSS21), otherwise it would be listed in the
“Related Specs” section of every single secret. This means that the few se-
crets that only discuss CSS 2.1 features have no “Related Specs” section
at all.

Browser support & fallbacks

Possibly the biggest peculiarity of this book is the complete lack of brows-
er compatibility tables. This was a conscious decision, as with today’s
browser release cycles, such information is bound to get out of date before
this book even hits the shelves. | believe that inaccurate browser support
information is misleading, and is actually worse than no information.

However, most secrets described either currently have decent browser
support and/or degrade gracefully. In cases where a technigue described
presently has particularly poor browser support, there is a “Limited Support”
warning icon next to the relevant solution, like the one next to this para-
graph. This should be enough to hint that you should not use the solution
without looking up browser support for it and taking extra care for providing
good fallbacks.

There are plenty of excellent websites containing up-to-date browser
support information. Here are some suggestions:

edilis.
€e

~

LIMITED
SUPPORT

ABOUT THIS BOOK

http://w3.org/TR/css-backgrounds
http://w3.org/TR/selectors
http://w3.org/TR/SVG
http://w3.org/TR/CSS21

You can read more on vendor pre-

fixes, why they exist, and how to ab-

stract them away from your code in
the “A story of ice, fire, and ven-
dor prefixes” section on page 6.

Can | Use...? (caniuse. com)
WebPlatform.org
Mozilla Developer Network (developer.mozilla.org)

Wikipedia’s “Comparison of Layout Engines (Cascading Style
Sheets)” (en.wikipedia.org/wiki/
Comparison_of Layout _engines_(Cascading Style Sheets))

Sometimes you might find that a certain feature is supported, but slightly
differently across browsers. For example, it might need a vendor prefix, or
slightly different syntax. Only the standards-compliant, unprefixed syntax
will be included in the examples. However, you can almost always use dif-
ferent syntaxes alongside and let the cascade take care of which one wins.
For this reason, always place the standard version last. For example, to
get a vertical linear gradient from yellow to [red, the book would
only list the standard version:

background: linear-gradient(90deg, yellow, red);

However, if you want to support very old browsers, you might end up
having to write something like the following:

background: -moz-linear-gradient(@deg, yellow, red);
background: -o-linear-gradient(@deg, yellow, red);
background: -webkit-linear-gradient(@deg, yellow, red);
background: linear-gradient(90deg, yellow, red);

Because the landscape of these differences is just as fluid as browser sup-
port, it is expected that things like this are part of your standard research
before using a CSS feature and are not discussed further in the solutions
presented.

Similarly, most of the time it's good practice to provide fallbacks, so
that your website doesn’t break in older browsers, even if it doesn’t look as
fancy in them. These are not discussed extensively when they are obvious,
as the assumption is that you know how the cascade works. For example,

http://caniuse.com
http://webplatform.org
http://developer.mozilla.org
http://en.wikipedia.org/wiki/Comparison_of_layout_engines_(Cascading_Style_Sheets)
http://en.wikipedia.org/wiki/Comparison_of_layout_engines_(Cascading_Style_Sheets)

when specifying a gradient, such as the one just shown, you should also
add a solid color version before all of them. A good idea for the solid color
might be the average of the two gradient colors (in this case,
@ rgb(255, 128, 0)):

background: rgb(255, 128, 0);

background: -moz-linear-gradient(@deg, yellow, red);
background: -o-linear-gradient(@deg, yellow, red);
background: -webkit-linear-gradient(@deg, yellow, red);
background: linear-gradient(90deg, yellow, red);

However, sometimes it's not possible to provide decent fallbacks through
the cascade. As a last resort, you could use tools like Modernizr
(modernizr.com), which adds classes like textshadow or no-
textshadow to the root element (<html>), so you can use them to target
elements only when certain features are (not) supported, like so:

hil { color: gray; }

.textshadow h1 {
color: transparent;

text-shadow: © @ .3em gray;

If the feature you are trying to create a fallback for is sufficiently new, you
could use the @supports rule, which is the “native” Modernizr. For ex-
ample, the preceding code would become:

hil { color: gray; }

@supports (text-shadow: © @ .3em gray) {
hi {

color: transparent;

http://modernizr.com

text-shadow: © @ .3em gray;

However, for now, be wary of using @supports. By using it here we just
limited our effect not only to browsers that support text shadows, but also
to browsers that support the @supports rule—a much more limited set.
Last, but not least, there is always the option of using a few lines of
home-baked JavaScript to perform feature detection and add classes to the
root element in the same fashion as Modernizr. The main way to determine
whether a property is supported is to check its existence on the
element.style object of any element:

var root = document.documentElement; // <html>

if ('textShadow' in root.style) {

root.classList.add('textshadow");

}

else {
root.classList.add('no-textshadow');

}

If we need to test for multiple properties, we can easily turn this into a
function:

function testProperty(property) {

var root = document.documentElement;

if (property in root.style) {
root.classList.add(property.toLowerCase());

return true;

root.classList.add('no-" + property.tolLowerCase());

return false;

If we want to test a value, we need to assign it to the property and check if
the browser retains it. Because we are modifying styles here and not just
testing for their existence, it makes sense to use a dummy element:

var dummy = document.createElement('p');

dummy.style.backgroundImage = 'linear-gradient(red,tan)’;

if (dummy.style.backgroundImage) {

root.classList.add('lineargradients');

}

else {
root.classList.add('no-lineargradients');

}

This can easily be converted to a function as well:

function testValue(id, value, property) {
var dummy = document.createElement('p');

dummy.style[property] = value;

if (dummy.style[property]) {
root.classList.add(id);

return true;

root.classList.add('no-" + id);

return false;

Testing selectors and @rules is a bit more complex, but follows the same
principle: when it comes to CSS, browsers drop anything they don’t under-
stand, so we can check if a feature is recognized by dynamically applying it
and checking if it was retained. Of course, keep in mind that a browser being
able to parse a CSS feature offers no guarantee that the feature is cor-
rectly implemented, or even that it's implemented at all.

Introduction

“Standards are like sausages: it's
better not to see them being made”
—Anonymous W3C WG member

Web standards:
friend or foe?

The standards process

Contrary to popular belief, the W3C (World Wide Web Consortium) does
not “make” standards. Instead, it acts as a forum for interested parties to
get together and do so, in its W3C Working Groups. Of course, the W3C is
not a mere observer: it sets the ground rules and it oversees the process.
Butit's not (primarily) W3C staff that actually write the specifications.

CSS specifications, in particular, are written by the members of the CSS
Working Group, often abbreviated as CSS WG. At the time of writing, the
CSS WG includes 98 members, and its composition is as follows:

86 members from W3C member companies (88%)
7 Invited Experts, including yours truly (7%)
5 W3C staff members (5%)

As you might notice, the vast majority of WG members (88%) come from
W3C member companies. These are companies—such as browser vendors,
popular websites, research institutes, general technology companies, etc.—
that have a vested interest in seeing web standards flourish. Their yearly
membership dues represent the majority of the W3C's funding, enabling

the Consortium to distribute its specifications freely and openly, unlike
other standards bodies that have to charge for them.

Invited Experts are web developers who have been asked to participate
in the standards process, after demonstrating a continuous commitment to
helping out, and a sufficient technical background to participate in the
discussions.

Last, but not least, W3C staff members are people who actually work
at the Consortium and facilitate communication between the WG and
the W3C.

A widespread misconception among web developers is that the W3C
creates standards from up high that the poor browsers then have to follow,
whether they like them or not. However, this couldn’t be further from the
truth: browser vendors have much more of a say than the W3C in what
goes into standards, as evidenced by the numbers listed before.

Also contrary to popular belief, standards are not created in a
vacuum, behind closed doors. The CSS WG is committed to transparency
and all its communications are open to the public, inviting review and
participation:

Most discussions happen in its mailing list, www-style (Lists.w3.org/
Archives/Public/www-style). www-style is publicly archived, and is
open to participation from anyone.

There is a weekly telcon, with a duration of one hour. This is not open to
participation by non-WG members, but is minuted in real time in the #css
channel on the W3C'’s IRC server (irc.w3.org/). These minutes are then
cleaned up and posted to the mailing list a few days later.

There are also quarterly face-to-face meetings, which are also minuted
in the same fashion as telcons. They are also often open to observation
(auditing), after requesting permission from the WG chairs.

All this is part of the W3C process and has to do with decision making.
However, the ones that are actually responsible for putting these decisions
to writing (i.e., authoring the specifications) are the Spec Editors. Spec Ed-
itors might be W3C staff members, browser developers, interested Invited
Experts, or member company employees who are doing it as a full-time job,
paid by their companies to advance standards for the common good.

The composition of the CSS WG:
8 Member companies

Invited Experts
@ \W3C staff members

http://lists.w3.org/Archives/Public/www-style
http://irc.w3.org/

Interested in learning more? Elika
Etemad (fantasai) has written a
series of amazing articles on
how the CSS WG operates
(fantasati.inkedblade.net/
weblog/2011/inside-csswg).
Very highly recommended.

Chairing a W3C Working Group is
frequently compared to herding cats

Each specification goes through multiple stages as it evolves from initial
inception to maturity:

Editor's Draft (ED): The first stage of a spec could be as messy as being
just a collection of ideas by the spec editor. There are no requirements for
this stage and no guarantee that it's approved by the WG. However, this is
also the first stage of every revision: all changes are first made in an ED, then
published.

First Public Working Draft (FPWD): The first published version of a spec,
after it's deemed ready for public feedback by the WG.

Working Draft (WD): There are many WDs after the first one, each slightly
better, incorporating feedback from the WG and the broader community.
Firstimplementations often start at this stage, but it's not unheard of to have
experimental implementations of earlier stage specs.

Candidate Recommendation (CR): This is considered a relatively stable
version. Now it's time for implementations and tests. A spec cannot advance
past this stage without a full test suite and at least two independent

implementations.

Proposed Recommendation (PR): Last chance for W3C member compa-
nies to express disagreement with the specification. This rarely happens, so
it's usually just a matter of time for every PR spec to move to the next, final
stage.

Recommendation (REC): The final stage of a W3C specification.

One or two WG members have the role of being chairs. Chairs are
responsible for organizing meetings, coordinating calls, timekeeping, and
generally moderating the whole thing. Being chair is a very time-consuming
and energy-draining role, and is frequently compared to herding cats. Of
course, everyone involved in standards knows that such a comparison is
moot: herding cats is actually considerably easier.

http://fantasai.inkedblade.net/weblog/2011/inside-csswg
http://fantasai.inkedblade.net/weblog/2011/inside-csswg
http://fantasai.inkedblade.net/weblog/2011/inside-csswg

CSS83, CSS4, and other mythical creatures

CSS 1 was a very short and relatively simple specification, published in 1996
by Hakon Wium Lie and Bert Bos. It was so small that it was all included in
a single HTML page, which required around 68 sheets of A4 paper to print.

CSS 2, published in 1998, was more strictly defined, and included much
more power and two more spec editors: Chris Lilley and lan Jacobs. At this
point, the length of the specification had grown to 480 (!) printed pages
and was already getting too big to be held in human memory in its entirety.

After CSS Level 2, the CSS WG realized that the language was getting
too big to be contained in a single specification. Not only was it extremely
unwieldy to read and edit, but it was also holding CSS back. Remember that
for a specification to advance to the final stages, every single feature
in it needs at least two independent implementations and exhaus-
tive tests. This was no longer practical. Therefore, it was decided that going
forward, CSS was going to be broken into multiple specifications (modules),
each with its own versioning. Those that expand on features that were al-
ready present in CSS 2.1 would have a level number of 3. For example, some
of these modules are:

CSS Syntax (w3.org/TR/css-syntax-3)

CSS Cascading and Inheritance (w3.0rg/TR/css-cascade-3)
CSS Color (w3.0rg/TR/css3-color)

Selectors (w3.0rg/TR/selectors)

CSS Backgrounds & Borders (w3.org/TR/css3-background)
CSS Values and Units (w3.0rg/TR/css-values-3)

CSS Text (w3.0rg/TR/css-text-3)

CSS Text Decoration (w3.0rg/TR/css-text-decor-3)

CSS Fonts (w3.0rg/TR/css3-fonts)

CSS Basic User Interface (w3.0rg/TR/css3-ut)

However, modules that introduce entirely new concepts start from Level 1.

Here are a few examples:

http://w3.org/TR/css-syntax-3
http://w3.org/TR/css-cascade-3
http://w3.org/TR/css3-color
http://w3.org/TR/selectors
http://w3.org/TR/css3-background
http://w3.org/TR/css-values-3
http://w3.org/TR/css-text-3
http://w3.org/TR/css-text-decor-3
http://w3.org/TR/css3-fonts
http://w3.org/TR/css3-ui

CSS Transforms (w3.o0rg/TR/css-transforms-1)
Compositing and Blending (w3.0rg/TR/compositing-1)
Filter Effects (w3.0rg/TR/filter-effects-1)

CSS Masking (w3.0rg/TR/css-masking-1)

CSS Flexible Box Layout (w3.0rg/TR/css-flexbox-1)
CSS Grid Layout (w3.0rg/TR/css-grid-1)

Despite the popularity of the “CSS3"” buzzword, there is actually no
specification defining such a thing, like there was for CSS 2.1 or its
predecessors. Instead, what most authors are referring to is an arbitrary set
of Level 3 specs, plus some Level 1 specs. Although there is some good
degree of consensus among authors on which specs are included in “CSS3,”
as CSS modules evolve at different rates over the years, it will become more
and more difficult to refer to things like CSS3, CSS4, and so on and be
universally understood.

A story of ice, fire, and vendor prefixes

In standards development, there is always a big catch-22: standards groups
need input from developers to create specifications that address real devel-
opment needs. However, developers are generally not interested in trying
out things they can't use in production. When experimental technologies
get widely used in production, the WG is forced to stick with the early,
experimental version of the technology, to avoid breaking several existing
websites if they change it. Obviously, this completely negates the benefits
of getting developers to try out early standards.

Over the years, many solutions have been proposed to address this co-
nundrum, none of them perfect. The universally despised vendor prefixes
were one of them. The idea was that every browser would be able to im-
plement experimental (or even proprietary) features with their own prefix
prepended to its name. The most common prefixes are -moz- for Firefox,
-ms- for IE, -o- for Opera, and -webkit- for Safari and Chrome.
Developers would be able to freely experiment with these prefixed features
and provide feedback to the WG, which would then incorporate this feed-
back into the specs and slowly perfect the design of the feature. Because

http://w3.org/TR/css-transforms-1
http://w3.org/TR/compositing-1
http://w3.org/TR/filter-effects-1
http://w3.org/TR/css-masking-1
http://w3.org/TR/css-flexbox-1
http://w3.org/TR/css-grid-1

the final, standardized version would have a different name (no prefix), it
wouldn’t collide with the existing uses of its prefixed counterparts.

Sounds great, right? Of course, as you probably know, the reality was
quite different from the vision. When developers realized that these exper-
imental, vendor-prefixed properties could make it so much easier to create
effects that previously required messy workarounds, they started using them
everywhere. Vendor-prefixed properties quickly became the CSS trend of
the time. Tutorials were written, StackOverflow replies were given, and soon
almost every self-respecting CSS developer was using them all over the
place.

Eventually, authors realized that using only existing vendor prefixes
meant they would have to go back to previous work and add new declara-
tions every time another browser implemented their favorite cool new CSS
feature. Not to mention how hard it became to keep up with which prefixes
were needed for what feature. The solution? Add all possible vendor pre-
fixes preemptively, including the unprefixed version at the end, to future-
proof it. We ended up with code like the following:

-moz-border-radius: 10px;
-ms-border-radius: 10px;
-o-border-radius: 10px;
-webkit-border-radius: 10px;

border-radius: 10px;

Two of the declarations here are completely redundant: -ms-border-
radius and -o-border-radius never existed in any browser, as IE and
Opera implemented border-radius unprefixed from the get-go.

Obviously, repeating every declaration up to five times was tedious and
unmaintainable. It was only a matter of time until tools were built to auto-
mate this:

Websites like CSS3, Please! (css3please. com) or pleeease
(pleeease.1o/playground.html) allow you to paste your unprefixed
CSS code and get back CSS with all necessary prefixes added. Such apps
were among the first ideas devised to automate vendor prefix addition, but

http://css3please.com
http://pleeease.io/playground.html

are not very popular anymore, as using them incurs quite a lot of overhead
compared to other solutions.

Autoprefixer (github.com/ai/autoprefixer) uses the database from
Can | Use... (caniuse. com) to determine which prefixes to add to unpre-
fixed code and compiles it locally, like a preprocessor.

My own -prefix-free (Leaverou.github.io/prefixfree)performs fea-
ture testing in the browser to determine which prefixes are needed. The
benefitis that it rarely needs updating, as it gets everything from the browser
environment, including the list of properties.

Preprocessors like LESS (Lesscss.org) or Sass (sass-Lang.com) don't
offer any means of prefixing out of the box, but many authors create mixins
for the features they prefix most often, and there are several libraries of such

mixins in circulation.

Because authors were using the unprefixed version of features as a means
to future-proof their code, it became impossible to change them. We were
basically stuck with half-baked early specs that we could change in very
limited ways. It didn't take long for everyone involved to realize that vendor
prefixes were an epic failure.

These days, vendor prefixes are rarely used for new experimental im-
plementations. Instead, experimental features require config flags to be
turned on, effectively preventing developers from using them in production,
as you can't really tell users to change their settings in order to view your
website properly. Of course, this has the consequence that fewer authors
get to play with experimental features, but we still get enough feedback,
and arguably, better quality feedback, without the drawbacks of vendor
prefixes. However, it will be a long time before the ripple effects of vendor
prefixes stop haunting us all.

https://github.com/ai/autoprefixer
http://caniuse.com
http://leaverou.github.io/prefixfree
http://lesscss.org
http://sass-lang.com

CSS coding tips

Minimize code duplication

Keeping code DRY and maintainable is one of the biggest challenges in
software development, and that applies to CSS as well. In practice, one big
component of maintainable code is minimizing the amount of edits
necessary to make a change. For example, if to enlarge a button you need
to make 10 edits in many different rules, chances are you will miss a few of
them, especially if you are not the one who wrote the original code. Even if
the edits are obvious, or you eventually find them, you have just wasted
time that could be put to better use.

Furthermore, this is not just about future changes. Flexible CSS makes
it easier to write CSS once, and then create variations with very little code,
as there are only a few values you need to override. Let's look at an example.

Take a look at the following CSS, which styles the button shown in
Figure 1.4:

padding: 6px 16px;

border: 1px solid #446d88;

background: #58a linear-gradient(#77a@bb, #58a);
border-radius: 4px;

box-shadow: @ 1px 5px gray;

color: white;

The button we are going to use in
our example

Yes!

Enlarging the font size breaks other
effects in our button (corner
rounding being the most
noticeable), as they are specified
using absolute lengths

text-shadow: @ -1px 1px #335166;
font-size: 20px;
line-height: 30px;

There are several issues with the maintainability of this code that we can
fix. The low-hanging fruit is the font metrics. If we decide to change the
font size (perhaps to create a variation that will be used for important, bigger
buttons), we also need to adjust the line spacing, as they are both absolute
values. Furthermore, the line spacing doesn't reflect what its relationship is
to the font size, so we would even need to perform calculations to figure
out what it should be for a different font size. When values depend on
each other, try to reflect their relationship in the code. In this case, the
line spacing is 150% the line height. Therefore, it would be much more
maintainable to show this in the code:

font-size: 20px;
line-height: 1.5;

While we're at it, why did we specify the font size as an absolute
length? Sure, absolute lengths are easy to work with, but they come back
to bite you every single time you make changes. Now, if we decide to make
the parent font size bigger, we would have to change every single rule in
the stylesheet that uses absolute font measurements. It's much better to use
percentages or ems:

font-size: 125%; /* Assuming a 16px parent font size */
line-height: 1.5;

Now if I change the parent font size, the button will instantly become
bigger. However, it will look quite different (Figure 1.5), because all other
effects were designed for a smaller button and did not scale. We can make
all the other effects scalable as well, by specifying any lengths in ems, so that

they all depend on the font size. This way, we can control the size of the
button in one place:

padding: .3em .8em;

border: 1px solid #446d88;

background: #58a linear-gradient(#77a@bb, #58a);
border-radius: .2em;

box-shadow: © .@5em .25em gray;

color: white;

text-shadow: @ -.05em .@5em #335166;

font-size: 125%;

line-height: 1.5;

Now our larger button looks much more like a scaled version of the
original (Figure 1.6). Notice that we still left some lengths as absolute val-
ues. It's a judgment call which effects should scale with the button
and which ones should stay the same. In this case, we wanted our bor-
der thickness to stay 1px regardless of the button dimensions.

However, making the button smaller or larger is not the only thing we
might want to change. Colors are another big one. For example, what if we
want to create a red Cancel button, or a green OK button? Currently, we
would need to override four declarations (border-color, background
box-shadow, text-shadow), not to mention the hassle of recalculating
all the different darker/lighter variants of our main color, {l #58a, and fig-
uring out how much lighter or darker each color is. Also, what if we want
to place our button on a non-white background? Using @ gray for its
shadow will only look as intended on a white background.

We could easily eliminate this hassle by using semi-transparent white
and black for lighter/darker variants, respectively, overlaid on our main color:

padding:
border: 1px solid rgba(0,0,0,.1);
background: #58a linear-gradient(hsla(0,0%,100%, .2),

transparent);

.3em .8em;

Here we wanted our font size and
measurements to be relative to the
parent font size, so we used ems. In
some cases, you want them to be
relative to the root font size (i.e.,
the font size of <html>), and ems
result in complex calculations. In that
case, you can use the rem unit. Rel-
ativity is an important feature in CSS,
but you do have to think about
what things should be relative to.

Yes!

Now we can make our button larger,
and all its effects scale too

Use HSLA instead of

RGBA for semi-
transparent white, as it has slightly
fewer characters and is quicker to
type, due to the lack of repetition.

border-radius: .2em;

box-shadow: @ .05em .25em rgba(0,0,0,.5);
color: white;

text-shadow: @ -.05em .05em rgba(0,0,0,.5);
font-size: 125%;

line-height: 1.5;

Now all it takes to create variations with different colors is to override
background-color (Figure 1.7):

background-color: #c00;

All it took to create these color
variations was changing the

background color button.ok {

background-color: #6b0;

Our button is already much more flexible. However, this example doesn’t
demonstrate every opportunity to make your code more DRY. You will find
a few more tips in the following sections.

Maintainability versus brevity

Sometimes, maintainability and brevity can be mutually exclusive.
Even in the previous example, our final code is a bit longer than our original.
Consider the following snippet to create a 1@px thick border on every side
of an element, except the left one:

border-width: 1@px 10px 10px ©;

It's only one declaration, but to change the border thickness we would need
to make three edits. It would be much easier to edit as two declarations,
and it's arguably easier to read that way too:

border-width: 10px;
border-left-width: 9;

currentColor

In CSS Color Level 3 (w3.0rg/TR/css3-color), we got many new color
keywords like lightgoldenrodyellow, which aren’t that useful.
However, we also got a special new color keyword, borrowed from SVG:
currentColor. This does not correspond to a static color value. Instead,
it always resolves to the value of the color property, effectively making it
the first ever variable in CSS. A very limited variable, but a variable
nevertheless.

For example, let's assume we want all of the horizontal separators (all
<hr> elements) to automatically have the same color as the text. With
currentColor, we could do this:

hr {
height: .5em;
background: currentColor;

You might have noticed similar behavior with many existing properties. For
example, if you specify a border with no color, it automatically gets the text
color. This is because currentColor is also the initial value of many CSS
color properties: border-color, the text-shadow and box-shadow
colors, outline-color, and others.

In the future, when we get functions to manipulate colors in native
CSS, currentColor will become even more useful, as we will be able to
use variations of it.

Inheritance

While most authors are aware of the inherit keyword, it is often forgot-
ten. The inherit keyword can be used in any CSS property and it always

Some would argue that the em unit
was actually the first variable in CSS,
as it referred to the value of font-
size. Most percentages play a sim-
ilar role, though in less exciting
ways.

http://w3.org/TR/css3-color

Your username:
leaverou

Only letters, numbers, underscores
(L) and hyphens (-) allowed!

A speech bubble where the pointer
gets the background color and
border from the parent

corresponds to the computed value of the parent element (in pseudo-
elements that is the element they are generated on). For example, to give
form elements the same font as the rest of the page, you don't need to re-
specify it, just use inherit:

input, select, button { font: inherit; }

Similarly, to give hyperlinks the same color as the rest of the text, use
inherit

a { color: inherit; }

The inherit keyword can often be useful for backgrounds as well.
For example, to create speech bubbles where the pointer automatically in-
herits the background and border (Figure 1.8):

.callout { position: relative; }

.callout: :before {
content: "";

position: absolute;

top: -.4em; left: lem;

padding: .35em;

background: inherit;

border: inherit;

border-right: 0;

border-bottom: 9;

transform: rotate(45deg);

Trust your eyes, not numbers

The human eye is far from being a perfect input device. Sometimes accurate
measurements result in looking inaccurate and designs need to account for
that. For example, it's well known in visual design literature that our eyes
don’t perceive something as being vertically centered when it is. Instead, it
needs to be slightly above the geometrical middle to be perceived as such.
See that phenomenon for yourself, in Figure 1.9.

Similarly, in type design, it is well known that round glyphs such as “O"
need to be slightly larger than more rectangular glyphs, as we tend to per-
ceive round shapes as smaller than they actually are. Check that out for
yourself in Figure 1.10.

Such optical illusions are very common in any form of visual de-
sign, and need to be accounted for. An extremely common example is pad-
ding in containers with text. The issue is present regardless of the amount
of text—it could be a word or several paragraphs. If we specify the same
amount of padding on all four sides of a box, it actually ends up looking
uneven, as Figure 1.11 demonstrates. The reason is that letterforms are
much more straight on the sides than their top and bottom, so our
eyes perceive that extra space as extra padding. Therefore, we need to
specify less padding for the top and bottom sides if we want it to be
perceived as being the same. You can see the difference this makes in
Figure 1.12.

On Responsive Web Design

RWD (Responsive Web Design) has been all the rage over the past few years.
However, the emphasis is often placed on how important it is for websites
to be “responsive,” leaving a lot unsaid about what good RWD entails.
The common practice is testing a website in multiple resolutions and
adding more and more media queries to fix the issues that arise. However,
every media query adds overhead to future CSS changes, and they
should not be added lightly. Every future edit to the CSS code requires

In the first rectangle, the brown
square is mathematically vertically
centered, but doesn’t look so; in the
second one, it is actually placed
slightly above the geometrical
center, but it looks more centered to
the human eye

The circle looks smaller, but its
bounding box is exactly the same as
the square

yolo

Specifying the same padding (. 5em
here) on all four sides of a container
with text makes it look larger on the
top and bottom sides

yolo

Specifying larger padding

(here: .3em .7em) on the left and
right side makes it look much more
uniform

Consider using ems in

your media queries in-
stead of pixels. This allows text zoom
to trigger layout changes as
necessary.

checking whether any media queries apply, and potentially editing those
too. This is often forgotten, resulting in breakage. The more media queries
you add, the more fragile your CSS code becomes.

That is not to say that media queries are a bad practice. Used right,
they can be indispensable. However, they should be a last resort, after
every other attempt to make a website design flexible has failed, or when
we want to completely change an aspect of the design in smaller/larger
viewports (e.g., making the sidebar horizontal). The reason is that media
gueries do not fix issues in a continuous manner. They are all about specific
thresholds (a.k.a. “breakpoints”), and unless the rest of the code is written
to be flexible, media queries will only fix specific resolutions, essentially
sweeping issues under the rug.

Of course, it goes without saying that media query thresholds
should not be dictated by specific devices, but by the design itself. Not
only because there are so many different devices (especially if we take future
devices into account) that a website should look good at any possible res-
olution, but also because a website on the desktop might be viewed in a
window of any size. If you are confident that your design works well in every
possible viewport size, who cares about what resolution specific devices
have?

Following the principles described in the “Minimize code duplica-
tion” section on page 9 will also help with this, as you won't have to
override as many declarations in your media queries, essentially minimizing
the overhead they cause.

Here are a few more tips to avoid needless media queries:

Use percentages instead of fixed widths. When that’s not possible, use
viewport-relative units (vw, vh, vmin, vmax), which resolve to a fraction of
the viewport width or height.

When you want a fixed width for larger resolutions, use max-width, not
width, so it can still adapt to smaller ones without media queries.

Don't forget to set a max-width of 100% for replaced elements such as
img, object, video, and iframe.

In cases when a background image needs to cover an entire container,
background-size: cover can help maintain that regardless of said
container’s size. However, bear in mind that bandwidth is not unlimited, and

it's not always wise to include large images that are going to be scaled down
via CSS in mobile designs.

When laying out images (or other elements) in a grid of rows and columns,
let the number of columns be dictated by the viewport width. Flexible Box
Layout (a.k.a. Flexbox) or display: inline-block and regular text
wrapping can help with that.

When using multi-column text, specify column-width instead of
column-count, so that you get one column only in small resolutions.

In general, the idea is to strive for liquid layouts and relative sizing be-
tween media query breakpoints. \When a design is sufficiently flexible,
making it responsive shouldn’t take more than a few short media queries.
The designers of Basecamp wrote about this very matter in late 2010:

“As it turned out, making the layout work on a variety of devices was just
a matter of adding a few CSS media queries to the finished product. The
key to making it easy was that the layout was already liquid, so optimizing
it for small screens meant collapsing a few margins to maximize space
and tweaking the sidebar layout in the cases where the screen is too
narrow to show two columns.”

— Experimenting with responsive design in Iterations (signalvnoise. com/posts/2661-

experimenting-with-responsive-design-in-iterations)

If you find yourself needing a boatload of media queries to make your

design adapt to smaller (or larger) screens, take a step back and reexamine

your code structure, because in all likelihood, responsiveness is not the only
issue there.

Use shorthands wisely

As you probably know, the following two lines of CSS are not equivalent:

background: rebeccapurple;

background-color: rebeccapurple;

http://signalvnoise.com/posts/2661-experimenting-with-responsive-design-in-iterations

The former is a shorthand and will always give you a [} rebeccapurple
background, whereas the element with the longhand (background-
color) could end up with a pink gradient, a picture of a cat, or anything
really, as there might also be a background-image declaration in effect.
This is the problem when you mainly use longhands: you are not resetting
all the other properties that could be affecting what you're trying to
accomplish.

You could of course try to set all the longhands and call it a day, but
then you might forget some. Or the CSS WG might introduce more long-
hands in the future, and your code will have failed to reset those. Don’t be
afraid of shorthands. It is good defensive coding and future-proofing
to use them, unless we intentionally want to use cascaded properties
for everything else, like we did for the colored button variants in the “Min-
imize code duplication” section on page 9.

Longhands are also very useful in combination with shorthands, to
make code DRY-er in properties whose values are a comma-separated list,
such as the background properties. This is best explained with an example:

background: url(tr.png) no-repeat top right / 2em 2em,
url(br.png) no-repeat bottom right / 2em 2em,
url(bl.png) no-repeat bottom left / 2em 2em;

Notice how the background-size and background-repeat values are
repeated three times, despite being the same for every image. We can take
advantage of CSS list expansion rules which say that if only one value is
provided, it is expanded to apply to every item in the list, and move
these repeated values to longhands:

background: url(tr.png) top right,
url(br.png) bottom right,
url(bl.png) bottom left;

background-size: 2em 2em;

background-repeat: no-repeat;

Now we can change the background-size and background-repeat
with only one edit instead of three. You will see this technique used through-
out the book.

Should I use a preprocessor?

You've probably heard of CSS preprocessors such as LESS (Lesscss.org),
Sass (sass-Llang.com), or Stylus (Learnboost.github.io/stylus).
They offer several conveniences for authoring CSS, such as variables, mixins,
functions, rule nesting, color manipulation, and more.

Used properly, they can help keep code more flexible in a large
project, when CSS itself proves too limited to let us do so. As much as we
strive to code robust, flexible, DRY CSS, sometimes we just stumble on the
limitations of the language. However, preprocessors also come with a few
issues of their own:

You lose track of your CSS’ filesize and complexity. Concise, small code
might compile to a CSS behemoth that is sent down the wires.

You might have noticed in the shorthand and longhand example that specifying background-size in the
background shorthand requires also providing a background-position (even if it's the same as the
initial one) and using a slash (/) to separate them. Why do some shorthands have such weird rules?

This is almost always done for disambiguation purposes. Sure, in the example here, it's obvious that
top rightisabackground-positionand2em 2emabackground-size regardless of their ordering.
However, think of values like 50% 50%. Is it a background-size or a background-position? When
you are using the longhands, the CSS parser knows what you mean. However, in the shorthand, the parser
needs to figure out what that 50% 50% refers to without any help from the property name. This is why the
slash is needed.

For most shorthands, there is no such disambiguation issue and their values can be specified in any
order. However, it's always good practice to look up the exact syntax, to avoid nasty surprises. If you are
familiar with regexes and grammars, you could also check the grammar for the property in the relevant

specification, which is probably the quickest way to see if there is a specific ordering.

CSS CODING TIPS 19

http://lesscss.org
http://sass-lang.com
http://learnboost.github.io/stylus

Debugging becomes harder, as the CSS you see in the developer tools is
not the CSS you wrote. This is becoming less of an issue, as SourceMaps get
more debugger support. SourceMaps are a cool new technology that aims
to mitigate this issue by telling the browser what preprocessor CSS corre-
sponds to what generated CSS, down to the line number.

They introduce some degree of latency in our development process. Even
though they are generally fast, it still takes a second or so to compile your
code to CSS, which you have to wait for before previewing its result.

With every abstraction, comes more effort required by someone to start
working on our codebase. We either have to only collaborate with people
fluent in the preprocessor dialect of our choice, or teach it to them. So we
are either restricted in our choice of collaborators or need to spend
extra time for training, both of which are suboptimal.

Let's not forget the Law of Leaky Abstractions: “All non-trivial abstractions,
to some degree, are leaky.” Preprocessors are written by humans, and like
every non-trivial program humans have ever written, they have their own
bugs, which can be very insidious as we rarely suspect that a preprocessor
bug might be the culprit behind our CSS issues.

In addition to the issues listed here, preprocessors also pose the risk of
making authors dependent on them, perpetuating their use even when
unnecessary, such as in smaller projects or in the future, after their most
popular features have been added to native CSS. Surprised? Yes, many
preprocessor-inspired features have been making their way into
pure CSS:

There is already a draft about variable-like custom properties, under the title
of CSS Custom Properties for Cascading Variables (w3.0rg/TR/css-

variables-1).

The function calc () from CSS Values & Units Level 3 not only is very pow-
erful for performing calculations, but also very well supported, even today.

The color () function in CSS Color Level 4 (dev.w3.0org/csswg/css-
color) will provide means to manipulate colors.

There are several serious discussions in the CSS WG about nesting, and even
a draft spec (ED) existed about it in the past.

http://w3.org/TR/css-variables-1
http://dev.w3.org/csswg/css-color

Note that native features like these are generally much more power-
ful than the ones provided by preprocessors, as they are dynamic. For
example, a preprocessor has no clue how to perform a calculation like 100%
- 50px, because the value percentages resolve to is not known until the
page is actually rendered. However, native CSS calc() has no trouble
evaluating such expressions. Similarly, variable use like the following is not
possible with preprocessor variables:

ul { --accent-color: purple; }
ol { --accent-color: rebeccapurple; }
1i { background: var(--accent-color); }

Can you see what we did there? The background of list items in ordered
lists will be ([l rebeccapurple, whereas the background of list items in
unordered lists will be @ purple. Try doing that with a preprocessor! Of
course, in this case, we could have just used descendant selectors, but the
point of the example was to show how dynamic these variables will be.

Myth

CSS the way it was imagined.

Myth is a preprocessor that lets you write pure CSSwithout having to
worry about slow browser support, or even slow spec approval.
It's like a CSS polyfill.

Don't forget that native CSS features
like these can be manipulated
through scripting too. For example,
you could use JS to change the value
of a variable.

Myth (myth.io) is an experimental
preprocessor that emulates these
native CSS features, instead of
introducing proprietary syntax,
essentially acting like a CSS polyfill

http://myth.io

Because most of the aforementioned native CSS features are not well
supported today, in many cases using preprocessors is unavoidable if main-
tainability matters (and it should). My advice would be to start off every
project with pure CSS, and when it starts being impossible to keep it DRY,
switch to using a preprocessor then. To avoid becoming completely depen-
dent on preprocessors or using them when they are not actually needed,
their use needs to be a conscious decision, not a mindless first step
performed by default in every new project.

In case you were wondering (and haven't read the first chapter, tsk-
tsk), the style of this book was authored in SCSS, although it started as
pure CSS and only switched when the code grew too complex to be main-
tainable. Who said CSS and its preprocessors are only for the Web?

Backgrounds
& Borders

Translucent
borders

Prerequisites

RGBA/HSLA colors

The problem

By now, you've probably dabbled quite a bit with semi-transparent colors
in CSS, such as rgba() and hsla(). They were a huge revolution back in
2009, when we were finally able to use them in our designs, despite the
required fallbacks, shims, and even ugly IE filter hacks for the daring. How-
ever, their uses in the wild were mostly centered around backgrounds. There
were a few reasons for this:

Some early adopters hadn’t quite realized that these new color formats were
actually colors just like [} #0066 or [} orange, and treated them like
images, using them only in backgrounds.

It was much easier to provide fallbacks for backgrounds than for other
properties. For example, the fallback for a semi-transparent background

could be asingle pixel semi-transparent image. For other properties, the only
possible fallback was a solid color.

= Using them in other properties, such as borders, wasn’t always as straight-
forward. We'll see why next.

HOME ARCHIVES AUTHORS RSS TWITTER

i:.(16

Lea Verou Is the lead web
developer and designer of

» which she co-
founded in 2008. Fresset
owns and manages some of
the largest Greek
community websites. Lea
has a long-standing passion
for open web standards,
especially CSS and
JavaScript. She loves
researching new ways to
use them and shares her
findings through her blog,

- She

at a number of the largest
web development

CSS3 Patterns, Explained

ARTICLE Lea Verou

Many of you have probably seen my CSS3 patterns gallery. It became very popular
throughout the year and it showed many web developers how powerful CSS3
gradients really are. But how many really understand how these patterns are
created? The biggest benefit of CSS-generated backgrounds is that they can be
modified directly within the style sheet. This benefit is void if we are just copying and
pasting CSS code we don't understand. We may as well use a data URI instead.

Important note

In all the examples that follow, I'll be using gradients without a vendor prefix, for
readability and brevity. However, you should keep in mind that in reality you need to
use all the vendor prefixes (-moz- , -ms-, -o-, -webkit-)as no browser
currently implements them without a prefix. Alternatively, you could use -prefix-free
and have the current vendor prefix prepended at runtime, only when needed.

The syntax described here is the one that browsers currently implement. The
specification has since changed, but no browser implements the changes yet. If you
are interested in what is coming, | suggest you take a look at the dev version of the
spec.

E-ON -

FIGURE 2.1

24ways.org was one of the first
websites to really utilize semi-
transparent colors in its design, as
early as 2008, although they were
also mostly backgrounds (design by
Tim Van Damme)

conferences and writes for

T

Can | haz semi-
transparent borders?
Pretty please?

Suppose we want to style a container with a white background and a

semi-transparent white border, through which our body background shows.
Our first attempt would probably look like this:

lll\\\\\\\\\\\\\\\\\\\\\\\\

border: 10px solid hsla(@,0%,100%, .5);
background: white;

FIGURE 2.2

Our initial attempt to achieve semi-

transparent borders
Unless you have a good understanding of how backgrounds and borders
work, the result (shown in Figure 2.2) can be quite baffling. Where did our
border go? And if we cannot achieve semi-transparent borders by using a
semi-transparent color for the border, then how can we do it?!

SECRET #1: TRANSLUCENT BORDERS

FIGURE 2.3
By default, backgrounds extend

underneath the border area

Can | haz semi-
transparent borders?

Pretty please?

FIGURE 2.4

Fixing the issue with background-
clip

The solution

Although it might not look like it, our border is still there. By default, back-
grounds extend underneath the border area, which you can easily check by
applying a good ol dashed border to an element with a background
(Figure 2.3). This doesn’t make much of a difference when you're using
solid opaque borders, but in this case, it completely changes our design.
Instead of having a semi-transparent white border through which our nice
body background shows, we ended up having semi-transparent white bor-
ders on opaque white, which are indistinguishable from plain white borders.

In CSS 2.1, this was just how backgrounds worked. We just had to
accept it and move on. Thankfully, since Backgrounds & Borders Level 3
(w3.0org/TR/css3-background), we are able to adjust this behavior when
it's not convenient, through the background-clip property. Its initial
value is border-box, which means that backgrounds are clipped at the
outer edge of the element’s border box. If we want our background to not
extend underneath the border, all we have to do is to give it the value
padding-box, which tells the browser to clip the background at the pad-
ding edge:

border: 10px solid hsla(0,0%,100%, .5);
background: white;
background-clip: padding-box;

The much nicer result can be seen in Figure 2.4.

play.csssecrets.io/translucent-borders

® CSS Backgrounds & Borders RELATED
w3.0org/TR/css-backgrounds SPECS

CHAPTER 2: BACKGROUNDS & BORDERS

http://w3.org/TR/css3-background
http://play.csssecrets.io/translucent-borders
http://w3.org/TR/css-backgrounds

Multiple
borders

Prerequisites

Basic box-shadow use

The problem

Back in the day, when Backgrounds & Borders Level 3 (w3.org/TR/
css3-background) was still a draft, there was a lot of discussion in the CSS
WG about whether multiple borders should be allowed, just like multiple
background images. Unfortunately, the consensus at the time was that
there weren’t enough use cases, and authors could always use border -
image to achieve the same effect. However, what the Working Group
missed is that we usually want the flexibility of being able to adjust borders
in CSS code, so developers ended up resorting to ugly hacks such as using
multiple elements to emulate multiple borders. However, there are better
ways to solve this without polluting our markup with useless extra elements.

http://w3.org/TR/css3-background

box-shadow solution

By now, most of us have probably (over)used box-shadow to create shad-
ows. However, it is little known that it accepts a fourth parameter (called
“spread radius”), which makes the shadow larger (positive lengths) or
smaller (negative lengths) by the amount you specify. A positive spread
radius combined with zero offsets and zero blur creates a “shadow” that
looks more like a solid border (Figure 2.5):

background: yellowgreen;
box-shadow: © 0 © 10px #655;

This is not particularly impressive, as you can create the same kind of border
by using the border property. However, the good thing about box-
shadow is that we can have as many of them as we want, comma
separated. So, we can pretty easily add a second [} deeppink “border”
to the previous example:

background: yellowgreen;
box-shadow: © 0 © 10px #655, @ @ @ 15px deeppink;

The only thing to keep in mind is that box-shadows are overlaid one on
top of the other, with the first one being the topmost. Therefore, you need
to adjust the spread radius accordingly. For example, in the preceding code,
we wanted a 5px outer border, so we specified a spread radius of 15px
(10px + 5px). You can even specify a regular shadow after all the “out-

lines,” if you want:

background: yellowgreen;
box-shadow: @ @ © 10px #655,
@ 0 0 15px deeppink,
@ 2px 5px 15px rgbha(0,0,0,.6);

Emulating an outline with box-
shadow

Emulating two outlines with box-
shadow

Including an actual shadow after the
“outlines”

Using negative outline-offset

with a dashed outline, for a basic
stitching effect

The shadow solution works quite well in most cases, but has a few caveats:

Shadows don’t work exactly like borders, as they don't affect layout and are
oblivious to the box-sizing property. However, you can emulate the extra
space a border would occupy via padding or margins (depending on wheth-
er the shadow is inset or not).

The method we demonstrated creates fake “borders” on the outside of
elements. These do not capture mouse events such as hovering or clicking.
If this is important, you can add the inset keyword to make the shadows
be drawn on the inside of your element. Note that you will need to add
extra padding to produce sufficient spacing.

play.csssecrets.io/multiple-borders

outline solution

In some cases, if we only need two borders, we can use a regular border
and the outline property for the outer one. This also gives us flexibility
regarding the border style (what if we want a dashed second border?),
whereas with the box-shadow method, we can only emulate solid borders.
Here is how the code for Figure 2.6 would look with this method:

background: yellowgreen;
border: 1@0px solid #655;
outline: 15px solid deeppink;

Another good thing about outlines is that you can control their distance
from the boundaries of the element, via outline-offset, which even
accepts negative values. This can be useful for a number of effects. For ex-
ample, check out Figure 2.8 for a basic stitching effect.

However, this method has a few limitations:

As mentioned, it only works for two “borders,” as outline does not ac-
cept a comma-separated list of outlines. If we need more, the previous
technique is our only option.

http://play.csssecrets.io/multiple-borders

= Qutlines do not have to follow rounding (through border-radius), so
even if your corners are round, the outline may have straight corners
(Figure 2.9). Note this behavior is considered a bug by the CSS WG, and is
likely to be changed to match the border-radius in the future.

= Per the CSS User Interface Level 3 specification (w3.0rg/TR/css3-ut),
"Qutlines may be non-rectangular.” Although in most cases they tend to be
rectangular, if you use this method, make a mental note to test the result
thoroughly in different browsers.

CSS Backgrounds & Borders RELATED
w3.0org/TR/css-backgrounds SPECS

CSS Basic User Interface
w3.0org/TR/css3-ui

FIGURE 2.9
Qutlines created through the

outline property do not follow the
element’s rounding, although that
could change in the future

SECRET #2: MULTIPLE BORDERS

http://w3.org/TR/css3-ui
http://w3.org/TR/css-backgrounds
http://w3.org/TR/css3-ui

Code Pirate

FIGURE 2.10

background-position:

bottom right; doesn’t usually
yield very aesthetically pleasing
results, as the image has no spacing
from the sides

Flexible
background
positioning

The problem

Fairly often, we want to position a background image with offsets from a
different corner than the top-left one, such as the bottom right. In CSS 2.1,
we could only specify offsets from the top-left corner or keywords for the
other three corners. However, we often want to leave some space (akin to
padding) between the background image and the corner it's on, to avoid
things that look like Figure 2.10.

For containers with fixed dimensions, this is possible with CSS 2.1, but
it's messy: we can calculate what offset your background image would have
from the top-left corner based on its dimensions and the offset we want
from the bottom-right corner, and apply that. However, on elements with
variable dimensions (due to variable contents), this is not possible. Devel-
opers often end up approximating it by setting the background position to
some percentage that is slightly smaller than 100%, such as 95%. Surely,
with modern CSS, there must be a better way!

Extended background-position solution

The background-position property was extended to allow specifying
offsets from any corner in CSS Backgrounds & Borders Level 3
(w3.org/TR/css3-background), by providing keywords before the off-
sets. For example, if we want our background image to have a 20px offset
from the right side and a 1@px offset from the bottom side, we can do this:

background: url(code-pirate.svg) no-repeat #58a;
background-position: right 20px bottom 10px;

You can see the result in Figure 2.11. The last step is to provide a decent
fallback. As it currently stands, on browsers that don‘t support the extended
background-position syntax, the background image will be stuck on
the top-left corner (the default position) and will look awful, not to mention
it will render the text unreadable (Figure 2.12). Providing a fallback is as
easy as including a good ol’ bottom right position in the background
shorthand:

background: url(code-pirate.svg)
no-repeat bottom right #58a;
background-position: right 20px bottom 10px;

play.csssecrets.io/extended-bg-position

background-origin solution

One of the most common cases for wanting to apply offsets from a corner
is to make the background image follow padding. With the extended back-
ground position we just described, the code would look like this:

Code Pirate

FIGURE 2.11

Specifying offsets from different
sides; the background image is
shown here with a dashed outline, to
make it clearer how the offsets work

FIGURE 2.12

We need to specify a fallback, if we
don’t want users of older browsers
to see this

SECRET #3: FLEXIBLE BACKGROUND POSITIONING

http://w3.org/TR/css3-background
http://play.csssecrets.io/extended-bg-position

Code Pirate

FIGURE 2.13

Applying offsets to the background
image that are equal to the padding
value

Border Box

Padding Box

Content Box

FIGURE 2.14

The box model

padding: 10px;
background: url(code-pirate.svg) no-repeat #58a;
background-position: right 1@px bottom 10px;

You can see the result in Figure 2.13. As you can see, it works, but it's not
very DRY: every time we change the padding value, we need to update it in
three different places! Thankfully, there is a simpler way to do this, which
automatically follows the padding we specify, without the need to redeclare
the offsets.

You've probably written things like background-position: top
left; quite a few times over the course of your web development career.
Have you ever wondered: which top-left corner? As you may know, there
are four boxes in every element (Figure 2.14): the margin box, the border
box, the padding box, and the content box. Which box's top left corner
does background-position refer to?

By default, background-position refers to the padding box, so
that borders don’t end up obscuring background images. Therefore, top
left is by default the top-left outer corner of the padding box. In
Backgrounds & Borders Level 3 (w3.0rg/TR/css3-background), how-
ever, we got a new property that we can use to change this behavior:
background-origin. By default, its value is (quite predictably)
padding-box. If we change it to content-box, as in the following code,
the side and corner keywords we use in background-position will refer
to the edge of the content box (effectively, this means that any background
images will be offset from the sides/corners as much as our padding is):

padding: 10px;
background: url("code-pirate.svg") no-repeat #58a
bottom right; /* or 100% 100% */

background-origin: content-box;

The visual result is exactly the same as in Figure 2.13, just with more DRY
code. Keep in mind that you can also combine the two techniques we
showed if needed! If you want offsets that generally vary with the padding,

http://w3.org/TR/css3-background

but are inset/outset a little more than that, you can use background-
origin: content-box together with additional offsets via the extended
background-position.

m play.csssecrets.io/background-origin

calc() solution

Let’s revisit our original challenge: we want to position our background im- n Don’t forget to include white-

. . . dany - and -
age 10px from the bottom and 20px from the right side. However, if we space aroung any = an .J,'Oper
ators in calc(), otherwise it's a

think of it in terms of offsets from the top-left corner, we basically want parsing error! The reason for this
an offset of 100% - 2@px horizontally and 100% - 1@px vertically. weird ruleis forward compatibility: in
the future, keywords might be al-

Thankfully, the calc () function allows us to do exactly that sort of calcu- lowed inside calc(), and they can

lation and it works perfectly with background-position: contain hyphens.

background: url("code-pirate.svg") no-repeat;
background-position: calc(100% - 20px) calc(100% - 10px);

m play.csssecrets.io/background-position-calc

CSS Backgrounds & Borders RELATED
w3.0rg/TR/css-backgrounds SPECS

CSS Values & Units

w3.0org/TR/css-values

SECRET #3: FLEXIBLE BACKGROUND POSITIONING

http://play.csssecrets.io/background-origin
http://play.csssecrets.io/background-position-calc
http://w3.org/TR/css-backgrounds
http://w3.org/TR/css-values

| have a nice subtle inner

rounding, don't | look pretty?

A container with an outline and
rounding only on the inside

Inner
rounding

Prerequisites

box-shadow, outline, the “Multiple borders” secret on page 28

The problem

Sometimes we want a container that is only rounded on the inside, but the
outer corners of its border/outline are sharp, such as the one in
Figure 2.15. It's an interesting effect that's not overdone yet. It's trivial to
achieve this effect with two elements:

<div class="something-meaningful"><div>
I have a nice subtle inner rounding,
don’t I look pretty?

</div></div>

.something-meaningful {
background: #655;
padding: .8em;

.something-meaningful > div {
background: tan;
border-radius: .8em;
padding: 1lem;

This works fine, but it forces us to use two elements when we only need
one. Is there a way to achieve the same effect with only one element?

The solution

The previous solution is more flexible, as it allows us to use the full power .
I'm a sad element, because my

of backgrounds. For example, if we want our “border” to not just be a solid outline doesn’t get along with
color, but have a noise texture as well, it's pretty easy to do. However, when my round corners :~(

we're dealing with good ol’ solid colors, there is a way to do this, with just

one element (granted it is a bit hacky). Take a look at the following CSS:
Using the outline property on a

rounded element

background: tan;

border-radius: .8em;
’ I'm a happy element, because

padding ¢ lem; my fake outline gets along
box-shadow: @ © @ .6em #655; with my round corners :-)

outline: .6em solid #655;

Using the box-shadow property

Canyou guess what the visual result is? It produces the effect in Figure 2.15. with no offsets and no blur on an
element with rounded corners

We basically took advantage of the fact that outlines do not follow the
element’s rounding (and thus, have sharp corners) but box-shadows do.
Therefore, if we overlay one on top of the other, the box-shadow covers
the gaps that the outline leaves on the corners (Figure 2.17), so their

| have a nice subtle inner

rounding, don't | look pretty?

FIGURE 2.18

Here the outline is shown in black
and the shadow in magenta, to
make it clearer what is going on;
notice that the outline is the one
drawn on top

Why is this hacky? Because it

depends on the fact that
outlines do not follow corner
rounding, but there is no guarantee
this will stay that way. The spec cur-
rently gives browsers a lot of leeway
in outline drawing, but in the future
it will explicitly recommend fol-
lowing rounding, per a recent
CSS WG decision. Whether brows-
ers will honor that decision remains
to be seen.

FIGURE 2.19

When our border radius is r, the

length from the center of the
border-radius circle to the
corner of the outline rectangle is
ry/2, which means the minimum
possible spread is

2 -r=(2-1r

combination gives us the desired effect. Figure 2.18 displays the shadow
and outline with different colors, to provide a clearer visual explanation.

Note that we didn’t really need to specify a box-shadow spread that
is equal to the outline, we only need to specify a large enough spread to
cover those “gaps.” In fact, specifying a spread equal to our outline width
can cause rendering artifacts in some browsers, so | would recommend
something a bit smaller. This begs the question: what is the smallest
spread we could specify that covers these gaps?

To answer this question, we need to remember the Pythagorean the-
orem we learned at school about calculating the lengths of the sides of right
triangles. The theorem states that the hypotenuse (the longest, diagonal
side of the triangle) is equal to \a’ + b% where a and b are the lengths of
its legs. When both legs are of equal length, the formula becomes
\/2? =ay2.

You might be wondering how on Earth middle school geometry is rel-
evant to our inner rounding effect. Check out Figure 2.19 for a visual ex-
planation of how it can be used to calculate the minimum spread we need.
In our case, border-radius is .8em, so the minimum spread is
.8(y/2 - 1) = .33137085em. All we need is to round it up a little and specify
a spread radius of .34em. To avoid having to make the calculation every
time, you can just use half of your corner radius, which is guaranteed to be
large enough, because /2 -1<0.5.

Note that these calculations uncover another constraint of this
method: for this effect to work, our spread radius needs to be smaller than
our outline width, but it also needs to be larger than (2 = 1)r, where r is
our border-radius. This means that if our outline width is smaller than
(/2 = Nr, this is not possible and we cannot apply this effect.

play.csssecrets.io/inner-rounding

® CSS Backgrounds & Borders RELATED
w3.0rg/TR/css-backgrounds SPECS

= CSS Basic User Interface
w3.0rg/TR/css3-ui

CHAPTER 2: BACKGROUNDS & BORDERS

http://play.csssecrets.io/inner-rounding
http://w3.org/TR/css-backgrounds
http://w3.org/TR/css3-ui

Striped
backgrounds

Prerequisites

CSS linear gradients, background-size

The problem

Stripes of all sizes, colors, and angles are at least as ubiquitous on the Web
as in any other medium of visual design, from magazines to wallpaper.
However, the workflow of implementing them is far from ideal. Usually, we
would create a separate bitmap image and need an image editor every time
we needed to make changes. Some might use SVG instead, but it's still a
separate file and the syntax is far from friendly. Wouldn't it be awesome if
we could create stripes directly in our CSS? You might be surprised to find

that we actually can.

The solution

Assume we have a basic vertical linear gradient, from [#fb3 to (@) #58a

(Figure 2.20):

background: linear-gradient(#fb3, #58a);

Now let’s try to bring the color stops a little closer together (Figure 2.21):

background: linear-gradient(#fb3 20%, #58a 80%);

#fb3 and the bot-
tom 20% with solid) #58a. The actual gradient only occupies 60% of our

Now the top 20% of our container is filled with solid

container height. If we bring the color stops even closer together (40% and
60% respectively, seen in Figure 2.22), the actual gradient becomes even
smaller. One starts to wonder, what happens if the color stops meet at the
exact same position?

background: linear-gradient(#fb3 50%, #58a 50%);

“If multiple color stops have the same position, they produce an infinites-
imal transition from the one specified first in the rule to the one specified
last. In effect, the color suddenly changes at that position rather than
smoothly transitioning.”

— CSS Image Values Level 3 (w3.0rg/TR/css3-images)

As you can see in Figure 2.23, there is no longer any gradient, just two
solid colors, each occupying half of our background-image. Essentially,
we have already created two big horizontal stripes.

Because gradients are just generated background images, we can treat
them the same as any other background image and adjust their size with
background-size:

FIGURE 2.20

Our starting point

FIGURE 2.21

Gradient now occupies 60% of total

height, the rest being solid colors;
color stop positions are shown with
dashed lines

FIGURE 2.22

Gradient now occupies 20% of total

height, the rest being solid colors;
color stop positions are shown with
dashed lines

SECRET #5: STRIPED BACKGROUNDS

http://w3.org/TR/css3-images

FIGURE 2.23

Both stops are now at 50%

FIGURE 2.24

Our generated background without
the repetition

i
[
Q
(=1
w
tm
0
DN
(2]]

The final horizontal stripes

FIGURE 2.26

Stripes with unequal widths

background: linear-gradient(#fb3 50%, #58a 50%);
background-size: 100% 30px;

As you can see in Figure 2.24, we shrunk the size of our two stripes
to 15px height each. Because our background is repeated, we now have
our whole container filled with horizontal stripes (Figure 2.25).

We can similarly create stripes with unequal widths, by adjusting the
color stop positions (Figure 2.26):

background: linear-gradient(#fb3 30%, #58a 30%);
background-size: 100% 30px;

To avoid having to adjust two numbers every time we want to change the
stripe width, we can take advantage of the specification:

“If a color stop has a position that is less than the specified position of any
color stop before it in the list, set its position to be equal to the largest
specified position of any color stop before it.”

— CSS Images Level 3 (w3.0rg/TR/css3-1images)

This means that if we set the second color’s position at @, its position
will be adjusted by the browser to be equal to the position of the previous
color stop, which is what we wanted anyway. Therefore, the following code
also creates the exact same gradient we saw in Figure 2.26, but is a little
more DRY:

background: linear-gradient(#fb3 30%, #58a 0);
background-size: 100% 30px;

[t's just as easy to create stripes with more than two colors. For example,
the following snippet will produce horizontal stripes of three colors
(Figure 2.27):

http://w3.org/TR/css3-images

background: linear-gradient(#fb3 33.3%,
#58a O, #58a 66.6%, yellowgreen 0);
background-size: 100% 45px;

play.csssecrets.io/horizontal-stripes

Vertical stripes

Horizontal stripes are the easiest to code, but not all striped backgrounds
we see on the Web are horizontal. Just as many are vertical stripes
(Figure 2.28), and probably the most popular and visually interesting are
some form of diagonal stripes. Thankfully, CSS gradients can help us recre-
ate those too, with varying degrees of difficulty.

The code for vertical stripes is almost the same, with one main differ-
ence: an extra first argument that specifies the gradient direction. We could
have specified it for horizontal stripes too, but the default (to bottom)was
exactly what we needed for them. We also need to set a different
background-size, for obvious reasons:

background: linear-gradient(to right, /* or 9@deg */
#fb3 50%, #58a 0);
background-size: 30px 100%;

play.csssecrets.io/vertical-stripes

Diagonal stripes

After creating horizontal and vertical stripes, we might attempt to create
diagonal stripes (45°) by just changing the background-size and direc-
tion of the gradient again, like so:

FIGURE 2.27

Stripes with three colors

FIGURE 2.28

Our vertical stripes

Top: Our background tile without
the repetition

Bottom: The repeated stripes

FIGURE 2.29
Our first failed attempt for diagonal

stripes

SECRET #5: STRIPED BACKGROUNDS

http://play.csssecrets.io/horizontal-stripes
http://play.csssecrets.io/vertical-stripes

background: linear-gradient(45deg,
#fb3 50%, #58a 0);
background-size: 30px 30px;

However, as you can see in Figure 2.29, this doesn’t work. The reason
is that we just rotated the gradient inside each tile by 45 degrees, not the
repeated background as a whole. Try to remember the bitmap images we
usually use to create diagonal stripes, such as the one in Figure 2.30. They
include four stripes instead of two, so that they tile seamlessly. This is the

kind of tile we need to recreate in CSS, so we will need quite a few more

The kind of image that tiles color stops:

seamlessly to create diagonal stripes;
does it look familiar?

background: linear-gradient(45deg,
‘ #fb3 25%, #58a 0, #58a 50%,
#fb3 0, #fb3 75%, #58a 0);
background-size: 30px 30px;

You can see the result in Figure 2.31. As you can see, we were successful
at creating diagonal stripes, but they look thinner than our horizontal and

Our 45° stripes; the dashed lines . .
vertical ones. To understand why this happened, we need to remember the

indicate the repeating tile
Pythagorean theorem we learned at school about calculating the lengths of
the sides of right triangles. The theorem states that the hypotenuse (the
longest, diagonal side of the triangle) is equal to ya’ + b* where a and b are
the lengths of its legs. On a 45° right triangle, both its legs are of the same
length, so the formula becomes \/? =ay/2. In our diagonal stripes, the
background size specifies the length of the hypotenuse, but the stripe width
is actually the length of the leg. Check out Figure 2.32 for a visual
explanation.

This means that to get our original stripe width of 15px, we need to
le—15px—>| specify a background size of 2 x 152 =~ 42 .426406871 pixels:

A background size of 20px results in q q
e P background: linear-gradient(45deg,
a stripe width of

&%z10.&%6m718mmb #fb3 25%, #58a 0, #58a 50%,

#fb3 @, #fb3 75%, #58a 0);
background-size: 42.426406871px 42.426406871px;

You can see the final result in Figure 2.33. However, unless somebody ‘
is pointing a gun at your head threatening to kill you unless you are able to
produce diagonal stripes that are exactly 15 pixels wide (in which case, you
would die anyway, because 4/2 is not a rational number, so even this is an
approximation—though a very high-precision one), | would strongly rec- k
ommend rounding this unwieldy number, to something like 42.4px or FIGURE 2.33

even 42pX Our final 45° stripes; note that now

the stripe width is the same as our
other examples

play.csssecrets.io/diagonal-stripes

Better diagonal stripes

The method shown in the previous section is not very flexible. What if we ‘
want stripes that are 60° instead of 45°? Or 30°? Or 3.1415926535°? If we
just try to change the angle of the gradient, the result looks awful (check
out Figure 2.34 for a failed attempt at 60° stripes).
Thankfully, there is a better way to create diagonal stripes. A little- ‘

known factis that 1inear-gradient() and radial-gradient() also FIGURE 2.34

have repeating versions: repeating-linear-gradient() and Ourfailed naive attemptat 60°
repeating-radial-gradient(). These work exactly the same way, sipes

with one difference: the color stops are repeated indefinitely, until they fill

up the whole image. So, for example, this repeating gradient (shown in

Figure 2.35):

A

background: repeating-linear-gradient(45deg,

#fb3, #58a 30px); I

would be equivalent to this simple linear gradient: FIGURE 2.35

A repeating linear gradient

SECRET #5: STRIPED BACKGROUNDS

http://play.csssecrets.io/diagonal-stripes

AN

Our actual 60° stripes

background: linear-gradient(45deg,
#fb3, #58a 30px,
#fb3 30px, #58a 60px,
#fb3 60px, #58a 90px,
#fb3 90px, #58a 120px,
#fb3 120px, #58a 150px, ...);

Repeating linear gradients are perfect for—you guessed it—stripes! Due
to their repeating nature, it means our whole background can be in the
generated gradient image. Therefore, we don’t need to worry about creat-
ing seamless tiles that can be repeated.

For comparison, the background we created in Figure 2.33 could have
been produced by this repeating gradient:

background: repeating-linear-gradient(45deg,
#fb3, #fb3 15px, #58a @, #58a 30px);

The first obvious benefit is reduced repetition: we can change any of the
colors with two edits instead of three. Also note that our measurements are
now in the gradient color stops instead of background-size. The back-
ground size is the initial one, which for gradients is the size of the element.
This means that the lengths are also more straightforward, as they are
measured on the gradient line, which is perpendicular to our stripes. No
more clunky /2 calculations!

However, the biggest benefit is that now we can just change the angle
to whatever we want, and it just works without having to think hard and
long about how to make a seamless tile. For example, here are our 60°
stripes (Figure 2.36):

background: repeating-linear-gradient(60deg,
#fb3, #fb3 15px, #58a @, #58a 30px);

It was as easy as just changing the angle! Note that with this method we
need four color stops for two stripe colors, regardless of the stripe angle.
This means it's usually better to use the first method for horizontal and ver-
tical stripes and this one for diagonal stripes. If we're dealing with 45°
stripes, we could even combine the two methods, by essentially using re-
peating linear gradients to simplify the code that creates our repeating tile:

background: repeating-linear-gradient(45deg,
#fb3 0, #fb3 25%, #58a 0, #58a 50%);
background-size: 42.426406871px 42.426406871pxX;

play.csssecrets.io/diagonal-stripes-60deg

GEED color stops with two positions

Soon, we will be able to specify two positions on the same color stop, as one of the simpler planned additions
in CSS Image Values Level 4 (w3.0org/TR/css4-1images). This will work as a shortcut to two consec-
utive color stops with the same color and different positions, something very commonly needed to

create gradient-based patterns. For example, the code for the diagonal stripes in Figure 2.36 would become:

: repeating-linear-gradient(6@deg, #fb3 @ 15px, #58a @ 30px);

Not only is this significantly more concise, but also considerably more DRY: the colors are no longer dupli-
cated, so we can change them with only one edit. Unfortunately, at the time of writing, this is not yet
supported in any browser.

play.csssecrets.io/test-color-stop-2positions

SECRET #5: STRIPED BACKGROUNDS 41

http://w3.org/TR/css4-images
http://play.csssecrets.io/test-color-stop-2positions
http://play.csssecrets.io/diagonal-stripes-60deg

Stripes with subtle lightness

variation

Flexible subtle stripes

More often than not, our stripes are not completely different colors but
subtle brightness variations of the same color. For example, take a look at
these stripes:

background: repeating-linear-gradient(3e@deg,
#79b, #79b 15px, #58a O, #58a 30px);

You can see in Figure 2.37 that they are stripes of one color
(@ #58a) and a lighter variant of that. However, that relationship between
the colors is not easy to tell by reading the code. Moreover, if we wanted to
change the base color, we would have to make four (1) edits.

Thankfully, there is a better way: instead of specifying separate colors
for every stripe, we can specify our darkest color as the background color,
which will show through stripes with semi-transparent white:

background: #58a;

background-image: repeating-linear-gradient(30@deg,
hsla(0,0%,100%, .1),
hsla(0,0%,100%, .1) 15px,
transparent @, transparent 30px);

The result looks exactly the same as Figure 2.37, but we can now change
the color in only one place. We also get the added benefit of our base color
functioning as a fallback color for browsers that don’t support CSS gradi-
ents. Furthermore, as we will see in the next secret, gradient patterns with
transparent regions allow us to create very complex patterns by superim-
posing multiple different ones.

play.csssecrets.io/subtle-stripes

http://play.csssecrets.io/subtle-stripes

CSS Image Values
w3.org/TR/css-images

CSS Backgrounds & Borders
w3.0org/TR/css-backgrounds

CSS Image Values Level 4
w3.org/TR/css4-images

RELATED
SPECS

SECRET #5: STRIPED BACKGROUNDS

http://w3.org/TR/css-images
http://w3.org/TR/css-backgrounds
http://w3.org/TR/css4-images

Complex
background
patterns

Prerequisites

CSS gradients, the “Striped backgrounds” secret on page 40

The problem

In the previous section, we learned how to use CSS gradients to create all
sorts of stripes. However, stripes are not the be-all and end-all of background
patterns or even just geometric patterns. We quite often need many other
different types, such as grids, polka dots, checkerboards, and many others.

Thankfully, CSS gradients can help with many of these too. It's possible
to create almost any kind of geometric pattern with CSS gradients,
although it's not always practical. If we're not careful, we might end up
with an insane amount of unmaintainable code. CSS patterns are also
one case where it really pays off to use a CSS preprocessor, such as

Sass (sass-Lang. com) to reduce repetition, as the more complex they get,
the less DRY they become.

S CSS3 Patterns Gallery

PRATTe LT
/ YTYYYYYY
J@aisisiiiadisiiiial
| ——

| Marrakesh (346) Rainbow bokeh (1.03 KB)

Upholstery (439 5)

Argyle (5125)

Japanese cube (671 55)

Tablecloth (159 B) Diagonal stripes (160 B) Cicada stripes (361 5)

FIGURE 2.38

My CSS3 Patterns Gallery (found at
lea.verou.me/css3patterns)
showed what is possible with CSS
gradients as early as 2011. It was
included in almost every article,
book, and conference talk that
mentioned CSS gradients between
2011 and 2012 and was used by
several browser vendors to fine-tune
their CSS gradients implement-
ations. However, not every pattern
showcased in it would be a good use
case for a production website. Some
of them are included only to show
what is possible, but their code is
extremely long and repetitive. For
those cases, SVG is a better choice.
For some examples of SVG patterns,
visit philbit.com/svgpatterns,
which was created as the SVG
answer to the CSS Patterns Gallery.

http://sass-lang.com
http://lea.verou.me/css3patterns
http://philbit.com/svgpatterns

FIGURE 2.39

Our tablecloth (gingham) pattern, as
well as the two gradients that
comprise it (transparency shown
here as the conventional gray
checkerboard)

FIGURE 2.40
A basic blueprint grid CSS pattern

whose lines remain 1px regardless
of the size of the grid

In this secret, we will focus on creating some of the easiest and commonly
needed patterns.

Grids

When using only one gradient, there aren’t that many patterns we can cre-
ate. The magic starts to unfold when we combine multiple gradients,
having them show through each other’s transparent regions. Perhaps the
easiest such pattern is overlaying horizontal and vertical stripes to create
various types of grids. For example, the following code creates the
tablecloth-reminiscent (gingham) pattern shown in Figure 2.39:

background: white;
background-image: linear-gradient(9@deg,
rgba(200,0,0,.5) 50%, transparent 90),
linear-gradient(
rgba(200,0,0,.5) 50%, transparent 0);
background-size: 30px 30px;

In some cases, we want to be able to adjust the cell size of the grid,
and have the width of its lines remain constant—for example, to create
grid lines that serve as guides. This is a great use case for using lengths
instead of percentages as gradient color stops:

background: #58a;
background-image:
linear-gradient(white 1px, transparent 90),
linear-gradient(90deg, white 1px, transparent 0);
background-size: 30px 30px;

The result (seen on Figure 2.40) is a grid of 1px white lines with a grid cell
size of 3@px. Just like in the “Flexible subtle stripes” section on page
48, the base color is also functioning as a fallback color.

CHAPTER 2: BACKGROUNDS & BORDERS

This grid is a good example of a pattern that can be made with rea-
sonably maintainable (though not completely DRY) CSS code:

. . L o To calculate the file size of
It's quite easy to figure out what to edit if we need to change the grid size, your CSS pattern, paste

line thickness, or any of the colors. the code in

. . bytesizematters.com.
We don't have to make tons of edits to change any of this; we only need

to edit one or two values.
It's also quite short, at only four lines of code and 170 bytes. An SVG would

not have been shorter.

We can even overlay two grids with different line widths and colors to create
a more realistic blueprint grid (Figure 2.41):

background: #58a;

linear-gradient(white 2px, transparent 90), IIIIIIIII‘

background-image:
linear-gradient(90deg, white 2px, transparent 0), NN N

linear-gradient(hsla(0,0%,100%, .3) 1px, FIGURE 2.41
transparent 9), A more complex blueprint grid,
linear-gradient(90deg, hsla(®,0%,100%,.3) 1px, comprised of two grids with

different parameters
transparent 0);

background-size: 75px 75px, 75px 75px,
15px 15px, 15px 15px;

play.csssecrets.io/blueprint

Polka dot

So far, we have only used linear gradients to make patterns. However, radial
gradients can be very useful as well, as they allow us to create circles, ellipses,
or parts thereof. The simplest pattern we can create with a radial gradient
is an array of dots (Figure 2.42):

http://play.csssecrets.io/blueprint
http://bytesizematters.com

An array of dots; the repeating tile is
shown with dashed lines

Polka dot pattern; both repeating

tiles are shown with dashed lines

background: #655;
background-image: radial-gradient(tan 30%, transparent 0);
background-size: 30px 30px;

Admittedly, this is not very useful on its own. However, we can combine
two of those gradients and give them different background positions, to
create a polka dot pattern (Figure 2.43):

background: #655;

background-image: radial-gradient(tan 30%, transparent 0),
radial-gradient(tan 30%, transparent 0);

background-size: 30px 30px;

background-position: @ @, 15px 15px;

play.csssecrets.io/polka

Note that for the effect to work, the second background position must be
half of the tile size. Unfortunately, this means that to change the tile size,
we need to make four edits. This is on the brink of being unmaintainable,
although whether it has crossed the line is debatable. If you are using a
preprocessor, you may want to convert it into a mixin

@mixin polka($size, $dot, $base, $accent) {
background: $base;
background-image:
radial-gradient($accent $dot, transparent 0),
radial-gradient($accent $dot, transparent 0);
background-size: $size $size;
background-position: 0 0@, $size/2 $size/2;

http://play.csssecrets.io/polka

Then, to create the polka dot pattern, we would call it like this:

polka(30px, 30%, #655, tan);

Checkerboards

Checkerboard patterns are used in a number of cases. For instance, subtle
checkerboards can be an interesting alternative to a bland solid color back-
ground. Also, a gray checkerboard pattern is the de facto standard way to
depict transparency, which is required in a number of different Uls. Making
a checkerboard pattern in CSS is possible, but considerably trickier than one
might expect.

The typical tile that generates a checkerboard when repeated consists
of two squares from each color, like the one indicated in Figure 2.44. It
looks like it should be easy to recreate with CSS: we would just create two
squares with different background positions, right? Not exactly. Yes, we can
technically create squares with CSS gradients, but with no spacing around
them, the result will look like a solid color. However, there is no way to create
squares with space around them with one CSS gradient. If you're having
doubts, try to find a gradient that, when repeated, produces the image in
Figure 2.45.

The trick is to compose the square from two right triangles. We
already know how to create right triangles (remember our failed attempt at
diagonal stripes in Figure 2.29?). To refresh your memory, the code looked
like this (here with different colors and transparency):

background: #eee;
background-image:

linear-gradient(45deg, #bbb 50%, transparent 0);
background-size: 30px 30px;

You might be wondering how this helps with anything. Sure, if we tried to
compose squares from two triangles like the ones in Figure 2.29, we would

A gray checkerboard pattern to
indicate transparency; if this was
created by repeating an image, the
tile would be the one denoted by the
dashed line

Repeating a square with space
around it; the tile is shown with
dashed lines

end up with a solid color. However, what if we reduce the legs of these

triangles to half their original size, so that they occupy % of the tile, instead

of the current %? We can easily do that by changing the color stop po-
sition to 25% instead of 50%. Then we would end up with something
like Figure 2.46.

Similarly, we can create triangles of the opposite direction if we flip the

Right triangles with a lot of spacing .
color stops (Figure 2.47):

around them

GLED Conical gradients

In the future, we won't have to resort to meticulously overlaying triangles

to create checkerboards. CSS Image Values Level 4 (w3.0rg/TR/css4-

images) defines a new set of gradient functions to generate conical gra-

dients (a.k.a. “angle gradients”). These gradients often look like a cone

observed from above, hence the name “conical.” They are generated by

a line that gradually changes color as it rotates around a fixed point. For example, the hue wheel shown here
would be created with the following gradient:

: conic-gradient(red, yellow, lime, aqua, blue, fuchsia, red);

Conical gradients are useful for far more things than hue wheels: starbursts, brushed metal effects, and
many other kinds of backgrounds, including (you guessed it!) checkerboards. They would enable us to create
the repeating tile of Figure 2.44 in just one gradient:

: repeating-conic-gradient(#bbb @, #bbb 25%, #eee 0, #eee 50%);
: 30px 30px;

Unfortunately, there is no browser support for conical gradients at the time of writing.

m play.csssecrets.io/test-conic-gradient

56 CHAPTER 2: BACKGROUNDS & BORDERS

http://w3.org/TR/css4-images
http://play.csssecrets.io/test-conic-gradient

background: #eee;
background-image:

linear-gradient(45deg, transparent 75%, #bbb 0);
background-size: 30px 30px;

Can you guess what happens if we combine the two? The code would look
like this:

background: #eee;
background-image:
linear-gradient(45deg, #bbb 25%, transparent 0),
linear-gradient(45deg, transparent 75%, #bbb 0);
background-size: 30px 30px;

At first, the result in Figure 2.48 doesn't look like we're getting any-
where. However, we just need to move the second gradient by half the
tile size, in order to combine them into a square:

background: #eee;
background-image:
linear-gradient(45deg, #bbb 25%, transparent 0),
linear-gradient(45deg, transparent 75%, #bbb 0);
background-position: © @, 15px 15px;
background-size: 30px 30px;

Can you guess what the result looks like? It's exactly what we were
trying to achieve earlier, and looks like Figure 2.49. Notice that this is es-
sentially half a checkerboard. All we need to turn this into a full checker-
board is to repeat the two gradients to create another set of squares and
offset their positions again, a bit like applying the polka dot technique twice:

background: #eee;

If we flip the color stops, we get
triangles in the opposite direction

Combining the two triangles

Our combined triangles now form
squares with space around them; the
two tiles are shown with dashed
lines and the second gradient is

shown slightly darker

This is a complex pattern and it's
often difficult to wrap one’s head
around how it works, especially after
reducing it to two gradients. It
usually aids understanding of how a
pattern works to give a random color
to one of the gradients or color
stops. For example, here the first
gradient is shown with

@ rebeccapurple instead of the
semi-transparent black and the two
tiles are outlined with dashed lines.

WET stands for “We Enjoy Typing”
and is the opposite of DRY code (i.e.,
it refers to repetitive, unmaintainable
code).

background-image:
linear-gradient(45deg, #bbb 25%, transparent 0),
linear-gradient(45deg, transparent 75%, #bbb 0),
linear-gradient(45deg, #bbb 25%, transparent 0),
linear-gradient(45deg, transparent 75%, #bbb 0);
background-position: @ @, 15px 15px,
15px 15px, 30px 30px;
background-size: 30px 30px;

The result is a checkerboard, identical to the one in Figure 2.44. We can
improve the code a bit by combining the opposite facing triangles (i.e., the
first with the second and the third with the fourth) and making the darker
gray semi-transparent black, so that we can change the base color without
always having to adjust the top color accordingly:

background: #eee;
background-image:
linear-gradient(45deg,
rgba(0,0,0,.25) 25%, transparent 0,
transparent 75%, rgba(0,0,0,.25) 0),
linear-gradient(45deg,
rgba(0,0,0,.25) 25%, transparent 0,
transparent 75%, rgba(0,0,0,.25) 0);
background-position: @ @, 15px 15px;
background-size: 30px 30px;

Now we have two gradients instead of four, but the code is almost as
WET as before. To change the accent color or the cell size, we need to make
four edits. At this point, it might be a good idea to use a preprocessor mixin
to reduce duplication. For example, in Sass it would look like this:

checkerboard($size, $base,
$accent: rgba(9,0,0,.25) {

background: $base;
background-image:
linear-gradient(45deg,
$accent 25%, transparent 0,
transparent 75%, $accent @),
linear-gradient(45deg,
$accent 25%, transparent 0,
transparent 75%, $accent 0);
background-position: 0 0, $size $size,

background-size: 2*$size 2*$size;

/* Used like.. */
checkerboard(15px, #58a, tan);

In any case, this is so much code that it might actually be better to go the
SVG route. An SVG tile for Figure 2.44 would be as small and simple as:

<svg xmlns="http://www.w3.0rg/2000/svg"
width="100" height="100" fill-opacity=".25" >
<rect x="50" width="50" height="50" />
<rect y="50" width="50" height="50" />

</svg>

One could reply, “But CSS gradients save us HTTP requests!” However, with
modern browsers, we can embed the SVG file in our stylesheet as a data
URI, and we don't even need to base64 or URLencode most of it:

background: #eee url('data:image/svg+xml,\
<svg xmlns="http://www.w3.0rg/2000/svg" \
width="100" height="100"
fill-opacity=".25">\
<rect x="50" width="50" height="50" /> \

<rect y="50" width="50" height="50" /> \
</svg>');
background-size: 30px 30px;

m Note how you can break The SVG version is not only 40 characters shorter, but also considerably

a CSS string into multiple . .
. N . . less repetitive. For example, we can change the colors in only one place and
lines for readability, by just escaping

the line breaks with a backslash (\)! the size with two edits.

CSS Image Values RELATED
w3.0org/TR/css-images SPECS

CSS Backgrounds & Borders
w3.0org/TR/css-backgrounds

Scalable Vector Graphics
w3.org/TR/SVG

CSS Image Values Level 4
w3.org/TR/css4-images

CHAPTER 2: BACKGROUNDS & BORDERS

http://play.csssecrets.io/checkerboard-svg
http://w3.org/TR/css-images
http://w3.org/TR/css-backgrounds
http://w3.org/TR/SVG
http://w3.org/TR/css4-images

PeoVIOVISOVIOW
o000 ®O0O®SOIONOO
0600900600060
Poeed20o000re00
(N A o N A g N A i J
000060060060
d00000s00000
aaasaaaanaan
des A @ 3908 dos 6 @ 3998 des A @ 3148

CEIEIEERE - 2
ALY
RERER R
Rl ae
WP
A
Hess G @ 560B Hes 6 @ 8708 Hos A @ 2.16KB

does 6 @ 1638 Hos 6 @ 3838 Hdoes 6 @ 5708

S Grdientby Yoks @

des A @ 170KB Hdos A @ 3538 does A @ 3558

Hdes A @ 5278 des A @ 268

r—

Hos 6a @ 7458 des A @ 251KB Hos 6 @ 348B

Hdos 6 @ 5338 does 6 @ 2628

Hos 6 @ 4848 des A @ 2488 Hos 6 @ 1658,

FIGURE 2.51

Combining these techniques with blending modes
(w3.0rg/TR/compositing-1), by using
background-blend-mode with values other than
normal for some (or even all) of the layers a
background pattern is made of can yield very
interesting results, as this pattern gallery by
Bennett Feely (bennettfeely.com/gradients)
demonstrates. Most of these patterns only use the
multiply blending mode, but other values such as
overlay, screen, or difference can be very
useful too.

http://w3.org/TR/compositing-1
http://bennettfeely.com/gradients
http://bennettfeely.com/gradients

Pseudo)random
backgrounds

Prerequisites

CSS gradients, the “Striped backgrounds” secret on page 40, the
“Complex background patterns” secret on page 50

The problem

Repeating geometric patterns are nice, but can be a bit boring. Hardly
anything in nature ever repeats in identical tiles. Even in repetition,
there is always variation and randomness. Look at a field with flowers: while
it's uniform enough to be beautiful, it is also random enough to be inter-
esting. No two flowers are ever exactly the same. This is why when we are

trying to make background patterns appear as natural as possible, we are
also trying to have as few and as hard to notice “seams” between the re-

Nature doesn’t repeat itself in

‘ peating tiles as possible, which directly conflicts with our desire to keep the
“seamless” tiles

filesize low.

“[W]hen you notice a distinctive feature—for instance, a knot in some
woodgrain—repeating at reqular intervals, it really breaks the illusion of
organic randomness.”

— Alex Walker, The Cicada Principle and Why It Matters to Web Designers

(sitepoint.com/the-cicada-principle-and-why-1it-matters-to-web-designers)

Replicating randomness can be challenging, because CSS does not of-

fer any inherent randomness capabilities. Let’s take the example of stripes.

Assume we want vertical stripes of various colors and widths (let's keep it

simple and say four colors), with no visible “seams” of repeating tiles. Our
first thought might be to create one gradient with all four stripes, like so:

background: linear-gradient(9edeg,

#fb3 15%, #655 @, #655 40%,

#tab4 0, #ab4 65%, hsl(20, 40%, 90%) 0);
background-size: 80px 100%;

As you can see in Figure 2.53, the repetition is obvious, as the pattern
repeats itself every 80px (our background-size). Can we do better?

The solution

One first idea might be to enhance the illusion of randomness by splitting
the flat stripe tile into layers: one base color and three layers of stripes,
repeating in different intervals. We can easily achieve this by hardcoding the
stripe width in the color stops and using background-size to control
their spacing. The code might look like this:

Our original attempt at
pseudorandom stripes, with all the
colors generated by the same linear
gradient

http://sitepoint.com/the-cicada-principle-and-why-it-matters-to-web-designers

Our second attempt, involving
overlaying different gradients with
different background sizes; the
(perceived) repeating tile is shown
with dashed lines

Note that here “tile” is used a bit lib-
erally: it's not referring to the repeat-
ed image of any individual gradient,
but the perceived repeating tile of
their composition (i.e., if we
weren‘t using multiple backgrounds,
what size would our repeated back-
ground image have to be to achieve
the same result?).

background: hsl(20, 40%, 90%);

background-image:
linear-gradient(90deg, #fb3 10px, transparent 0),
linear-gradient(90@deg, #ab4 20px, transparent 0),
linear-gradient(90deg, #655 20px, transparent 0);

background-size: 80px 100%, 60px 100%, 40px 100%;

Because the repetition in the topmost tile will be most noticeable (as it's not
covered by anything), we want to put the tile with the largest repeat
interval on top (in this case, the orange stripes).

As you can see in Figure 2.54, these look significantly more random,
but if we look closely, we can still see the repeating tile every 240px. The
end of the first repeating tile of such a composition is the offset at which
all our individual background images have repeated an integer
amount of times. As you might remember from school, if we have a few
numbers, the minimum number that can contain any of them an integer
amount of times is their least common multiple (often abbreviated as LCM).
Therefore, here the size of the tile is the LCM of the background sizes
and the LCM of 40, 60, and 80 is 240

It logically follows that to increase perceived randomness, we need to
maximize the size of the repeating tile. Thanks to math, we don't have

to think long and hard about how to achieve this, because we already know
the answer. To achieve maximum LCM, the numbers need to be

relatively prime.* In that case, their LCM is their product. For example, 3,

4, and 5 are relatively prime, so their LCM is 3 x 4 x 5 = 60. An easy way to
achieve this is to choose prime numbers, because they’re always rela-
tively prime with any other number. Lists of primes up to very large
numbers are widely available on the Web.

To maximize randomness even further, we can even use prime numbers

for the stripe widths. This is what our code would look like:

background: hsl(20, 40%, 90%);

background-image:
linear-gradient(90deg, #fb3 11px, transparent 0),
linear-gradient(90deg, #ab4 23px, transparent 0),
linear-gradient(90deg, #655 41px, transparent 0);

background-size: 41px 100%, 61px 100%, 83px 100%;

Yes, the code is not pretty, but good luck trying to find any seams in
Figure 2.55. The size of our repeating tile is now 41 x 61 x 83 = 207, 583
pixels, larger than any screen resolution one could possibly imagine!

This technique was dubbed “The Cicada Principle” by Alex Walker,
who first had the idea of using primes to increase perceived randomness of
backgrounds. Note that this is not only useful for backgrounds, but also for
anything that involves repetition. Other applications include:

Prime numbers are integers that can’t be divided by any other number besides 1 and them-
selves. For example, the first 10 prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29. On the other
hand, relatively prime is a relation between numbers, not an attribute of a single number. Relatively
prime numbers have no common divisors, but may have many divisors in general (e.g., 10 and 27
are relatively prime, but neither is prime). Of course, a prime number is relatively prime with
any other number.

Our final stripes, using prime
numbers to increase perceived
randomness

= Applying small pseudorandom rotations on the images in a photo gallery,
with multiple :nth-child(an) selectors where a is a prime.

= Making an animation that doesn’t seem to ever repeat exactly in the same
way, by applying multiple animations with prime durations. (Check out
play.csssecrets.io/cicanimation for an example.)

play.csssecrets.io/cicada-stripes

Hat tip to Alex Walker for coming up with an idea that inspired this tech-
nique in “The Cicada Principle and Why It Matters to Web Designers”

(sitepoint.com/the-cicada-principle-and-why-it-matters-to-
HAT TIP web-designers). Eric Meyer (meyerweb. com) later had the idea of cre-
ating something called “Cicadients” (meyerweb.com/eric/thoughts/
2012/06/22/cicadients), which involves applying the technique on
background images generated via CSS gradients. Dudley Storey has also
written a very informative piece on this concept (demosthenes. info/
blog/840/Brood-X-Visualizing-The-Cicada-Principle-In-CSS).

B CSS Image Values RELATED
w3.org/TR/css-images SPECS

® CSS Backgrounds & Borders
w3.org/TR/css-backgrounds

CHAPTER 2: BACKGROUNDS & BORDERS

http://play.csssecrets.io/cicanimation
http://play.csssecrets.io/cicada-stripes
http://www.sitepoint.com/the-cicada-principle-and-why-it-matters-to-web-designers
http://meyerweb.com
http://meyerweb.com/eric/thoughts/2012/06/22/cicadients
http://demosthenes.info/blog/840/Brood-X-Visualizing-The-Cicada-Principle-In-CSS
http://w3.org/TR/css-images
http://w3.org/TR/css-backgrounds

Our stone art image, used

throughout this secret

Continuous
image borders

Prerequisites

CSS gradients, basic border-image, the “Striped backgrounds” se-
cret on page 40, basic CSS animations

The problem

Sometimes we want to apply a pattern or image not as a background,
but as a border. For example, check out Figure 2.57 for an element with
a decorative border that is basically an image clipped to the border area. In
addition, we want the image to resize to cover the entire border area re-
gardless of the dimensions of our element. How would we attempt to do
something like this with CSS?

At this point, there might be a very loud voice in your head screaming,
“border-image, border-image, we can use border-image, that’s
not a problem anymore!!111.” Not so fast, young padawan. Recall how
border-image actually works: it's basically 9-slice scaling. You slice the

image into nine boxes and apply them to the corners and sides accordingly.
Figure 2.58 offers a visual reminder of how this works.

How could we possibly slice our image via border-image to create
the example in Figure 2.57? Even if we meticulously get it right for specific
dimensions and border width, it wouldn’t adjust properly for different ones.
The issue is that there is no specific part of the image that we want to be
at the corners; the part of the image shown in the corner squares changes
with the dimensions of the element and border width. If you try it for a bit,
you will likely also conclude that this is not possible with border-image.
But then what can we do?

The easiest way is to use two HTML elements: one using a background
with our stone art image, and one with a white background covering it for
our content area:

<div class="something-meaningful"><div>
I have a nice stone art border,
don’t I look pretty?

</div></div>

.something-meaningful {
background: url(stone-art.jpg);
background-size: cover;

padding: lem;

.something-meaningful > div {
background: white;

padding: lem;

This works fine to create the “border” shown in Figure 2.57, but it requires
an extra HTML element. This is suboptimal: not only does it mix presentation
and styling, but modifying the HTML is simply not an option in certain cases.
Can we do this with only one element?

oz

=

\

| have a nice stone art
border, don't | look pretty?

=
=
-
=
=
=
=
=
=
=
=
=

k\

Z—

| have a nice stone art

\\\\

[11VAVURNRARARARAR NN

border, don't | look pretty?
Bacon ipsum dolor amet
fatback alcatra tenderloin
chicken shank, sausage
pork meatball leberkas tri-
tip spare ribs salami filet
mignon ball tip cow.

hﬂﬂﬂ\\

Our image used as a border with
varying heights

Bacon ipsum dolor amet cu adipisicing elit
tongue ground round ex fatback proident
Kiclbasa ham hock. Sausage beef beef ribs aliquip
t-bone mollit. Quis beef tri-tip sunt, cupim ut
magna salami t-bone. Ut laboris bresaola ribeye

biltong landjacger. Chuck pork belly sed sausage.

Bacon ipsum dolor amet cu adipisicing clit
tongue ground round ex fatback proident
Kielbasa ham hock. Sausage beef beef ribs aliquip
t-bone mollit. Quis beef tri-tip sunt, cupim ut
magna salami t-bone. Ut laboris bresaola ribeye

biltong landjacger. Chuck pork belly sed sausage.

A quick primer on border-image
Top: Our sliced image; the dashed
lines indicate its slicing

Middle: border-image:
33.34% url(..) stretch;
Bottom: border-image:
33.34% url(..) round;

Play with the code at
play.csssecrets.io/border-
image

The solution

Thanks to CSS gradients and the background extensions introduced in
Backgrounds & Borders Level 3 (w3.0rg/TR/css3-background), we
can achieve the exact same effect with only one element. The main idea is
to use a second background of pure white, covering the stone art
image. However, to make the second image show through the border area,
we should apply different values of background-clip to them. One last
thing is that we can only have a background color on the last layer, so we
need to fake the white via a CSS gradient from white to white.

This is how our first attempt to apply this idea might look:

padding: 1lem;

border: lem solid transparent;

background: linear-gradient(white, white),
url(stone-art.jpg);

background-size: cover;

background-clip: padding-box, border-box;

As we can see in Figure 2.59, the result is very close to what we wanted,
but there is some weird repetition. The reason is that the default
background-origin is padding-box, and thus, the image is sized
based on the padding box and placed on the 0,0 point on the padding box.
The rest is just repetitions of that first background tile. To correct this, we
just need to set background-origin to border-box as well

padding: 1lem;

border: lem solid transparent;

background: linear-gradient(white, white),
url(stone-art.jpg);

background-size: cover;

background-clip: padding-box, border-box;

http://w3.org/TR/css3-background
http://play.csssecrets.io/border-image
http://play.csssecrets.io/border-image

background-origin: border-box;

These new properties are also available on the background shorthand,
which can help us reduce our code significantly here:

padding: 1lem;
border: lem solid transparent;
background:
linear-gradient(white, white) padding-box,

url(stone-art.jpg) border-box @ / cover;

play.csssecrets.io/continuous-image-borders

Of course, we can use the same technique with gradient-based pat-
terns. For example, take a look at the following code, which generates a
vintage envelope themed border:

padding: 1lem;
border: lem solid transparent;
background: linear-gradient(white, white) padding-box,
repeating-linear-gradient(-45deg,
red 0, red 12.5%,
transparent 0, transparent 25%,
#58a ©, #58a 37.5%,
transparent @, transparent 50%)
0 / 5em 5em;

You can see the result in Figure 2.61. You can easily change the width of
the stripes via the background-size and the thickness of the border via
the border declaration. Unlike our stone art border example, this effect is
doable with border-image too:

| have a nice stone art
border, don't | look pretty?

NN

e

Our first attempt is very close to what

we wanted

An actual vintage envelope

To see these issues in ac-

tion, visit
play.csssecrets.io/vintage-
envelope-border-image and ex-
periment with changing values.

http://play.csssecrets.io/continuous-image-borders
http://play.csssecrets.io/vintage-envelope-border-image
http://play.csssecrets.io/vintage-envelope-border-image

V”l’l’

' My border is reminiscent of ’
’ vintage envelopes, how
cool is that?

Yool

Our “vintage envelope” border

Photoshop File E
®@ @

=a
.
=d

H I'T:'L_| E‘ @ | Feat
m * Untitled-1 @ 200% (Layer

Marching ants are also used in
Adobe Photoshop to indicate area
selection

padding: 1lem;

border: 16px solid transparent;

border-image: 16 repeating-linear-gradient(-45deg,
red 0, red lem,
transparent 0, transparent 2em,
#58a 0, #58a 3em,
transparent @, transparent 4em);

However, the border-image approach has several issues:

We need to update border-image-slice every time we change the
border-width and make them match.

Because we cannot use ems in border-image-slice, we are restricted
to only pixels for the border thickness.

The stripe thickness needs to be encoded in the color stop positions, so we
need to make four edits to change it.

play.csssecrets.io/vintage-envelope

Another fun application of this technique is using it to make marching
ants borders! Marching ants borders are dashed borders that seem to scroll
like marching ants (if you imagine that the dashes are ants). These are in-
credibly common in GUIs; image editors use them almost always to indicate
area selection (Figure 2.62).

To create marching ants, we are going to use a variation of the “vintage
envelope” effect. We will convert the stripes to just black and white, reduce
the width of the border to 1px (notice how the stripes now turn to a dashed
border?), and change the background-size to something appropriate.
Then, we animate the background-position to 100% to make it scroll:

@keyframes ants { to { background-position: 100% } }

.marching-ants {

padding: lem;

http://play.csssecrets.io/vintage-envelope

border: 1px solid transparent;
background:
linear-gradient(white, white) padding-box,
repeating-linear-gradient(-45deg,
black @, black 25%, white @, white 50%
) @ / .6em .6em;

animation: ants 12s linear infinite;

You can see a still of the result in Figure 2.63. Obviously, this is not
only useful for marching ants, but also for creating all sorts of custom
dashed borders, with different color dashes and custom dash-gap
width.

Currently, the only way to achieve a similar effect via border-image
is to use an animated GIF for border-image-source, as shown in
chrisdanford.com/blog/2014/04/28/marching-ants-animated-
selection-rectangle-in-css. When browsers start supporting gradi-
ent interpolation, we will also be able to do it with gradients, though in a
messy, WET way.

play.csssecrets.io/marching-ants

I This is a footnote.

However, border-image can also be quite powerful, and even more when
used with gradients. For example, assume we want a clipped top border,
like the one commonly used in footnotes. All it takes is border-image and
a vertical gradient, with the clipping length hardcoded. The border width is
controlled by ...border-width. The code would look like this

It's not really possible to show
marching ants in a book (a still just
looks like dashed borders); visit the
live example—it's fun!

Top border clipping, to mimic
traditional footnotes

http://chrisdanford.com/blog/2014/04/28/marching-ants-animated-selection-rectangle-in-css
http://chrisdanford.com/blog/2014/04/28/marching-ants-animated-selection-rectangle-in-css
http://play.csssecrets.io/marching-ants

border-top: .2em solid transparent;
border-image: 100% © © linear-gradient(9@deg,
currentColor 4em,
transparent 0);
padding-top: 1lem;

The result is identical to Figure 2.64. In addition, because we specified ev-
erything in ems, the effect will adjust with font-size changes, and be-
cause we used currentColor, it will also adapt to color changes (as-
suming we want the border to be the same color as the text).

CSS Backgrounds & Borders RELATED
w3.org/TR/css-backgrounds SPECS

CSS Image Values
w3.0org/TR/css-images

CHAPTER 2: BACKGROUNDS & BORDERS

http://play.csssecrets.io/footnote
http://w3.org/TR/css-backgrounds
http://w3.org/TR/css-images

Shapes 3

Flexible
ellipses

Prerequisites

Basic usage of the border-radius property

The problem

You have probably noticed at some point that any square element with a
sufficiently large border-radius can turninto a circle, with CSS code akin
to the following

background: #fb3;

width: 200px;

height: 200px;

border-radius: 100px; /* >= half the side */

A circle, generated by fixed
dimensions and a border-radius

of half that You might have also noticed that you could specify any radius larger than

100px and it will still result in a circle. The reason is outlined in the
specification:

“When the sum of any two adjacent border radii exceeds the size of the
border box, user agents must proportionally reduce the used values of all
border radii until none of them overlap.”

— CSS Backgrounds & Borders Level 3 (w3.0rg/TR/css3-background/#corner-
overlap)
However, we often cannot provide a specific width and height on an
element, as we want it to adjust to its content, which may not be known
ahead of time. Even if we are designing a static website and its exact content
is predetermined, we might want to modify it at some point, or it could be
displayed in a fallback font with different metrics. In that case, we usually
want it to be an ellipse when the width and height are not exactly
equal and a circle when they are. However, with our previous code, that
is not the case. The resulting shape when the width is larger than the height
is shown in Figure 3.2. Can we even use border-radius to make an
ellipse, let alone a flexible one?

The solution

One lesser known fact is that border-radius accepts different hori-
zontal and vertical radii, if you use a slash (/) to separate the two. This
allows us to create elliptical rounding at the corners (Figure 3.3). So, if
we had an element with dimensions of 200px x 150px, for example, we
could turn it into an ellipse with radii equal to half its width and height,
respectively:

border-radius: 100px / 75px;

You can see the result in Figure 3.4.

However, this has a major flaw: if the dimensions change, the
border-radius values need to change as well. You can see in Figure 3.5
how the border-radius looks when you have a 200px x 300px element
instead. When our dimensions vary depending on content, we have a
problem.

Our previous circle example, when
the height is smaller than the width;
the border-radius circle is shown
here with dashed lines

A box with unequal horizontal and
vertical border-radius; our
corner curving now follows an ellipse
with horizontal and vertical radii
equal to the border-radius we
specified, shown here with dashed
lines

http://w3.org/TR/css3-background/#corner-overlap

Irregular border-radius curves
used to create an ellipse

Our ellipse breaks when the
dimensions change; the silver lining
though is that this shape would be
super useful for some sort of
cylinder!

Or, do we? Another lesser known feature of border-radius is that
it accepts percentages, not just lengths. The percentage resolves to
the corresponding dimension, width for the horizontal radius and height
for the vertical one. This means the same percentage can compute to
different horizontal and vertical radii. Therefore, to create a flexible el-
lipse, we can replace both radii with 50%:

border-radius: 50% / 50%;

And because the parts before and after the slash are now the same (even
though they don’t compute to the same value), we can further simplify
it to:

border-radius: 50%;

The result is a flexible ellipse with just one line of CSS, regardless of width
and height.

play.csssecrets.io/ellipse

Half ellipses

Now that we know how to make a flexible ellipse with CSS, it naturally
follows to wonder if we can make other common shapes, like fractions of

m Why “border-radius”?

Many wonder why border-radius was named that way, as it doesn’t require borders to work. It seems

that corner-radius would have been much more appropriate. The reason for this (admittedly confusing)

name is that border-radius rounds the edge of the element’s border box. When the element has no

borders, this makes no difference, but when it does, it's the outer corner of the border that is rounded. The

rounding of the inner corner is smaller (max(@, border-radius - border-width) to be precise).

I8 CHAPTER 3: SHAPES

http://play.csssecrets.io/ellipse

an ellipse. Let’s take a moment to think about a half ellipse (e.g., the one
in Figure 3.6).

[t's symmetrical across the vertical axis, but not across the horizontal
one. Even if we can't know the exact border-radius values (or if it's at
all possible) yet, it starts to become obvious that we will need different radii
per corner. However, the values we've examined so far only allow for one
value for all four corners.

Fortunately, the border-radius syntax is more flexible than that.
You might be surprised to find that border-radius is actually a short-
hand. We can provide different values for each corner, and there are two
different ways to do that. One way would be to use the longhand properties
it's comprised of:

border-top-left-radius
border-top-right-radius
border-bottom-right-radius

border-bottom-left-radius

However, the more concise way is to use the border-radius shorthand
and to provide multiple whitespace-separated values. If we provide four
values, they each apply to one corner, in clockwise order, starting from
the top left. If we provide fewer than four values, they are multiplied in
the usual CSS way, akin to properties like border-width. Three values
mean the fourth is the same as the second. Two values mean the third is the
same as the first. Figure 3.7 provides a visual explanation of how this works.
We can even provide different horizontal and vertical radii for all four
corners, by specifying 1-4 values before the slash and 1-4 different values
after it. Note that these are expanded into four values individually. For ex-
ample, a border-radius value of 1@px / 5px 20px is equivalent to
10px 10px 10px 10px / 5px 20px 5px 20px.

A half ellipse can become a semicir-
cle when the width is double the
height (or when the height is double
the width, for ellipses cut down the
vertical axis).

A half ellipse

The rounding of which corner is
specified with a border-radius
of 4, 3, 2, or 1 whitespace-separated
values (note that for elliptical radii,
there could be up to four
arguments before and after the
slash, and they refer to the same
corners, regarding the horizontal
radii before the slash and the vertical
radii after it)

border-radius: yw 5
border-radius: . v 5
border-radius: y e 3
border-radius: _ _;

Let's now examine the half ellipse problem again with this newfound knowl-
edge. Is it possible to specify such border-radius values that would gen-
erate a shape like this? We cannot know until we've tried. Let’s start by
making a few observations:

The shape is symmetrical horizontally, which means both the top left
and top right radii should be the same; likewise, the bottom left and
bottom right radii should also match.

There are no straight horizontal edges at the top (i.e., the entire top side is
curved), which means the top left and top right radii together should
total 100% of the shape’s width.

From the previous two observations, we can deduce that the horizontal left
and right radii should be 50%.

Vertically, it seems that the rounding for the two top corners occupies
the entire element’s height and there is no rounding at the bottom
corners. Therefore, it seems that a reasonable value for the vertical part of
the border-radius would be 100% 100% © ©.

Because the vertical rounding of the bottom corners is zero, it doesn't matter
what horizontal rounding they have, as that will always compute to zero
anyway. (Can you imagine a corner with zero vertical rounding and positive
horizontal rounding? Yup, neither could the spec writers.)

Putting all this together, we can come up with the CSS code for the flexible
half ellipse in Figure 3.6 pretty easily:

border-radius: 50% / 100% 100% © O;

It's equally simple to come up with values that create half ellipses cut
down the vertical axis instead, like the one shown in Figure 3.8:

border-radius: 100% © © 100% / 50%;

As an exercise, try to write CSS code for the other half of the ellipse.

play.csssecrets.io/half-ellipse

Quarter ellipses

After creating a whole ellipse and a half ellipse, the natural next question is
whether we can make a quarter ellipse, like the one shown in Figure 3.9.
Following a similar thought process as before, we can notice that to create
a quarter ellipse, one of the corners needs to have a 100% radius both
horizontally and vertically, and the other four will have no round-
ing. Because the percentage will be the same for both horizontal and ver-
tical radii of all four corners, no slash notation is needed. The code would
look like this:

border-radius: 100% 0 0 0;

Unfortunately, in case you are now wondering what other fractions of el-
lipses are possible with border-radius (e.qg., is %th of an ellipse possible?
One third?), I'm afraid you will be disappointed, because there are no pos-
sible border-radius values to generate that.

A half ellipse cut down the vertical
axis

Similarly to the half ellipse example,
when the width and height are
equal, this will be a quarter circle.

A quarter ellipse

http://play.csssecrets.io/half-ellipse

FIGURE 3.10

Simurai masterfully used border -

radius to its full extent to create all B o n B o n

sorts of shapes for his BonBon

Sweet CS53 Buttons
buttons (simurai.com/archive/
buttons)

~ Button @ iiﬁ' S!nm’z é
#1 Blog @ w é %

CSS Backgrounds & Borders RELATED

w3.org/TR/css-backgrounds SPECS

CHAPTER 3: SHAPES

http://play.csssecrets.io/quarter-ellipse
http://w3.org/TR/css-backgrounds
http://simurai.com/archive/buttons
http://simurai.com/archive/buttons

A parallelogram

Parallelograms

Prerequisites

Basic CSS transforms

The problem

Parallelograms are a superset of rectangles: their sides are parallel but their
corners are not necessarily straight (see Figure 3.11). In visual design,
they're often useful to make the design appear more dynamic and convey
a sense of movement (Figure 3.12).

Let's try to create a button-style link with that style in CSS. Our starting
point will be a plain flat button, with some simple styling, like the one in
Figure 3.13. Then, we can create the skewed rectangle shape with a
skew() transform, like so:

transform: skewX(-45deg);

SIR ADAM CATLACE

ABOUT SKILLS EXPERIENCE PORTFOLIO CONTACT

PERSONAL DETAILS fpreeses

DATE OF BIRTH: 1.6.2014

ADDRESS: 13 Cattington Rd
PHONE: (617) 555-MEOW
MAIL: siradam@catmail.com
a

MY EDUCATION

CATTECH /56055008

BSc in Catology (GPA: 3.9/4)
Thesis: The Catalytical Engine

MEOW INSTITUTE OF TUNA (MIT) 20062009

However, this also results in the content being skewed, which makes it
ugly and unreadable (Figure 3.14). Is there a way to only skew the con-
tainer shape without skewing the contents?

Nested elements solution

We can apply an opposite skew() transform to the content, which
will cancel out the outer transform, effectively giving us the result we
want. Unfortunately, that means we will have to use an extra HTML element
to wrap around the content, such as a div:

<div>Click me</div>

Parallelograms in web design (design
by Martina Pitakova)

LICK ME

Our button, before any transforms

are applied

Our skewed button, making the text
hard to read

The final result

If you're applying this effect to

an element that is inline by de-
fault, don'tforget to setitsdisplay
property to something else, like
inline-block or block, other-
wise transforms will not apply.
Same goes for the inner element.

.button { transform: skewX(-45deg); }
.button > div { transform: skewX(45deg); }

As you can see in Figure 3.15 it works quite well, but it means we have to
use an extra HTML element. If markup changes are not an option or you
really want markup purity, fear not, as there’s also a pure CSS solution.

play.csssecrets.io/parallelograms

Pseudo-element solution

Another idea is to use a pseudo-element to apply all styling to (back-
grounds, borders, etc.), and then transform that. Because our content is
not contained in the pseudo-element, it is not affected by the transforma-
tion. Let's try to use this technique to style a link in the same way as in the
previous section.

We need our pseudo-element box to remain flexible and automatically
inherit the dimensions of its parent, even when they are determined by its
contents. An easy way to do that is to apply position: relative tothe
parent, position: absolute to the generated content, and set all off-
sets to zero so that it stretches horizontally and vertically to the size of its
parent. This is how this code would look:

.button {
position: relative;
/* text color, paddings, etc. */

}
.button: :before {

content: '';
position: absolute;

top: 0; right: 0; bottom: 0; left: 0;

http://play.csssecrets.io/parallelograms

At this point, the generated box is above the content and once we apply
some background to it, it will obscure the contents (Figure 3.16). To fix this,
we can apply z-index: -1 to the pseudo-element, so that it moves un-
derneath its parent.

Now it's finally time to apply transforms to our heart's content on it and
enjoy the result. The finished code would look like this and produce exactly
the same visual result as the previous technique:

.button {
position: relative;
/* text color, paddings, etc. */

}
.button: :before {

content: ; /* To generate the box */
position: absolute;

top: 0; right: 0; bottom: 0; left: 0;
z-index: -1;

background: #58a;

transform: skew(45deg);

These techniques are not only useful for skew () transforms. They can also
be used with any other transformation, in order to transform an ele-
ment’s shape without transforming its contents. For example, using a
variation of this technique with a rotate () transform on a square element
would easily give us a diamond (rhombus) shape.

Also, the idea of using pseudo-elements and positioning to generate a
box that is then styled and placed underneath its parent can be used in a
number of cases, for very different types of effects, such as:

It was a common workaround for multiple backgrounds in IE8, discovered
by Nicolas Gallagher (nicolasgal lagher.com/multiple-

backgrounds-and-borders-with-css2).

It could be another solution to effects like the “Inner rounding” secret on
page 36. Can you guess how?

Our pseudo-element is currently
above the contents, so applying
background: #58a to it obscures
them

http://nicolasgallagher.com/multiple-backgrounds-and-borders-with-css2

= It could be used to independently apply properties like opacity toa “back-
ground,” pioneered by Nicolas Gallagher (nicolasgal Lagher.com/
css-background-image-hacks).

® It can be used to emulate multiple borders in a more flexible way, in case
we can't use the techniques in the “Multiple borders” secret on page
28. For example, when we need multiple dashed borders or multiple borders

with spacing and transparency between them.

CSS Transforms RELATED
w3.0org/TR/css-transforms SPECS

CHAPTER 3: SHAPES

http://nicolasgallagher.com/css-background-image-hacks
http://play.csssecrets.io/parallelograms-pseudo
http://w3.org/TR/css-transforms

Diamond
images

Prerequisites

CSS transforms, the “Parallelograms” secret on page 84

The problem

Cropping images in a diamond shape is rather common in visual design, but
still not quite straightforward to do in CSS. In fact, until recently, it was
basically impossible. Therefore, when web designers want to follow this
style, they more often than not pre-crop their images via an image editor.
Of course, it goes without saying that this is really not a maintainable way
to apply any effect and ends up being a mess if one wants to change the
image styling in the future.

Surely, these days there must be a better way, right? Actually, there are
two!

24 WAYS

Following its 2013 redesign,

Ve
: 24ways.org now displays author
profile pictures cropped in a
CSS3 Patterns, Exp]ained diamond shape, using the technique
Leaverou discussed here

16 December 2011 Many of you have probably seen my CSS3 patterns gallery. It
became very popular throughout the year and it showed
many web developers how powerful CSS3 gradients really
are. But how many really understand how these patterns
are created? The biggest benefit of CSS-generated
backgrounds is that they can be modified directly within the
style sheet. This benefit is void if we are just copying and
pasting CSS code we don’t understand. We may as well use
adata URI instead.

Published in Code

transform-based solution

The main idea is the same as the first solution discussed in the previous secret
(the “Parallelograms” secret on page 84)—we need to wrap our image
with a <div>, then apply opposite rotate() transforms to them:

<div class="picture">

</div>

.picture {
width: 400px;
transform: rotate(45deg);

overflow: hidden; Our original image, which we are
going to crop in a diamond shape

}

.picture > img {
max-width: 100%;
transform: rotate(-45deg);

Opposite rotate() transforms are
not enough to achieve this effect
(.picture divis shown with a
dashed outline)

Our final cropped image

However, as you can see in Figure 3.19, this doesn’t quite work out of the
box and accomplish what we are trying to achieve. Unless, of course, we
were trying to crop the image in an octagon shape, in which case we can
stop now and go do something else with our time. To crop it to a diamond
shape, however, there’s still some more sweating in order.

The main issue is the max-width: 100% declaration. 100% refers to
the side of our .picture container. However, we want our image to be
as wide as its diagonal, not its side. You might have guessed that yes,
we need the Pythagorean theorem again (if you need a refresher, there is
one in the “Diagonal stripes” section on page 43). As the theorem tells
us, the diagonal of a square is equal to its side multiplied by
V2 =1.414213562. Therefore, it makes sense to set max-width to
V2 x100% =~ 141.4213562 %, or round it up to 142%, as we don’t want
it to be smaller under any circumstances (but slightly larger is OK, as we're
cropping our image anyway).

Actually, it makes even more sense to enlarge the image through a
scale() transform, for a couple of reasons

We want the size of the image to remain 100% if CSS transforms are not
supported.

Enlarging an image through a scale() transform will scale it from the
center (unless a different transform-origin is specified). Enlarging it via
its width property will scale it from the top-left corner, so we will end up
having to use negative margins to move it.

Putting it all together, our final code looks like this:

.picture {
width: 400px;
transform: rotate(45deg);
overflow: hidden;
}
.picture > img {
max-width: 100%;
transform: rotate(-45deg) scale(1.42);

As you can verify in Figure 3.20, this finally gives us the result we wanted.

play.csssecrets.io/diamond-images

Clipping path solution

The previous solution works, but it's basically a hack. It requires an extra
HTML element, and it's messy, convoluted, and fragile: if we happen to be
dealing with non-square images, it will break miserably (Figure 3.21).

Actually, there is a much better way to do it. The main idea is to use
the clip-path property, another feature borrowed from SVG, that these
days can be applied to HTML content too (at least in supporting browsers)
with a nice, readable syntax, unlike its SVG counterpart, which is known to
have driven people to madness. Its main caveat is its (at the time of writing)
limited browser support. However, it degrades gracefully (no clipping), so
it's an alternative that should at least be considered.

You might be familiar with clipping paths from image editing apps like
Adobe Photoshop. Clipping paths allow us to clip the element in the shape
that we please. In this case, we're going to use a polygon() shape to
specify a diamond, which allows us to specify any polygon shape as a series
of comma-separated points. We can even use percentages, and they refer
to the dimensions of the element. The code is as simple as:

clip-path: polygon(50% 0, 100% 50%, 50% 100%, 0 50%);

That's it, believe it or not! The result is identical to Figure 3.20, but instead
of requiring two HTML elements and eight lines of cryptic CSS code, it's now
created with only one simple line.

The wonders of clip-path don't stop here. The property is even ani-
matable, as long as we animate between the same shape functions
(polygon(), in our case), with the same number of points. Therefore, if
we want to smoothly uncover the whole image on mouseover, we would
do something like this:

LIMITED
SUPPORT

The transform-based solution breaks
badly when dealing with non-square
images

http://play.csssecrets.io/diamond-images

img {
clip-path: polygon(50% ©, 100% 50%,
50% 100%, © 50%);
transition: 1s clip-path;

img:hover {
clip-path: polygon(@ @, 100% 0,
100% 100%, © 100%);

FIGURE 3.22

The clip-path method adjusts }
nicely to non-square images

Furthermore, this method adjusts nicely to non-square images, as you can
verify in Figure 3.22. Ah, the joys of modern CSS...

CSS Transforms RELATED
w3.0org/TR/css-transforms SPECS

CSS Masking
w3.0rg/TR/css-masking

CSS Transitions

w3.0org/TR/css-transitions

CHAPTER 3: SHAPES

http://play.csssecrets.io/diamond-clip
http://w3.org/TR/css-transforms
http://w3.org/TR/css-masking
http://w3.org/TR/css-transitions

A button with cutout corners,

creating an arrow shape that

emphasizes its meaning

Cutout
corners

Prerequisites

CSS gradients, background-size, the “Striped backgrounds” secret
on page 40

The problem

Cutting corners is not just a way to save money, but also a rather popular
style in both print and web design. It usually involves cutting out one or
more of an element’s corners in a 45° angle (also known as beveled cor-
ners). Especially lately, with flat design winning over skeuomorphism, there
has been an increase in the popularity of this effect. When the cutout cor-
ners are only on one side and occupy 50% of the element’s height each, it
creates an arrow shape that is very popular for buttons and breadcrumb
navigation—see Figure 3.23.

However, CSS is still not well equipped for creating this effect in an
easy, straightforward one-liner. This leads most authors toward using back-
ground images to achieve it, either by obscuring the cutout corners with

triangles (when the backdrop is a solid color), or by using one or more im-
ages for the entire background, with the corner(s) already cut.

Find & Book

e
|: 03/08/2014

To:
|z 13/08/2014

| 2 4 |adults&| 0 % children

[Double bed
[_|Baby cotneeded (€2/night)

Getrates

Such methods are clearly inflexible, difficult to maintain, and add latency,
both by increasing HTTP requests and the total filesize of the website. Is
there a better way?

The solution

One solution comes in the form of the omnipotent CSS gradients. Let's as-
sume we only want one cutout corner, say the bottom-right one. The main
trick is to take advantage of the fact that gradients can accept an angle
direction (e.g., 45deg) and color stop positions in absolute lengths, both
of which are not affected by changes in the dimensions of the element
the background is on.

Putting it all together, all we need is one linear gradient. It would
need a transparent color stop for the cutout corner and another color stop
in the same position, with the color we want for our background. The CSS
looks like this (for a 15px size corner):

background: #58a;
background:

linear-gradient(-45deg, transparent 15px, #58a 0);

An example of a website where a
cutout corner (bottom-left of the
semi-transparent “Find & Book”
box) really adds to the design

Hey, focus! You're supposed to
be looking at my corners, not

reading my text. The text is

just placeholder!

An element with the bottom right
corner cut off, through a simple CSS
gradient

m We are using separate
colors (@ #58a and
@ #655) for easier debugging. In

practice, both gradients would be
the same color.

Hey, focus! You’re supposed to

be looking at my corners, not

reading my text. The text is

just placeholder!

FIGURE 3.26

Failed attempt to apply the cutout
effect to both bottom corners

Hey, focus! You’re supposed to

be looking at my corners, not

reading my text. The text is

just placeholder!

FIGURE 3.27

background-size is not enough

CHAPTER 3: SHAPES

Simple, wasn't it? You can see the result in Figure 3.25. Technically,
we don’t even need the first declaration. We only included it as a fall-
back: if CSS gradients are not supported, the second declaration will be
dropped, so we still want to get at least a solid color background.

Now, let's assume we want two cutout corners, say the two bottom
ones. We can’t achieve this with only one gradient, so we will need two.
Our first thought might be something like this

background: #58a;

background:
linear-gradient(-45deg, transparent 15px, #58a 0),
linear-gradient(45deg, transparent 15px, #655 0);

However, as you can see in Figure 3.26, this doesn’t work. By default,
both gradients occupy the entire element, so they obscure each other.
We need to make them smaller, by using background-size to make each
gradient occupy only half the element:

background: #58a;
background:
linear-gradient(-45deg, transparent 15px, #58a 0)
right,
linear-gradient(45deg, transparent 15px, #655 0)
left;
background-size: 50% 100%;

You can see what happens in Figure 3.27. As you can see, although
background-size was applied, the gradients are still covering each
other. The reason for this is that we forgot to turn background-repeat
off, so each of our backgrounds is repeated twice. Therefore, our back-
grounds are still obscuring each other—Dby repetition this time. The new
code would look like this

background: #58a;
background:
linear-gradient(-45deg, transparent 15px, #58a @)
right,
linear-gradient(45deg, transparent 15px, #655 0)
left;
background-size: 50% 100%;
background-repeat: no-repeat;

You can see the result in Figure 3.28 and verify that—finally—it works!
At this point, you are probably able to figure out how to apply this effect
to all four corners. You will need four gradients, and the code looks
like this:

background: #58a;
background:
linear-gradient(135deg, transparent 15px, #58a @)
top left,
linear-gradient(-135deg, transparent 15px, #655 0)
top right,
linear-gradient(-45deg, transparent 15px, #58a @)
bottom right,
linear-gradient(45deg, transparent 15px, #655 0)
bottom left;
background-size: 50% 50%;
background-repeat: no-repeat;

You can see the result in Figure 3.29. One issue with the preceding code is
that it's not particularly maintainable. It requires five edits to change the
background color and four to change the corner size. A preprocessor
mixin could help reduce the repetition. Here's how the code could look with
SCSS:

Hey, focus! You're suppose

be looking at my cor

reading my text. The text is

just placeholder!

FIGURE 3.28

Our bottom-left and bottom-right
cutout corners work now

Hey, focus! You're supposed to

be looking at my corners, not

reading my text. The text is

Jjust placeholder!

FIGURE 3.29

The effect applied to all four corners,
with four gradients

beveled-corners($bg,
$tl:0, $tr:$tl, $br:$tl, $bl:$tr) {
background: $bg;
background:
linear-gradient(135deg, transparent $tl, $bg 0)
top left,
linear-gradient(225deg, transparent $tr, $bg 0)
top right,
linear-gradient(-45deg, transparent $br, $bg 0)
bottom right,
linear-gradient(45deg, transparent $bl, $bg 0)
bottom left;
background-size: 50% 50%;
background-repeat: no-repeat;

Then, where needed, it would be used like this, with 2-5 arguments:

beveled-corners(#58a, 15px, 5px);

In this example, the element we will get a 15px top-left and bottom-right
cutout corner and a 5px top-right and bottom-left one, similar to how
border-radius works when we provide fewer than four lengths. This is
due to the fact that we provided default values for the arguments in our
SCSS mixin, and yes, these default values can refer to other arguments
as well.

play.csssecrets.io/bevel-corners-gradients

Curved cutout corners

A variation of the gradient method works to create curved cutout corners,
an effect many people refer to as “inner border radius,” as it looks like an

http://play.csssecrets.io/bevel-corners-gradients

@ E<

-
HOME | MENU | EVENTS PARTY ROOM ABOUT CONTACT

A

desserts. In the evenings, Geogeske transforms Into a hip lounge with a full-
sarvica bar and a mix of sultry beats by local Desjays.

Dinner: Monday through Thursday, 11:00 a.m. o 10:00 p.m.
Friday and Saturday, 11:00 a.m. to 1

@ GEOGESKE

inverse version of rounded corners. The only difference is using radial gra-

Copyright ©2014 — G2 Sits Managed by Lara + Blu Marketing Group (2R TN v o] Submit

dients instead of linear ones:

background: #58a;
background:
radial-gradient(circle at top left,
transparent 15px, #58a 0) top left,
radial-gradient(circle at top right,
transparent 15px, #58a @) top right,
radial-gradient(circle at bottom right,
transparent 15px, #58a ©) bottom right,
radial-gradient(circle at bottom left,
transparent 15px, #58a ©) bottom left;
background-size: 50% 50%;
background-repeat: no-repeat;

You can see the result in Figure 3.31. Just like in the previous technique,
the corner size can be controlled through the color stop positions and a
mixin would make the code more maintainable here as well.

SECRET #12

FIGURE 3.30

An excellent use of curved cutout
corners in g2geogeske. com; the
designer has made them the central
design element, as they are present
in the navigation, the content, and
even the footer

Hey, focus! You're supposed to

be looking at my corners, not

reading my text. The text is

just placeholder!

FIGURE 3.31

Curved cutout corners, with radial
gradients

: CUTOUT CORNERS

http://g2geogeske.com

play.csssecrets.io/scoop-corners

Inline SVG & border-image solution

While the gradient-based solution works, it has quite a few issues:

The code is very long and repetitive. In the common case, where we want
the same corner size on all four corners, we need to make four edits to
modify it. Similarly, we need to make four edits to modify the background
color, five counting the fallback.

It is messy to downright impossible (depending on the browser) to animate
between different corner sizes.

Thankfully, there are a couple different methods we could use, de-
pending on our needs. One of them is to use border-image with an inline
SVG that generates the corners. Given how border-image works (if you
don’t remember, take a look at the quick primer in Figure 2.58), can you

imagine how our SVG would look?

Because dimensions don’t matter (border-image takes care of scal-
Our SVG-based border image, with ing and SVGs scale perfectly regardless of dimensons—ah, the joy of vector
its slicing graphics!), every measurement could be 1, for easier, shorter, numbers. The
corners would be of length 1, and the straight edges would also be 1. The
result (zoomed) would look like Figure 3.32. The code would look like this:

border: 15px solid transparent;
border-image: 1 url('data:image/svg+xml,\
<svg xmlns="http://www.w3.0rg/2000/svg"
width="3" height="3" fill="%2358a">\
<polygon points="0,1 1,0 2,0 3,1 3,2 2,3 1,3 0,2"/>\

</svg>');

Note that we used a slice size of 1. This does not mean 1 pixel; it is referring
to the coordinate system of the SVG file (hence the lack of units). If we had
specified it in percentages, we would need to approximate % of the image

with something like 33.34%. Approximating numbers is always risky,

http://play.csssecrets.io/scoop-corners

because not all browsers use the same level of precision. However, by using
units of the coordinate system of the SVG file, we're saved from precision
headaches.

The result is shown in Figure 3.33. As you can see, our cutout corners
are there, but there is no background. We can solve that in two ways: either
by specifying a background, or by adding the keyword fill to our
border-image declaration, so that it doesn't discard the middle
slice. In this case, we are going to go with specifying a background, because
it will also act as a fallback.

In addition, you may have noticed that our corners are smaller than
with the previous technique, which can be baffling. But we specified a
15px border width! The reason is that with the gradient, the 15px was
along the gradient line, which is perpendicular to the direction of the gra-
dient. The border width, however, is not measured diagonally, but horizon-
tally/vertically. Can you see where this is going? Yup, it's the ubiquitous Py-
thagorean theorem again, that we also saw in the “Striped backgrounds”
secret on page 40. Figure 3.34 should help make things clearer. Long story
short, to achieve the same size, we need to use a border width that is /2
times larger than the size we would use with the gradient method. In this
case, that would be 15 x /2 = 21.213203436 pixels, which is sensible to
approximate to 20px, unless we really, absolutely need the diagonal size
to be as close to 15px as possible:

border: 20px solid transparent;
border-image: 1 url('data:image/svg+xml,\
<svg xmlns="http://www.w3.0rg/2000/svg"
width="3" height="3" fill="%2358a">\

<polygon points="0,1 1,0 2,0 3,1 3,2 2,3 1,3 0,2"/>\

</svg>');
background: #58a;

However, as you can see in Figure 3.35, this doesn’t exactly have the
expected result. Where did our laboriously created cutout corners go? Fear
not, young padawan, for our corners are still there. You can understand

Applying our SVG on the border-
image property

Specifying a border-width of

15px, results in a (diagonally

measured) corner size of

15 =~ 10.606601718, which is

2

why our corners looked smaller

what's happening if you set the background to a different color, such as

Hey, focus! You're supposed to

be looking at my corners, not . #655.
reading my text. The text is As you can see in Figure 3.36, the reason our corners disappeared was

Justplacencldcrl that the background we specified was obscuring them. All we need to do

to fix this is to use background-clip to prevent the background from
FIGURE 3.35 extending to the border area:

Where did our nice corners go?!

border: 20px solid transparent;

Hey, focus! You're supposed to border-image: 1 url('data:image/svg+xml,\
bellookingiatmylcomntsmat <svg xmlns="http://www.w3.0rg/2000/svg"\

reading my text. The text is width="3" height="3" fill="%2358a">\

<polygon points="0,1 1,0 2,0 3,1 3,2 2,3 1,3 0,2"/>\
</svg>');

just placeholder!

FIGURE 3.36
, background: #58a;
Changing our background to . .
another color solves the ... background-clip: padding-box;

disappearing corners mystery

The issue is now fixed and our box now looks exactly like
Hey, focusliiiiaiunnosed 1o Figure 3.29. However, we can easily change the corner size in only one
be lookin ners, not place: we just modify the border width. We can even animate it, because
readigy s border-width is animatable! We can also change the background with

just placeholder! e s . - .
= only two edits instead of five. In addition, because our background is

now independent of the corner effect, we can even specify a gradient on

FIGURE 3.31

Our cutout corners with a radial

it, or any other pattern, as long as it’s still {fj #58a toward the edges. For
example, check out Figure 3.37 for an example using a radial gradient from
hsla(0,0%,100%, .2) to transparent.

There is only one small issue remaining. If border-image is not sup-

gradient background

ported, the fallback is not only the absence of corners. Due to background
clipping, it also looks like there is less spacing between the box edge
and its content. To fix that, we could just give our border a color that is
identical to the background:

border: 20px solid #58a;
border-image: 1 url('data:image/svg+xml,\
<svg xmlns="http://www.w3.0rg/2000/svg"\

CHAPTER 3: SHAPES

width="3" height="3" fill="%2358a">\
<polygon points="0,1 1,0 2,0 3,1 3,2 2,3 1,3 0,2"/>\
</svg>');
background: #58a;
background-clip: padding-box;

This color is ignored when border-image applies, but will provide a more
graceful fallback when it doesn't, which will look like Figure 3.35. As a
drawback, this increases the number of edits we need to make to change
the background color to three.

play.csssecrets.io/bevel-corners

Hat tip to Martijn Saly (twitter.com/martijnsaly) for coming up with
the initial idea of using border-image and inline SVG as a solution for
beveled corners, in a tweet of his from January 5, 2015 (twitter. com/
martijnsaly/status/552152520114855936).

Clipping path solution

While the border-image solution is very compact and relatively DRY, it
still has its limitations. For example, we still need to have either a solid color
background, or a background that is a solid color toward the edges. What
if we want a different kind of background, such as a texture, a pattern, or
a linear gradient?

There is another way that doesn’t have these limitations, though it of
course has other limitations of its own. Remember the c1ip-path property
from the “Diamond images” secret on page 90? The amazing thing
about CSS clipping paths is that we can mix percentages (which refer to the
element dimensions) with absolute lengths, offering us tremendous
flexibility.

For example, the code for the clipping path to clip an element in a
rectangle with beveled corners of 20px size (measured horizontally) would
look like this:

HAT TIP

LIMITED
SUPPORT

http://play.csssecrets.io/bevel-corners
http://twitter.com/martijnsaly
http://twitter.com/martijnsaly/status/552152520114855936

background: #58a;

clip-path: polygon(
20px O, calc(1lee% - 20px) 0, 100% 20px,
100% calc(100% - 20px), calc(1lee% - 20px) 100%,
20px 100%, © calc(100% - 20px), @ 20px

)s

Despite the code being short, this doesn’t mean it's DRY, which is one
of its biggest issues if you're not using a preprocessor. In fact, it's the most
WET of the pure CSS solutions we presented, with eight (1) edits required
to change the corner size. On the other hand, we can change the back-
ground in only one place, so there’s that.

Among its benefits is that we can have any background we want,
or even clip replaced elements such as images. Check out Figure 3.38
An image styled with beveled for an image styled with beveled corners. None of the previous methods can
corners, via c1ip-path do this. In addition, it is also animatable, not only to different corner sizes,
but different shapes altogether. All we need to do is use a different clipping
path.

Beyond its WETness and its limited browser support, it also has the
drawback that it will clip text, if there is no sufficient padding, as it just

clips the element without distinguishing between its parts. In contrast, the

m Cutout corners

In the future, we won't have to resort to CSS gradients, clipping, or SVG for this effect. A new property,
corner-shape, is coming in CSS Backgrounds & Borders Level 4 (dev.w3.org/csswg/css-
backgrounds-4/) to save us from these pains. It will be used in conjunction with border-radius to
produce cutout corners of different shapes, with their sizes defined in border-radius. For example, spec-
ifying 15px cutout corners on all sides would be as simple as:

: 15px;

: bevel;

106 CHAPTER 3: SHAPES

http://dev.w3.org/csswg/css-backgrounds-4/

gradient method will just let the text overflow beyond the corners (because
they're just a background) and the border-image method will act just like
a border and make the text wrap.

play.csssecrets.io/bevel-corners-clipped

CSS Backgrounds & Borders RELATED
w3.0org/TR/css-backgrounds SPECS

CSS Image Values
w3.org/TR/css-images

CSS Transforms
w3.org/TR/css-transforms
CSS Masking
w3.org/TR/css-masking
CSS Transitions

w3.org/TR/css-transitions

CSS Backgrounds & Borders Level 4
dev.w3.org/csswg/css-backgrounds-4

SECRET #12: CUTOUT CORNERS

http://play.csssecrets.io/bevel-corners-clipped
http://w3.org/TR/css-backgrounds
http://w3.org/TR/css-images
http://w3.org/TR/css-transforms
http://w3.org/TR/css-masking
http://w3.org/TR/css-transitions
http://dev.w3.org/csswg/css-backgrounds-4

Trapezoid shapes, faked through

borders on pseudo-elements (for
clarity, the pseudo-elements are
shown here in darker blue)

Trapezoid
tabs

Prerequisites

Basic 3D transforms, the “Parallelograms” secret on page 84

The problem

Trapezoids are even more generalized than parallelograms: only two of their
sides are parallel. The other two can be at any angle. Traditionally, they have
been notoriously difficult shapes to create in CSS, although they are
also very frequently useful, especially for tabs. When authors were not em-
ulating them through carefully crafted background images, they were usu-
ally created as a rectangle with two triangles on each side, faked through
borders (Figure 3.39).

Although this technique saves us the extra HTTP request we would
spend on an image, and can easily adjust to different widths, it's still sub-
optimal. It wastes both available pseudo-elements, and is also very inflexible
styling-wise. For example, good luck adding a border, a background texture,
or some rounding on that tab.

.| Clouds Fie Edit Find View Goto Run Tools Window Help ‘ Preview (%

£y Ba cubicbeer =/ Welcome % | chainvasminjs x | cubicbeziers x | envionmentjs x| indexhiml % | Preferences
2
2 &> | chainvas.min.js
2 £ cubic-bezier js
. 4| environment js —
] i indexchiml ’
3 45| interactions e C o m e
README.md B
k- [style.css
£
g ‘Welcome to CloudS. Use this welcome screen to tweak the look & feel of the Cloud9 user interface.
bash - "leaverou-cut x | Immediate x

:~fuorkspace (master) $ []

Grow your CSS skills.
Land your dream job.

CSS-TRICKS €I treehouse:

VIDEOS ALMANAC SNIPPETS FORUMS

Datallsts for Different Input Types

Isaw an HTML5 date input the other day, which had the dropdown arrow on the right, which I've
grown accustom to clicking to reveal a calendar datepicker in which to choose a date.

Typically, that looks like this:...

Read Article -

HowSVG Shape Morphing Works

Because all of the well-known techniques for trapezoids are quite mes-
sy and/or difficult to maintain, most tabs we see on the Web are not slanted,
although real-life tabs usually are. Is there a sane, flexible way to make
trapezoid tabs?

The solution

If a combination of 2D transforms existed that could create a trapezoid
shape, we could just apply a variation of the solutions discussed in the
“Parallelograms” secret on page 84 and be done with it. Unfortunately,
there isn't.

However, think about rotating a rectangle in the physical, three-
dimensional world. The two-dimensional image we usually end up seeing is
a trapezoid, due to perspective! Thankfully, we can emulate this effect in
CSS by using a 3D rotation:

Cloud9 IDE (c9. i0) features
trapezoid tabs for each open
document

An earlier redesign of css-
tricks.com featured trapezoid
tabs, although they were only
slanted in one direction

http://c9.io
http://css-tricks.com
http://css-tricks.com

TRAPEZOID
TRAPEZQO\D

Creating a trapezoid shape through
3D rotation

Top: Before

Bottom: After

TRAPEZOID

Applying the 3D transform to the
box generated by the pseudo-
element, so that our text is not
affected

transform: perspective(.5em) rotateX(5deg);

You can see how this creates a trapezoid shape in Figure 3.42. Of course,
because we applied the 3D transform to our entire element, the text is also
distorted. 3D transforms cannot be “canceled” inside the element in
the same way as 2D transforms can (i.e., via an opposite transform).
Canceling them on the inner element is technically possible, but very com-
plicated. Therefore, the only pragmatic way to take advantage of 3D trans-
forms to create a trapezoid shape is to apply the transform to a pseudo-
element, akin to the approach taken for parallelograms in the “Parallelo-
grams” secret on page 84:

.tab {
position: relative;
display: inline-block;
padding: .5em lem .35em;

color: white;

.tab: :before {

content: ; /* To generate the box */
position: absolute;

top: 0; right: 0; bottom: 0; left: 0;
z-index: -1;

background: #58a;

transform: perspective(.5em) rotateX(5deg);

As you can see in Figure 3.43, this works to create a basic trapezoid
shape. There is still one issue, though. When we apply a transform without
setting a transform-origin, the element is rotated in space around its
center. Therefore, its dimensions on the 2D projection in our screen change
in many ways, as Figure 3.44 highlights: its width increases, it shifts a bit

to the top, there is a small decrease in its height, and so on, which makes
it hard to design around.

To make its metrics a bit more manageable, we can specify
transform-origin: bottom; so that its base remains fixed as it
rotates in space. You can see the difference in Figure 3.45. Now it's much
more predictable: only its height decreased. However, the decrease in height
is much sharper, because the entire element rotates away from the viewer,
whereas before, half of it rotated “behind” the screen and the other half
above it, so the entire element was closer to the viewer in the three-
dimensional space. To fix this, we might think of applying some extra top
padding. However, the result will then look awful in browsers with no 3D
transforms support (Figure 3.46). Instead, we will increase its size via a
transform as well, so that the entire thing is dropped when 3D transforms
are not supported. With a little experimentation, we find that some vertical
scaling (i.e., the scaleY () transform) of about 130% is sufficient to make
up for the lost space:

transform: scaleY(1.3) perspective(.5em)
rotateX(5deg);

transform-origin: bottom;

You can see both the result and the fallback in Figure 3.47. At this point,
the result is visually equivalent to the old border-based technique discussed
earlier; it's only the syntax that is considerably more concise. However, the
superiority of this technique begins to emerge when you start applying some
styling to the tabs. For example, take a look at the following code, which is
used for styling the tabs in Figure 3.48:

nav > a {
position: relative;
display: inline-block;
padding: .3em lem ©;

TRAPEZOID

Our trapezoid overlaid on its pre-
transform version, to highlight the
changes its metrics go through

TRAPEZOID

Our trapezoid overlaid on its pre-
transform version, to highlight the
changes its metrics go through when
using transform-origin:

(=
o
&+
~+
o
Ej
-

TRAPEZOID

TRAPEZOID

Fixing the issue with extra padding
results in a very weird-looking
fallback (shown at the top)

TRAPEZOID

TRAPEZOID

Making up the lost height with
scale() provides a much better
fallback (shown at the top)

nav > a::before {

content: '';

position: absolute;

top: 0; right: 0; bottom: 0; left: 0;

z-index: -1;

background: #ccc;

background-image: linear-gradient(
hsla(e,0%,100%, .6),
hsla(0,0%,100%,0));

border: 1px solid rgba(0,0,0,.4);

border-bottom: none;

border-radius: .5em .5em © O;

box-shadow: @ .15em white inset;

transform: perspective(.5em) rotateX(5deg);

transform-origin: bottom;

As you can see, we've applied backgrounds, borders, rounded corners, and
box shadows—and they just worked, no questions asked! Furthermore, by
merely changing the transform-origin to bottom left or bottom
right, we can get left- or right-slanted tabs, respectively! (For an example,
see Figure 3.49.)

The advantage of this technique is its f Home > PrOjeCtS\(About\

flexibility regarding styling

Content area

] FIGURE 3.49
Home PrOJeCtS AbOUt Slanted tabs by changing the

transform-origin

Content area

i Home) Projects rAbout]

Content area

Despite all its virtues, this technique is not perfect by any means. It involves
a pretty major drawback: the angle of the sides depends on the width
of the element. Therefore, it's tricky to get trapezoids with the same angles
when dealing with variable content. However, this works great for elements
that involve small width variations, such as a navigation menu. In those
cases, the difference is hardly noticeable.

play.csssecrets.io/trapezoid-tabs

® CSS Transforms RELATED
w3.org/TR/css-transforms SPECS

SECRET #13: TRAPEZOID TABS

http://play.csssecrets.io/trapezoid-tabs
http://w3.org/TR/css-transforms

Simple
pie charts

Prerequisites

CSS gradients, basic SVG, CSS animations, the “Striped backgrounds”
secret on page 40, the “Flexible ellipses” secret on page 76

The problem

Pie charts, even in their simplest two-color form, have traditionally been
anything but simple to create with web technologies, despite being incred-
ibly common for things ranging from simple stats to progress indicators
and timers.

Implementations usually involved either using an external image editor
to create multiple images for multiple values of the pie chart, or large Java-
Script frameworks designed for much more complex charts.

Although the feat is not as impossible as it once was, there’s still no
simple one-liner for it. However, there are many better, more maintainable
ways to achieve it today.

transform-based solution

This solution is the best in terms of markup: it only needs one element and
the rest is done with pseudo-elements, transforms, and CSS gradients. Let's
start with a simple element:

<div class="pie"></div>

For now, let's assume we want a pie chart that displays the hardcoded
percentage 20%. We will work on making it flexible later. Let's first style the
element as a circle, which will be our background (Figure 3.50):

.pie {
width: 100px; height: 100px;
border-radius: 50%;
background: yellowgreen;

Our pie chart will be green (specifically [yellowgreen) with brown
(@ #655) showing the percentage. We might be tempted to use skew
transforms for the percentage part, but as a little experimentation shows,
they prove to be a very messy solution. Instead, we will color the left and
right parts of our circle in our two colors, and use a rotating pseudo-
element to uncover only the percentage we need.

To color the right part of our circle brown, we will use a simple linear
gradient:

background-image:
linear-gradient(to right, transparent 50%, #655 0);

Asyou can see in Figure 3.51, thisis all that's needed. Now, we can proceed
to styling the pseudo-element that will act as a mask:

Our starting point (or, a pie chart
showing 0%)

Coloring the right part of our circle
brown, with a simple linear gradient

The pseudo-element that will act as
a mask is shown here with dashed
lines

Careful not to use

background: inherit;,
instead of the background-
color: inherit;, otherwise the
gradient will be inherited too!

.pie::before {
content: '';
display: block;
margin-left: 50%;

height: 100%;

You can see in Figure 3.52 where our pseudo-element currently lies
relative to the pie element. Currently, it's not styled and it doesn't cover
anything. It's merely an invisible rectangle. To start styling it, let's make a few
observations:

Because we want it to cover the brown part of our circle, we need to
apply a green background to it, using background-color: inheritto
avoid duplication, as we want it to have the same background color as its
parent.

We want it to rotate around the circle’s center, which is on the middle
of the pseudo-element’s left side, so we should apply a transform-
originof @ 50% toit, or just left.

We don’t want it to be a rectangle, as it makes it bleed past the edges of
the pie chart, so we need to either apply overflow: hiddentothe .pie,
or an appropriate border-radius to make it a semicircle.

Putting it all together, our pseudo-element’s CSS will look like this:

.pie::before {
content: '';
display: block;
margin-left: 50%;
height: 100%;
border-radius: 9 100% 100% © / 50%;
background-color: inherit;

transform-origin: left;

Our pie currently looks like Figure 3.54. This is where the fun begins!
We can start rotating the pseudo-element, by applying a rotate()
transform. For the 20% we were trying to achieve, we can use a value of
72deg (0.2 x 360 =72), or . 2turn, which is much more readable. You can
see how it looks for a few other values as well, in Figure 3.53.

We might be tempted to think we're done, but unfortunately it's not
that simple. Our pie chart works great for displaying percentages from 0 to
50%, but if we try to depict a 60% percentage (by applying a .6turn
rotation), Figure 3.55 happens. Don't lose hope yet though, as we can—
and we will—fix this!

If we think about 50%-100% percentages as a separate problem, we
might notice that we can use an inverted version of the previous solu-
tion for them: a brown pseudo-element, rotating from @ to .5turn, re-
spectively. So, for a 60% pie, the pseudo-element code would look like this:

.pie::before {
content: '';
display: block;
margin-left: 50%;
height: 100%;
border-radius: © 100% 100% © / 50%;
background: #655;
transform-origin: left;

transform: rotate(.1lturn);

You can see this in action in Figure 3.56. Because we've now figured out a
way to depict any percentage, we could even animate the pie chart from
0% to 100% with CSS animations, creating a fancy progress indicator:

@keyframes spin {
to { transform: rotate(.5turn); }

Our simple pie chart showing
different percentages; from top to
bottom: 10% (36deg or .1turn),
20% (72deg or .2turn), 40%
(144deg or .4turn)

,,,,,,,,,,,,,,,

@keyframes bg {
50% { background: #655; }

.pie::before {

content: '';
Our pseudo-element (shown here display: block;
with a dashed outline) after we mar‘gin-left . 50%;

finished styling it .
A height: 100%;

border-radius: 0 100% 100% © / 50%;
background-color: inherit;
transform-origin: left;

animation: spin 3s linear infinite,

bg 6s step-end infinite;

Our pie chart breaks for percentages play.csssecrets.io/pie-animated

greater than 50% (shown here:

60%)
All this is good, but how do we style multiple static pie charts with
different percentages, which is the most common use case? Ideally, we
want to be able to type something like this
<div class="pie">20%</div>
<div class="pie">60%</div>
...and get two pie charts, one showing 20%, and the other one showing
60%. First, we will explore how we can do it with inline styles, and then
we could always write a short script to parse the text content and add said
Our now correct 60% pie inline styles, for code elegance, encapsulation, maintainability, and

perhaps most importantly, accessibility.

The challenge to controlling the pie chart percentage with inline styles
is that the CSS code that is responsible for setting the percentage is set on
the pseudo-element. As you already know, we cannot set inline styles
on pseudo-elements, so we need to be inventive.

http://play.csssecrets.io/pie-animated

The solution comes from one of the most unlikely places. We are
going to use the animation we already presented, but it will be
paused. Instead of running it like a normal animation, we are going to use
negative animation delays to step through to any point in the ani-
mation statically and stay there. Confused? Yes, a negative animation-
delay is not only allowed by the specification, but is very useful for cases
like this:

“A negative delay is valid. Similar to a delay of @s, it means that the ani-
mation executes immediately, but is automatically progressed by the ab-
solute value of the delay, as if the animation had started the specified
time in the past, and so it appears to start partway through its active
duration.”

— CSS Animations Level 1 (w3.0rg/TR/css-animations/#animation-delay)

Because our animation is paused, the first frame of it (defined by our
negative animation-delay), will be the only one displayed. The per-
centage shown on the pie chart will be the percentage of the total du-
ration our animation-delay is. For example, with the current duration
of 6s, we would need an animation-delay of -1.2s to display a 20%
percentage. To simplify the math, we will set a duration of 100s. Keep in
mind that because the animation is paused forever, the duration we
specify has no other effect.

There is one last issue: the animation is on the pseudo-element, but
we want to set an inline style on the . pie element. However, because
there is no animation on the <div>, we can set the animation-delay
on that as an inline style, and then use animation-delay: inherit;
on the pseudo-element. To put it together, our markup for the 20% and
60% pie charts will look like this:

<div class="pie"
style="animation-delay: -20s"></div>
<div class="pie"

style="animation-delay: -60s"></div>

You can use the same

technique for other cases
where you want to use values from
a spectrum without repetition and
complex calculations, as well as for
debugging animations by step-
ping through them. For a simpler,
isolated example of the technique,
check out play.csssecrets.io/
static-interpolation.

http://w3.org/TR/css-animations/#animation-delay
http://play.csssecrets.io/static-interpolation
http://play.csssecrets.io/static-interpolation

And the CSS code we just presented for this animation would now become

(not including the .pie rule, as that stays the same):

@keyframes spin {
to { transform: rotate(.5turn); }

}
////// @keyframes bg {
20% 50% { background: #655; }
}

.pie::before {
/* [Rest of styling stays the same] */

animation: spin 50s linear infinite,

bg 100s step-end infinite;
0

60% animation-play-state: paused;

animation-delay: inherit;

Our text, before we hide it }

At this point, we can convert the markup to use percentages as content,
like what we originally aimed for, and add the animation-delay inline

styles via a simple script:

$$('.pie").forEach(function(pie) {
var p = parseFloat(pie.textContent);

pie.style.animationDelay = '-' + p + 's’;

});

Note that we left the text intact, because we need it for accessibility and
usability reasons. Currently, our pie charts look like Figure 3.57. We need
to hide the text, which we can do accessibly via color: transparent,
so that it remains selectable and printable. As extra polish, we can center
the percentage in the pie chart, so that it's not in a random place when
the user selects it. To do that, we need to:

Convert the pie's height to 1ine-height (oradd a 1line-height equal
to the height, but that's pointless code duplication, because 1ine-
height would set the computed height to that as well).

Size and position the pseudo-element via absolute positioning, so that it
doesn’t push the text down

Add text-align: center; to horizontally center the text.

The final code looks like this:

.pie {
position: relative;
width: 100px;
line-height: 100px;
border-radius: 50%;
background: yellowgreen;
background-image:
linear-gradient(to right, transparent 50%, #655 0);
color: transparent;

text-align: center;

@keyframes spin {

to { transform: rotate(.5turn); }
}
@keyframes bg {

50% { background: #655; }

.pie::before {
content: '';
position: absolute;
top: 9; left: 50%;
width: 50%; height: 100%;
border-radius: © 100% 100% © / 50%;

background-color: inherit;

Our starting point: a green SVG circle
with a fat [} #655 stroke

As you might know, these CSS
properties are also available as
attributes on the SVG element,
which might be convenient if porta-
bility is a concern.

transform-origin: left;

animation: spin 50s linear infinite,
bg 100s step-end infinite;

animation-play-state: paused;

animation-delay: inherit;

play.csssecrets.io/pie-static

SVG solution

SVG makes a lot of graphical tasks easier, and pie charts are no exception.
However, instead of creating a pie chart with paths, which would require
complex math, we are going to use a little trick instead.

Let's start from a circle

<svg width="100" height="100">
<circle r="30" cx="50" cy="50" />
</svg>

Now, let's apply some basic styling to it:

circle {
fill: yellowgreen;
stroke: #655;
stroke-width: 30;

You can see our stroked circle in Figure 3.58. SVG strokes don't just
consist of the stroke and stroke-width properties. There are many
other less popular stroke-related properties to fine-tune strokes. One of

http://play.csssecrets.io/pie-static

them is stroke-dasharray, intended for creating dashed strokes. For
example, we could use it like this:

stroke-dasharray: 20 10;

This means we want dashes of length 20 with gaps of length 10, like the
ones in Figure 3.59. At this point, you might have started wondering what
on Earth this SVG stroke primer has to do with pie charts. It starts getting
clearer when we apply a stroke with a dash width of @ and a gap width
greater than or equal to the circumference of our circle (C = 2rr, so in our
case C = 2 x 30 = 189):

stroke-dasharray: 0 189;

566

As you can see in the first circle in Figure 3.60, this completely re-

moves any stroke, and we're left with just a green circle. However, the fun
begins when we start increasing the first value (Figure 3.60): because
the gap is so long, we no longer get a dashed stroke, just a stroke that covers
the percentage of the circle’s circumference that we specify.

You might have started to figure out where this is going: if we reduce
the radius of our circle enough that it's completely covered by its
stroke, we end up with something that resembles a pie chart quite closely.
For example, you can see in Figure 3.61 how that looks when applied to a
circle with a radius of 25 and a stroke-width of 50, like what's produced
by the following code:

FIGURE 3.59

A simple dashed stroke, created with
stroke-dasharray

FIGURE 3.60

Multiple stroke-dasharray
values and their effect; from left to
right:

0 189

40 189

95 189

150 189

FIGURE 3.61

Our SVG graphic is starting to
resemble a pie chart

Remember: SVG strokes are always
half inside and half outside the ele-
ment they're applied to. In the fu-
ture, we will be able to control this
behavior.

The final SVG pie chart

<svg width="100" height="100">
<circle r="25" cx="50" cy="50" />

</svg>

circle {
fill: yellowgreen;
stroke: #655;
stroke-width: 50;
stroke-dasharray: 60 158; /* 2m x 25 = 158 */

Now, turning it into a pie chart like the ones we made with in the previous
solution is rather easy: we just need to add a larger green circle under-
neath the stroke, and rotate it 90° counterclockwise so that it starts
from the top middle. Because the <svg> element is also an HTML element,

we can just style that:

svg {
transform: rotate(-90deg);

background: yellowgreen;

border-radius: 50%;

You can see the final result in Figure 3.62. This technique makes it even
easier to animate the pie chart from 0% to 100%. We just need to create a
CSS animation that animates stroke-dasharray from @ 158 to 158
158:

@keyframes fillup {
to { stroke-dasharray: 158 158; }

circle {
fill: yellowgreen;
stroke: #655;
stroke-width: 50;
stroke-dasharray: 0 158;

animation: fillup 5s linear infinite;

As an additional improvement, we can specify a certain radius on the circle
so that the length of its circumference is (infinitesimally close to) 100, so
that we can specify the stroke-dasharray lengths as percentages,
without having to make calculations. Because the circumference is 2rr, our
radius needs to be % =~ 15.915494309, which for our needs could be
rounded up to 16. We will also specify the SVG’s dimensions in the viewBox
attribute instead of the width and height attributes, to make it adjust to
the size of its container.

After these modifications, the markup for the pie chart of Figure 3.62
would now become:

<svg viewBox="0 © 32 32">
<circle r="16" cx="16" cy="16" />
</svg>

And the CSS would become:

svg {
width: 100px; height: 100px;
transform: rotate(-90deg);
background: yellowgreen;
border-radius: 50%;

circle {

fill: yellowgreen;

stroke: #655;

stroke-width: 32;

stroke-dasharray: 38 100; /* for 38% */

Note how easy it now is to change the percentage. Of course, even with
this simplification, we don’t want to have to repeat all this SVG markup for
every pie chart. It's time for JavaScript to lend us its helping hand for a little
bit of automation. We will write a small script to take simple HTML markup
like the following...

<div class="pie">20%</div>

<div class="pie">60%</div>

...and add an inline SVG inside every .pie element, with all necessary el-
ements and attributes. It will also add a <title> element, for accessibil-
ity, so that screen reader users can also know what percentage is displayed.
The final script will look like this:

$$('.pie").forEach(function(pie) {
var p = parseFloat(pie.textContent);
var NS = "http://www.w3.0rg/2000/svg";
var svg = document.createElementNS(NS, "svg");
var circle = document.createElementNS(NS, “"circle");
var title = document.createElementNS(NS, "title");
circle.setAttribute("r", 16);
circle.setAttribute("cx", 16);
circle.setAttribute("cy", 16);
circle.setAttribute("stroke-dasharray”, p + " 100");
svg.setAttribute("viewBox", "0 @ 32 32");
title.textContent = pie.textContent;

pie.textContent = 5

svg.appendChild(title);
svg.appendChild(circle);

pie.appendChild(svg);
})s

m Pie charts

Remember conical gradients from the “Checkerboards” section on page
55? They would be immensely helpful here too. All it would take for a pie chart
would be a circular element, with a conical gradient of two color stops. For
example, the 40% pie chart in Figure 3.53 would be as simple as:

.pie {
: 100px; : 100px;
. 50%;
: conic-gradient (#655 40%, yellowgreen 0);

Furthermore, once the updated attr() function defined in CSS Values Level 3 (w3.org/TR/css3-
values/#attr-notation)is widely implemented, you will be able to control the percentage with a simple
HTML attribute:

: conic-gradient (#655 attr(data-value %), yellowgreen 0);

This also makes it incredibly easy to add a third color. For example, for a pie chart like the one shown on the
top right of this box, we would just add two more color stops:

: conic-gradient(deeppink 20%, #fb3 @, #fb3 30%, yellowgreen 0);

SECRET #14: SIMPLE PIE CHARTS 1217

http://w3.org/TR/css3-values/#attr-notation

That's it! You might be thinking that the CSS method is better, because
its code is simpler and less alien. However, the SVG method has certain
benefits that the pure CSS solution lacks:

It's very easy to add a third color: just add another stroked circle and shift
its stroke with stroke-dashoffset. Alternatively, add its stroke length
to the stroke length of the circle before (underneath) it. How exactly do you
picture adding a third color to pie charts made with the first solution?

We don’t have to take any extra care for printing, as SVG elements are
considered content and are printed, just like elements. The first sol-
ution depends on backgrounds, and thus, will not print.

We can change the colors with inline styles, which means we can easily
change them via scripting (e.g., depending on user input). The first solu-
tion relies on pseudo-elements, which cannot take inline styles except via
inheritance, which is not always convenient.

CHAPTER 3: SHAPES

CSS Transforms RELATED

SPECS

w3.org/TR/css-transforms
CSS Image Values
w3.0org/TR/css-images

CSS Backgrounds & Borders
w3.org/TR/css-backgrounds

Scalable Vector Graphics
w3.org/TR/SVG

CSS Image Values Level 4

w3.org/TR/css4-images

http://play.csssecrets.io/pie-svg
http://w3.org/TR/css-transforms
http://w3.org/TR/css-images
http://w3.org/TR/css-backgrounds
http://w3.org/TR/SVG
http://w3.org/TR/css4-images

Visual
Effects

g

One-sided
shadows

The problem

One of the most common questions | see being asked about box-shadow
on Q&A websites is how a shadow could be applied on one (or, more rarely,
two) sides only. A quick search on stackoverflow.com reveals close to a
thousand results for this. This makes sense, as showing a shadow only on
one side creates a subtler, but equally realistic effect. Often, frustrated de-
velopers will even write to the CSS Working Group mailing list requesting
new properties like box-shadow-bottom to be able to do this. However,
such effects are already possible with clever use of the good ol’ box-
shadow property we've learned and love.

Shadow on one side

Most people use box-shadow with three lengths and a color, like so:

box-shadow: 2px 3px 4px rgha(0,0,0,.5);

http://stackoverflow.com

The following series of steps is a good (albeit not completely technically
accurate) way to visualize how this shadow is drawn (Figure 4.1):

HEN

A rgba(9,0,0,.5) rectangle is drawn with the same dimensions and

position as our element.
It's moved 2px to the right and 3px to the bottom.

[t's blurred by 4px with a Gaussian blur algorithm (or similar). This essentially
means that the color transition on the edges of the shadow between the
shadow color and complete transparency will be approximately as long as
double the blur radius (8px, in our example).

The blurred rectangle is then clipped where it intersects with our orig-
inal element, so that it appears to be “behind” it. This is a little different
from the way most authors visualize shadows (a blurred rectangle under-
neath the element). However, for some use cases, it's important to realize
that no shadow will be painted underneath the element. For example,
if we set a semi-transparent background on the element, we will not see a
shadow underneath. This is different than text-shadow, which is not
clipped underneath the text.

The use of 4px blur radius means that the dimensions of our shadow
are approximately 4px larger than our element’s dimensions, so part of the
shadow will show through from every side of the element. We could change
the offsets to hide any shadow from the top and left, by increasing them to
at least 4px. However, then this results in a way too conspicuous shadow,
which doesn’t look nice (Figure 4.2). Also, even if this wasn’t a problem,
we wanted a shadow on only one side, not two, remember?

The solution lies in the lesser known fourth length parameter, speci-
fied after the blur radius, which is called the spread radius. The spread
radius increases or (if negative) decreases the size of the shadow by

Example mental model of a box-
shadow being painted

Unless otherwise noted, referring to
an element’s dimensions here means
the dimensions of its border box, not
its CSS width and height.

To be precise, we will see a 1px
shadow on the top (4px - 3px),
2px on the left (4px - 2px), 6px
on the right (4px + 2px), and 7px
on the bottom (4px + 3px). In
practice, it will look smaller because
the color transition on the edges is
not linear, like a gradient would be.

Trying to hide the shadow from the
top and left sides by using offsets
equal to the blur radius

box-shadow on the bottom
side only

box-shadow on two adjacent sides
only

the amount you specify. For example, a spread radius of -5px will reduce
the width and height of the shadow by 18px (5px on each side).

It logically follows that if we apply a negative spread radius whose ab-
solute value is equal to the blur radius, then the shadow has the exact same
dimensions as the element it's applied on. Unless we move it with offsets
(the first two lengths), we will not see any of it. Therefore, if we apply a
positive vertical offset, we will start seeing a shadow on the bottom of our
element, but not on any of the other sides, which is the effect we were
trying to achieve:

box-shadow: © 5px 4px -4px black;

You can see the result in Figure 4.3.

play.csssecrets.io/shadow-one-side

Shadow on two adjacent sides

Another frequently asked question concerns applying a shadow on two
sides. If the two sides are adjacent (e.g., right and bottom), then this is
easier: you can either settle for an effect like the one in Figure 4.2 or apply
a variation of the trick discussed in the previous section, with the following
differences:

We don’t want to shrink the shadow to account for blurring in both sides,
but only one of them. Therefore, instead of the spread radius having the
opposite value of the blur radius, it will be half of that.

We need both offsets, as we want to move the shadow both horizontally
and vertically. Their value needs to be greater or equal to half the blur radius,
as we want to hide the remaining shadow from the other two sides.

For example, here is how we can apply a @ black, 6px shadow to the
right and bottom sides:

http://play.csssecrets.io/shadow-one-side

box-shadow: 3px 3px 6px -3px black;

You can see the result in Figure 4.4.

m play.csssecrets.io/shadow-2-sides

Shadow on two opposite sides

It starts getting trickier when we want a shadow on two opposite sides, such There are discussions in the CSS WG
about allowing for separate hori-

zontal/vertical spread radius val-
(i.e., there is no way to specify that we want to enlarge the shadow hori- ues in the future, which would sim-

zontally and shrink it vertically), the only way to do this is to use two shad- plify this.
ows, one on each side. Then we basically apply the trick discussed in the
“Shadow on one side” section on page 130 twice:

as the left and right. Because the spread radius is applied on all sides equally

box-shadow: 5px © 5px -5px black,
-5px @ 5px -5px black;

FIGURE 4.5

box-shadow on two opposite sides

You can see the result in Figure 4.5.
m play.csssecrets.io/shadow-opposite-sides

CSS Backgrounds & Borders RELATED

w3.org/TR/css-backgrounds SPECS

SECRET #15: ONE-SIDED SHADOWS

http://play.csssecrets.io/shadow-2-sides
http://play.csssecrets.io/shadow-opposite-sides
http://w3.org/TR/css-backgrounds

Irregular drop
shadows

Prerequisites

box-shadow

The problem

box-shadow works great when we want to cast a drop shadow on a rec-
tangle or any shape that can be created with border-radius (refer to the
"Flexible ellipses” secret on page 76 for a few examples on that). How-
ever, it becomes less useful when we have pseudo-elements or other
semi-transparent decorations, because box-shadow shamelessly ig-
nores transparency. Some examples include:

Semi-transparent images, background images, or border-images (e.g., a
vintage gold picture frame)

Dotted, dashed, or semi-transparent borders with no background (or when
background-clip is not border-box)

Speech bubbles, with their pointer created via a pseudo-element

Cutout corners like the ones we saw in the “Cutout corners” secret on
page 96
Most folded corner effects, including the one later in this chapter

Shapes created via c1ip-path, like the diamond images in the “Diamond
images” secret on page 90

Speech Dotted Cutout

bubble border corners

The results of the futile attempt to apply box-shadow to some of them is
shown in Figure 4.6. Is there a solution for such cases, or do we have to
give up shadows altogether?

The solution

The Filter Effects specification (w3.o0rg/TR/filter-effects) offers a
solution to this problem, through a new filter property, borrowed from
SVG. However, although CSS filters are basically SVG filters, they do not
require any SVG knowledge. Instead, they are specified through a num-
ber of convenient functions, such as blur(), grayscale(), o—wait for
it—drop-shadow()! You may even daisy-chain multiple filters if you want
to, by whitespace separating them, like this:

filter: blur() grayscale() drop-shadow();

The drop-shadow() filter accepts the same parameters as basic box-
shadows, meaning no spread radius, no inset keyword, and no multiple,
comma-separated shadows. For example, instead of:

Elements with CSS styling that
renders box-shadow useless; the
value of the box-shadow applied is
2px 2px 10px rgba(e,0,0,.5)

LIMITED
SUPPORT

http://w3.org/TR/filter-effects

box-shadow: 2px 2px 1@px rgba(0,0,0,.5);
we would write:
filter: drop-shadow(2px 2px 10px rgba(0,0,0,.5));

These might use different blur You can see the result of this drop-shadow() filter when applied on

algorithms, so you might need . . .
=9 you mig the same elements as Figure 4.6 in Figure 4.7.
to adjust your blur value!

Adrop-shadow() filter, applied to ’

the elements from Figure 4.6 SpCCCh DOtth Cutout

bubble border corners

The best thing about CSS filters is that they degrade gracefully: when they
are not supported, nothing breaks, there is just no effect applied. You can
get slightly better browser support by using an SVG filter alongside,
if you absolutely need this effect to work in as many browsers as possible.
You can find the corresponding SVG filters for every filter function in the
Filter Effects specification (w3.0rg/TR/filter-effects/). You can in-
clude both the SVG filter and the simplified CSS one alongside and let the
cascade take care of which one wins:

filter: url(drop-shadow.svg#drop-shadow);
filter: drop-shadow(2px 2px 1@px rgba(0,0,0,.5));

Unfortunately, if the SVG filter is a separate file, it's not as customizable as
anice, human-friendly function that's right in your CSS code, and if it's inline,
it clutters the code. The parameters are fixed inside the file, and it's not
practical to have multiple files if we want a slightly different shadow. We
could use data URIs (which would also save the extra HTTP request), but

http://www.w3.org/TR/filter-effects/

they would still contribute to a large filesize. Because this is a fallback, it
makes sense to use one or two variations, even for slightly different drop-
shadow() filters.

Another consideration to keep in mind is that every non-transparent
area will cast a shadow indiscriminately, including text (when your back-
ground is transparent), as you have already seen in Figure 4.7. You might
think you can cancel this by using text-shadow: nonej;, but text-
shadow is completely separate and will not cancel the effects of a drop-
shadow() filter on text. In addition, if you're using text-shadow to cast
an actual shadow on the text, this shadow will also be shadowed by a drop -
shadow() filter, essentially creating a shadow of a shadow! Take a
look at the following example CSS code (and excuse the cheesiness of the
result—it's trying to demonstrate the issue in all its weirdness):

color: deeppink;

border: 2px solid;

text-shadow: .lem .2em yellow;

filter: drop-shadow(.@5em .@5em .lem gray);

You can see a sample rendering in Figure 4.8, showing both the text-
shadow and the drop-shadow() it casts.

play.csssecrets.io/drop-shadow

= Filter Effects RELATED

w3.org/TR/filter-effects SPECS

Yo dawg, L
heard u like
shadows...

FIGURE 4.8

text-shadows also cast a shadow
through the drop-shadow() filter

SECRET #16: IRREGULAR DROP SHADOWS

http://play.csssecrets.io/drop-shadow
http://w3.org/TR/filter-effects

Color
tinting

Prerequisites

HSL color model, background-size

The problem

Adding a color tint to a grayscale image (or an image that has been con-
verted to grayscale) is a popular and elegant way to give visual unity to a
group of photos with very disparate styles. Often, the effect is applied stat-
ically and removed on :hover and/or some other interaction.

Traditionally, we use an image editing application to create two versions
of the image, and write some simple CSS code to take care of swapping
them. This approach works, but it adds bloat and extra HTTP requests, and
is @ maintenance nightmare. Imagine deciding to change the color of the
effect: you would have to go through all the images and create new mon-
ochrome versions!

Angeling, Fabbns Antsine Butlor, Jormn. Sochiffer

@angelinamagnum @aebsr @jennschiffer

) = 4
Lea Versaw Nicole Sullivan Patrich Hamann

@leaverou @stubbornella @patrickhamann

Other approaches involve overlaying a semi-transparent color on top of the
image or applying opacity to the image and overlaying it on a solid color.
However, this is not a real tint: in addition to not converting all the colors in
the image to tints of the target color, it also reduces contrast significantly.

There are also scripts that turn images into a <canvas> element and
apply the tint through JavaScript. This does produce proper tinting, but is
fairly slow and restrictive.

Wouldn't it be so much easier to be able to apply a color tint to images
straight from our CSS?

Filter-based solution

Because there is no single filter function specifically designed for this effect,
we need to get a bit crafty and combine multiple filters.

The first filter we will apply is sepia(), which gives the image a de-
saturated orange-yellow tint, with most pixels having a hue of around
35-40. If this is the color we wanted, then we’re done. However, in most
cases it won't be. If our color is more saturated, we can use the
saturate() filter to increase the saturation of every pixel. Let's assume

The CSSConf 2014 website used this
effect for speaker photos, but
showed the full color picture on
hover and focus

LIMITED
SUPPORT

Top: Original image
Bottom: Image after sepia() filter

Our image after adding a
saturate() filter

Our image after adding a hue-

rotate() filter as well

we want to give the image a tint of [hs1(335, 100%, 50%).We need
to increase saturation quite a bit, so we will use a parameter of 4. The exact
value depends on your case, and we generally have to eyeball it. As
Figure 4.11 demonstrates, this combined filter gives our image a warm
golden tint.

As nice as our image now looks, we didn’t want to colorize it with this
orangish yellow, but with a deep, bright pink. Therefore, we also need to
apply a hue-rotate() filter, to offset the hue of every pixel by the
degrees we specify. To make the hue 335 from around 40, we'd need to
add around 295 (335 - 40) to it:

filter: sepia() saturate(4) hue-rotate(295deg);

At this point, we've colorized our image and you can check out how it
looks in Figure 4.12. If it's an effect that gets toggled on :hover or other
states, we could even apply CSS transitions to it:

img {
transition: .5s filter;
filter: sepia() saturate(4) hue-rotate(295deg);

img:hover,
img:focus {

filter: none;

play.csssecrets.io/color-tint-filter

http://play.csssecrets.io/color-tint-filter

Blending mode solution

The filter solution works, but you might have noticed that the result is not
exactly the same as what can be obtained with an image editor. Even though
we were trying to colorize with a very bright color, the result still looks rather
washed out. If we try to increase the parameter in the saturate() filter,
we start getting a different, overly stylized effect. Thankfully, there is a
better way to approach this: blending modes!

If you've ever used an image editor such as Adobe Photoshop, you are
probably already familiar with blending modes. When two elements overlap,
blending modes control how the colors of the topmost element
blend with the colors of whatever is underneath it. When it comes to
colorizing images, the blending mode you need is luminosity. The
luminosity blending mode maintains the HSL lightness of the top-
most element, while adopting the hue and saturation of its back-
drop. If the backdrop is our color and the element with the blending mode
applied to it is our image, isn't this essentially what color tinting is supposed
to do?

To apply a blending mode to an element, there are two properties
available to us: mix-blend-mode for applying blending modes to entire
elements and background-blend-mode for applying blending modes
to each background layer separately. This means that to use this method
on an image we have two options, neither of them ideal:

Wrapping our image in a container with a background color of the color

we want

Using a <div> instead of an image, with its background-image set to
the image we want to colorize and a second background layer underneath
with our color

Depending on the specific use case, we can choose either of the two. For
example, if we wanted to apply the effect to an element, we would
need to wrap it in another element. However, if we already have another
element, such as an <a>, we can use that:

LIMITED
SUPPORT

Comparison of the filter method

(top) and the blending mode
method (bottom)

Then, you only need two declarations to apply the effect:

a {
background: hsl(335, 100%, 50%);
}
img {
mix-blend-mode: luminosity;
}

Just like CSS filters, blending modes degrade gracefully: if they are not sup-
ported, no effect is applied but the image is still perfectly visible.

An important consideration is that while filters are animatable,
blending modes are not. \We already saw how you can animate the picture
slowly fading into monochrome with a simple CSS transition on the filter
property, but you cannot do the same with blending modes. However, do
not fret, as this does not mean animations are out of the question, it just
means we need to think outside the box.

As already explained, mix-blend-mode blends the whole element
with whatever is underneath it. Therefore, if we apply the luminosity
blending mode through this property, the image is always going to be blen-
ded with something. However, using the background-blend-mode
property blends each background image layer with the ones underneath it,
unaware of anything outside the element. What happens then when we
only have one background image and a transparent background color?
You guessed it: no blending takes place!

We can take advantage of that observation and use the background -
blend-mode property for our effect. The HTML will have to be a little
different:

<div class="tinted-image"
style="background-image:url(tiger.jpg)">
</div>

Then we only need to apply CSS to that one <div>, as this technique does
not require any extra elements:

.tinted-image {
width: 640px; height: 440px;
background-size: cover;
background-color: hs1(335, 100%, 50%);
background-blend-mode: luminosity;

transition: .5s background-color;

.tinted-image:hover {

background-color: transparent;

However, as mentioned previously, neither of the two techniques are
ideal. The main issues at play here are:

The dimensions of the image need to be hardcoded in the CSS code.
Semantically, this is not an image and will not be read as such by screen

readers.

Like most things in life, there is no perfect way to do this, but in this section
we've seen three different ways to apply this effect, each with its own pros
and cons. The one you choose depends on the specific needs of your project.

play.csssecrets.io/color-tint

http://play.csssecrets.io/color-tint

Hat tip to Dudley Storey (demosthenes.info) for coming up with the
animating trick for blending modes (demosthenes.info/blog/888/
Create-Monochromatic-Color-Tinted-Images-With-CSS-blend).

HAT TIP

Filter Effects RELATED
w3.0org/TR/filter-effects SPECS

Compositing and Blending
w3.0rg/TR/compositing
CSS Transitions

w3.0org/TR/css-transitions

CHAPTER 4: VISUAL EFFECTS

http://demosthenes.info
http://demosthenes.info/blog/888/Create-Monochromatic-Color-Tinted-Images-With-CSS-blend
http://demosthenes.info/blog/888/Create-Monochromatic-Color-Tinted-Images-With-CSS-blend
http://w3.org/TR/filter-effects
http://w3.org/TR/compositing
http://w3.org/TR/css-transitions

We are using the term “backdrop”

here to mean the part of the page
that is underneath an element,
which shows through its semi-
transparent background.

Frosted
glass effect

Prerequisites

RGBA/HSLA colors

The problem

One of the first use cases of semi-transparent colors was using them as
backgrounds, over photographic or otherwise busy backdrops, to decrease
contrast and make the text possible to read. The result is quite impressive,
but can still be hard to read, especially with very low opacity colors and/or
busy backdrops. For example, take a look at Figure 4.14, where the main
element has a semi-transparent white background. The markup looks
like this:

<main>
<blockquote>
“The only way to get rid of a temptation[..]”

<footer>—
<cite>
Oscar Wilde,
The Picture of Dorian Gray
</cite>
</footer>
</blockquote>

</main>

And the CSS looks like this (with all irrelevant bits omitted for brevity):

body {
background: url("tiger.jpg") © / cover fixed;
}
main {
background: hsla(0,0%,100%, .3);
¥

As you can observe, the text is really hard to read, due to the image behind

it being busy and the background color only being 25% opaque. We could

FIGURE 4.14

Our semi-transparent white
background makes the text hard to
read

SECRET #18: FROSTED GLASS EFFECT

Increasing the alpha value of our
background color does fix the
readability issue, but also makes our
design less interesting

Translucent Uls with a blurred
backdrop have been becoming
increasingly common in the past few
years, as the toll of blurring on
resources has stopped being
prohibitively expensive (Apple i0OS
8.1 is shown on the left and Apple
0OS X Yosemite is shown on the
right)

“The only way to get rid of a temptation is to yield to it.

Resist it, and your soul grows sick with longing for the
things 1t has_forbidden to ttself, with desire for what its
monstrous laws have made monstrous and unlawful.”
— Oscar Wilde, The Picture of Dorian Gray

of course improve readability by increasing the alpha parameter of the
background color, but then the effect will not be as interesting (see
Figure 4.15).

In traditional print design, this issue is often addressed by blurring the
part of the photo that is underneath our text container. Blurred back-
grounds are not as busy, and thus, text on them is easier to read. Because
blurring is computationally expensive, in the past its toll on resources was
prohibitive for using this technigue in websites and Ul design. However, with
GPUs improving and hardware acceleration becoming more commonplace
for more and more things, these days it's used quite frequently. In the past
few years, we have seen this technique in newer versions of both Microsoft
Windows, as well as Apple iOS and Mac OS X (Figure 4.16).

What can | help
you with?

We also got the ability to blur elements in CSS, via the blur () filter, which
is essentially a hardware-accelerated version of the corresponding SVG blur
filter primitive that we always had for SVG elements. However, if we directly
apply a blur() filter to our example, the entire element is blurred, which
makes it even less readable. (Figure 4.17). Is there any way to just apply it
to the element’s backdrop (i.e., the part of the background that is behind

our element)?

The solution

Provided that our element has a background-attachment of fixed,
this is possible, albeit a bit tricky. Because we cannot apply the blurring to
our element itself, we will apply it to a pseudo-element that is posi-
tioned behind the element and whose background seamlessly
matches the one on <body>.

First, we add the pseudo-element and position it absolutely, with all
offsets being @, so that it covers the entire <main> element:

main {
position: relative;
/* [Rest of styling] */

FIGURE 4.117

Applying a blur() filter to the
element itself makes things worse

It's also possible even with non-fixed
backgrounds, just messier.

SECRET #18: FROSTED GLASS EFFECT

Be careful when using a nega-

tive z-index to move a child
underneath its parent: if said parent
is nested within other elements with
backgrounds, the child will go below
those as well.

Why not just use background:
inherit onmain: :before? Be-
cause then it will inherit from main,
not body, so the pseudo-element
will get a semi-transparent white
background as well.

main: :before {
content: '‘;
position: absolute;
top: 0; right: 0; bottom: 0; left: 0;

background: rgba(255,0,0,.5); /* for debugging */

We also applied a semi-transparent [red background, so we can see
what we're doing, otherwise debugging becomes difficult when we're deal-
ing with a transparent (and therefore, invisible) element. As you can see in
Figure 4.18, our pseudo-element is currently above our content, thus ob-
scuring it. We can fix this by adding z-index: -1; (Figure 4.20).

Now it's time to replace that semi-transparent red background, with
one that actually matches our backdrop, either by copying over the <body >
background, or by splitting it into its own rule. Can we blur now? Let's
try it:

body, main::before {

background: url("tiger.jpg") @ / cover fixed;

}
main {

position: relative;

background: hsla(0,0%,100%, .3);
}

main: :before {
content: '';
position: absolute;
top: 0; right: 0; bottom: 0; left: 0;

filter: blur(20px);

FIGURE 4.18

The pseudo-element is currently
obscuring the text

FIGURE 4.19

We fixed the faded blurring at the
edges, but now there is some
blurring outside our element too

As you can see in Figure 4.21, we're pretty much there. The blurring effect
looks perfect toward the middle, but is less blurred closer to the edges. This

happens because blurring reduces the area that is covered by a solid color
by the blur radius. Applying a) red background to our pseudo-element
helps clarify what's going on (Figure 4.22).

SECRET #18: FROSTED GLASS EFFECT

FIGURE 4.20

Moving the pseudo-element behind
its parent, with z-index: -1;

To circumvent this issue, we will make the pseudo-element at least 20px

(as much as our blur radius) larger than the dimensions of its contain-
er, by applying a margin of -20px or less to be on the safe side, as different
browsers might use different blurring algorithms. As Figure 4.19 demon-
strates, this fixes the issue with the faded blurring at the edges, but now
there is also some blurring outside our container, which makes it look like
a smudge instead of frosted glass. Thankfully, this is also easy to fix: we will
just apply overflow: hidden; to main, in order to clip that extraneous
blurring. The final code looks as follows, and its result can be seen in
Figure 4.23:

body, main::before {

background: url("tiger.jpg") © / cover fixed;

}

main {
position: relative;
background: hsla(@,0%,100%, .3);
overflow: hidden;

}

main: :before {

CHAPTER 4: VISUAL EFFECTS

content: R

position: absolute;
top: 0; right: 0; bottom: 0; left: 0;
filter: blur(20px);

margin: -30px;

FIGURE 4.21

Blurring our pseudo-element almost
works, but its less blurry on the
edges, diminishing the frosted glass
illusion

FIGURE 4.22

Adding a @ red background helps
make sense of what's happening

SECRET #18: FROSTED GLASS EFFECT

FIGURE 4.23

Our final result

Note how much more readable our page has now become, and how much
more elegant it looks. It's debatable whether the fallback for this effect
constitutes graceful degradation. If filters are not supported, we will get the
result we saw in the beginning (Figure 4.14). We can make our fallback a
bit more readable by increasing the opacity of the background color.

play.csssecrets.io/frosted-glass

® Filter Effects RELATED
w3.0org/TR/filter-effects SPECS

CHAPTER 4: VISUAL EFFECTS

http://play.csssecrets.io/frosted-glass
http://w3.org/TR/filter-effects

Folded corner
effect

Prerequisites

CSS transforms, CSS gradients, the “Cutout corners” secret on page
96

The problem

Styling one corner (usually the top-right or bottom-right one) of an element
in a way that makes it look folded, with various degrees of realism, has
been a very popular decoration for years now.

These days, there are several helpful pure CSS solutions, the first of
which was published as easly as 2010 by the pseudo-element master, Nic-
olas Gallagher (nicolasgallagher.com/pure-css-folded-corner-
effect). Their main premise is usually adding two triangles on the top-left
corner: one for the page flip and a white one, to obscure the corner of the
main element. These triangles are usually created with the old border trick.

http://http://nicolasgallagher.com/pure-css-folded-corner-effect
http://http://nicolasgallagher.com/pure-css-folded-corner-effect

CSS-TRICKS treehouse™ o0 mion

Several earlier redesigns of css-
tricks.com featured folded
corners, on the top-right corner of

VIDEOS ALMANAC SNIPPETS FORUMS
every article box

0CTOBER 26, 20

DatalistS for Different Input Types

Isaw an HTML5 date input the other day, which had the dropdown arrow on the right, which I've
grown accustom to clicking to reveal a calendar datepicker in which to choose a date.

treehouse

Typically, that looks like this:...
Read Article Learning changes lives!

OCTOBER 24, 2014

How SVG Shape Morphing Works

Impressive as these solutions were for their time, today they are very limiting
and fall short in several cases:

When the background behind our element is not a solid color, but a pattern,
a texture, a photo, a gradient, or any other kind of background image

When we want a different angle than 45° and/or a rotated fold

Is there a way to create a more flexible folded corner effect with CSS that
doesn’t fail on these cases?

The 45° solution

We will start from an element with a beveled top-right corner, which is
created with the gradient-based solution in the “Cutout corners” secret “The only way to get rid of a

temptation is to yield to it.”

on page 96. To create a top-right bevel corner of size 1em with this tech-
—Oscar Wilde, The Picture

nique, the code looks like this and the sample rendering can be seen in
Figure 4.25:

of Dorian Gray

background: #58a; /* Fallback */ Our starting point: an element with
backgr‘ound . a top-right cutout corner, done via a
' gradient

linear-gradient(-135deg, transparent 2em, #58a 0);

At this point, we're already halfway done: all we need to do is to add a
darker triangle for the page flip. We will do that by adding another

http://css-tricks.com
http://css-tricks.com

A

Our second gradient for the folded
triangle, isolated; the text is shown
here as faint gray instead of white,
SO you can see where it is

“The only way to get rid of a

temptation is to yield to it.”
—Oscar Wilde, The Picture

of Dorian Gray

Combining the two gradients
doesn’t produce exactly the
expected result

gradient to create the triangle, which we will resize to our needs with
background-size and position on the top-right corner.

To create the triangle, all we need is an angled linear gradient with two
stops that meet in the middle:

background:
linear-gradient(to left bottom,
transparent 50%, rgba(0,0,0,.4) 0)
no-repeat 100% © / 2em 2em;

You can see the result of having only this background in Figure 4.26.
The last step would be to combine them, and we'll be done, right? Let’s try
that, making sure that the page flip triangle is above our cutout corner
gradient:

background: #58a; /* Fallback */
background:
linear-gradient(to left bottom,
transparent 50%, rgba(0,0,0,.4) 0)
no-repeat 100% © / 2em 2em,
linear-gradient(-135deg, transparent 2em, #58a 0);

As you can see in Figure 4.27, the result is not exactly what we ex-
pected. Why don’t the sizes match? They’re both 2em!

The reason is that (as we've discussed in the “Cutout corners” secret
on page 96) the 2em corner size in our second gradient is in the color stop,
and thus is measured along the gradient line, which is diagonal. On the
other hand, the 2em length in background-size is the width and
height of the background tile, which is measured horizontally and
vertically.

To make the two align, we need to do one of the following, depending
on which of the two sizes we want to keep:

To keep the diagonal 2em size, we can multiply the background-size

with /2.

= To keep the horizontal and vertical 2em size, we can divide the color stop
position of our cutout corner gradient by /2.

Because the background-size is repeated twice, and most other CSS
measurements are not measured diagonally, going with the latter is usually
preferable. The color stop position will become % =2 =1.414213562,

which we will round up to 1.5em:

background: #58a; /* Fallback */
background:
linear-gradient(to left bottom,
transparent 50%, rgba(0,0,0,.4) 0)
no-repeat 100% © / 2em 2em,
linear-gradient(-135deg,
transparent 1.5em, #58a 0);

As you can see in Figure 4.28, this finally gives us a nice, flexible, minimal-
istic rounded corner.

play.csssecrets.io/folded-corner

Solution for other angles

Folded corners in real life are rarely exactly 45°. If we want something
a tad more realistic, we can use a slightly different angle, for example
-150deg for a 30° one. If we just change the angle of the beveled corner,
however, the triangle representing the flipped part of the page will not ad-
just, resulting in breakage that looks like Figure 4.29. However, adjusting
its dimensions is not straightforward. The size of that triangle is not defined
by an angle, but by its width and height. How can we find what width and
height we need? Well, it's time for some—gasp—trigonometry!

“The only way to get rid of a
yield to it.”

ilde, The Picture

of Dorian Gray

FIGURE 4.28

After changing the color stop
position of the blue gradient, our
folded corner finally works

Make sure to have at least as

much padding as the corner
size, otherwise the text will overlap
the corner (because it's just a back-
ground), spoiling the folded corner
illusion.

getrid of a

e, The Picture

of Dorian Gray

FIGURE 4.29

Changing the angle of our cutout
corner causes this breakage

SECRET #19: FOLDED CORNER EFFECT

http://play.csssecrets.io/folded-corner

A 30-60-90 right triangle is a right
triangle whose other two angles are
30° and 60°.

f—<—

Our cutout corner, enlarged (the

gray marked angles are 30°)

Sines and cosines help us calculate
the legs of right triangles based on
their angle and hypotenuse

The code currently looks like this:

background: #58a; /* Fallback */
background:
linear-gradient(to left bottom,
transparent 50%, rgba(0,0,0,.4) 0)
no-repeat 100% © / 2em 2em,
linear-gradient(-15@deg,
transparent 1.5em, #58a 0);

As you can see in Figure 4.30, we basically need to calculate the length of
the hypotenuse from two 30-60-90 right triangles when we know the
length of one of their legs. As the trigonometric circle shown in Figure 4.31
reminds us, if we know the angles and the length of one of a right tri-
angle’s sides, we can calculate the length of its other two sides by using
sines, cosines, and the Pythagorean theorem. We know from math (or a

calculator) that cos 30° = @ and sin 30° = % We also know from the trig-
onometric circle that in our case, sin 30° = % and cos 30° = 1-2

Therefore:

T =125 x=2x15>x=3

3 1.5 2x1.5
Lols,y 252 >y =43~ 1732050808

y

/,, \\\\
//, \ X2 + yz =r2
B < v
1 [. _ y

- — cos’ = =

\ I
\ / sini = —

N =2

At this point, we can also calculate z, via the Pythagorean theorem:

2=yl =y +32=379=12=2/3

We can now resize the triangle to match:

background: #58a; /* Fallback */
background:
linear-gradient(to left bottom,
transparent 50%, rgba(0,0,0,.4) 0)
no-repeat 100% © / 3em 1.73em,
linear-gradient(-150deg,
transparent 1.5em, #58a 0);

At this point, our corner looks like Figure 4.32. As you can see, the
triangle now does match our cutout corner, but the result looks even
less realistic! Although we might not be able to easily figure out why, our
eyes have seen many folded corners before and instantly know that this
grossly deviates from the pattern they are used to. You can help your con-
scious mind understand why it looks so fake by trying to fold an actual
sheet of paper in approximately this angle. There is literally no way to
fold it and make it look even vaguely like Figure 4.32.

As you can see in an actual, real-life folded corner, such as the one in
Figure 4.33, the triangle we need to create is slightly rotated and has the
same dimensions as the triangle we “cut” from our element’s corner. Be-
cause we cannot rotate backgrounds, it's time to move the effect to a
pseudo-element:

.note {
position: relative;
background: #58a; /* Fallback */
background:
linear-gradient(-150deg,
transparent 1.5em, #58a 0);

“The only way to get rid of a
temptation is to yield to it.”
—Oscar Wilde, The Picture

of Dorian Gray

Although we did achieve the result
we wanted, it turns out that it looks
even less realistic than before

}

.note: :before {
content: '';
position: absolute;
top: 0; right: o;
background: linear-gradient(to left bottom,
transparent 50%, rgba(0,0,0,.4) 0)

100% © no-repeat;
An analog version of the folded width: 3em;

corner effect (fancy sheet of paper

height: 1.73em;
courtesy of Leonie and Phoebe elilne efil

Verou) }

At this point, we've just replicated the same effect as in Figure 4.32 with
pseudo-elements. Our next step would be to change the orientation of the
existing triangle by swapping its width and height to make it mirror
the cutout corner instead of complementing it. Then, we will rotate it by
30° ((90° — 30°) — 30°) counterclockwise, so that its hypotenuse becomes
parallel to our cutout corner:

.note: :before {

content: '';

position: absolute;

top: 0; right: o;

background: linear-gradient(to left bottom,
transparent 50%, rgba(0,0,0,.4) 0)
100% © no-repeat;

width: 1.73em;

height: 3em;

transform: rotate(-30deg);

You can see how our note looks after these changes in Figure 4.34.
As you can see, we're basically there and we just need to move the triangle
so that the hypotenuses of our two triangles (the dark one and the cutout

one) coincide. As things currently stand, we need to move the triangle both
horizontally and vertically, so it's more difficult to figure out what to do. We
can make things easier for ourselves by setting transform-origin to
bottom right, so that the bottom-right corner of the triangle be-
comes the center of rotation, and thus, stays fixed in the same place:

.note: :before {
/* [Rest of styling] */
transform: rotate(-30deg);
transform-origin: bottom right;

As you can see in Figure 4.35, we now only need to move our triangle
vertically toward the top. To find the exact amount, we can use some ge-
ometry again. As you can see in Figure 4.36, the vertical offset our triangle
needsisx —y =3 —4/3 = 1.267949192, which we can round up to 1. 3em:

.note: :before {
/* [Rest of styling] */
transform: translateY(-1.3em) rotate(-30deg);
transform-origin: bottom right;

The sample rendering in Figure 4.37 confirms that this finally gives us
the effect we were going for. Phew, that was intense! In addition, now that
our triangle is generated via pseudo-elements, we can make it even more
realistic, by adding rounded corners, (actual) gradients, and box-
shadows! The final code looks as follows:

“The only way to get rid of a

is to yield to it.”
ilde, The Picture

of Dorian Gray

FIGURE 4.34

We're starting to get there, but we
need to move the triangle

“The only way to get rid of a
yield to it.”
r Wilde, The Picture

of Dorian Gray

FIGURE 4.35

Adding transform-origin:
bottom right; makes things
easier: now we only need to move
our triangle vertically

FIGURE 4.36

Figuring out how much to move our

triangle isn't as difficult as it first
looks

SECRET #19: FOLDED CORNER EFFECT

Make sure to put the

translateY() transform be-

fore the rotation, otherwise our tri-
angle will move along its 30° angle,
as every transformation also
transforms the entire coordinate
system of the element, not just the
element per se!

“The only way to get rid of a

temptation is to yield to it.”
—Oscar Wilde, The Picture

of Dorian Gray

FIGURE 4.317

Our triangles are finally aligned and
touching

7 way to get rid of a
yield to it.”

— Oscar Wilde, The Picture

of Dorian Gray

FIGURE 4.38

With a few more effects, our folded
corner comes to life

.note {
position: relative;
background: #58a; /* Fallback */
background:
linear-gradient(-150deg,
transparent 1.5em, #58a 0);
border-radius: .5em;

}
.note: :before {
content: '';
position: absolute;
top: 0; right: 0;
background: linear-gradient(to left bottom,
transparent 50%, rgba(e,0,0,.2) 0, rgba(0,0,0,.4))
100% © no-repeat;
width: 1.73em;
height: 3em;
transform: translateY(-1.3em) rotate(-30deg);
transform-origin: bottom right;
border-bottom-left-radius: inherit;
box-shadow: -.2em .2em .3em -.lem rgba(0,0,0,.15);

And you can admire the fruits of our labor in Figure 4.38.

play.csssecrets.io/folded-corner-realistic

The effect looks nice, but how DRY is it? Let's think about some common
edits and variations one might want to make:

It only takes one edit to change the element dimensions and other met-
rics (padding, etc.).

It only takes two edits (one without the fallback) to change the back-
ground color.

CHAPTER 4: VISUAL EFFECTS

http://play.csssecrets.io/folded-corner-realistic

It takes four edits and several nontrivial calculations to change the fol-

ded corner size.

It takes five edits and several even less trivial calculations to change
the folded corner angle.

The last two are really bad. It might be time for a preprocessor mixin:

folded-corner($background, $size,
$angle: 30deg) {
position: relative;
background: $background; /* Fallback */
background:
linear-gradient($angle - 18@deg,
transparent $size, $background 9);

border-radius: .5em;

$x: $size / sin($angle);
$y: $size / cos($angle);

&: :before {

content: '';

position: absolute;

top: 0; right: 0;

background: linear-gradient(to left bottom,
transparent 50%, rgba(9,0,0,.2) 0,
rgba(0,0,0,.4)) 100% 0 no-repeat;

width: $y; height: $x;

transform: translateY($y - $x)

rotate(2*$angle - 90deg);
transform-origin: bottom right;
border-bottom-left-radius: inherit;

box-shadow: -.2em .2em .3em -.lem rgba(0,0,0,.2);

a At the time of writing, SCSS

- does not support trigonometric
functions natively. To enable sup-
port, you could use the Compass
framework (compass-
style.org), among other libraries.
You could even write them yourself,
using the Taylor expansions of the
functions! LESS, on the other hand,
includes them out of the box.

/* used as... */
.note {
@include folded-corner(#58a, 2em, 40deg);

m play.csssecrets.io/folded-corner-mixin

CSS Backgrounds & Borders RELATED
w3.0org/TR/css-backgrounds SPECS

CSS Image Values

w3.org/TR/css-images

CSS Transforms

w3.org/TR/css-transforms

CHAPTER 4: VISUAL EFFECTS

http://play.csssecrets.io/folded-corner-mixin
http://w3.org/TR/css-backgrounds
http://w3.org/TR/css-images
http://w3.org/TR/css-transforms
http://compass-style.org
http://compass-style.org

Typography 5

“The only way to

get rnd of a
temptation 1S to

yield to it.”

The default effect of CSSjustification

Hyphenation

The problem

Designers love text justification. If you look at any stunningly designed
magazine or book, you will see it everywhere. However, on the Web, justi-
fication is very sparingly used, and even less so by skilled designers. Why is
that, given that we've had text-align: justify; since CSS 1?

The reason becomes apparent if you look at Figure 5.1. Look at all the
“rivers of white” created by adjusting spacing to justify the text. Not only
does thislook bad, it also hinders readability. In print, justification always
goes hand in hand with hyphenation. Because hyphenation allows words
to be broken down into syllables, much less whitespace adjustment is need-
ed, resulting in the text looking much more natural.

Until recently, there were ways to hyphenate text on the Web, but they
were the kind of solution that is worse than the problem. The usual way
involved using server-side code, JavaScript, online generators, or even just
our bare hands and lots of patience to insert soft hyphens (­ ;) between
syllables, so that the browser knows where each word could be broken.
Usually, such an overhead was not worth it so the designer decided to go
with a different kind of text alignment instead.

The solution

In CSS Text Level 3, a new property came along: hyphens. It accepts three

values: none, manual, and auto. Its initial value is manual, to match the

existing behavior: we could always hyphenate manually, with soft hyphens. “The OHIY way to

Obviously, hyphens: none; would disable this behavior, but the truly get rid of a tempta-

magical results are achieved with this very simple line of CSS:))))
tion 1s to yield to it.”

hyphens: auto;
The result of hyphens: auto

That's all it takes. You can see the result in Figure 5.2. Of course, for
this to work, you need to have declared a language through the 1ang
HTML attribute, but that’s something you should have done regardless.

If you want more fine-grained control over hyphenation (e.g., in short
intro text), you can still use a few soft hyphens (­ ;) to help the
browser. The hyphens property will prioritize them, and then figure out
where else it can break words.

€N How does word wrapping work?

Like many things in computer science, word wrapping sounds simple and straightforward, but is actually
neither. There are many algorithms to accomplish it, but the most popular are the Greedy algorithm and the
Knuth-Pass algorithm. The Greedy algorithm works by analyzing one line at a time, filling it with as many
words (or syllables, when using hyphenation) as possible and moving on to the next line when it encounters
the first word/syllable that doesn't fit.

The Knuth-Plass algorithm, derived from the names of the engineers who developed it, is far more

sophisticated. It works by taking the entire text into account, and produces much more aesthetically pleasing

results, but is also considerably slower to calculate.

Most desktop text processing applications use the Knuth-Plass algorithm. However, browsers currently
use the Greedy one for performance reasons, so their justification results are still not as good.

SECRET #20: HYPHENATION 169

CSS hyphenation degrades very gracefully. If the hyphens property is
not supported, you just get text justification that looks like Figure 5.1. Sure,
it's not pretty or particularly pleasant to read, but is still perfectly accessible.

play.csssecrets.io/hyphenation

m CSS Text RELATED
w3.org/TR/css-text SPECS

u CSS Text Level 4

dev.w3.org/csswg/css-text-4

If you are coming from a more design-oriented background, you might be cringing at the idea of hyphenation
as a toggle, with no other settings to control how it breaks words.

You might be happy to hear that in the future, we will have more fine-grained control over hyphenation,
with several related properties planned in CSS Text Level 4 (dev.w3.org/csswg/css-text-4), some of
which are:
hyphenate-1imit-1lines
hyphenate-1imit-chars
hyphenate-1imit-zone
hyphenate-limit-1last

hyphenate-character

170 CHAPTER 5: TYPOGRAPHY

http://dev.w3.org/csswg/css-text-4
http://play.csssecrets.io/hyphenation
http://w3.org/TR/css-text
http://dev.w3.org/csswg/css-text-4

Name: Lea Verou

Email: lea@verou.me

Location: Earth

A definition list with a name/value
pair on each line

Name:

Lea Verou
Email:
lea@verou.me
Location:

Earth

The default styling of our definition
list

Inserting
line breaks

The problem

The need to insert line breaks via CSS usually arises with definition lists
(Figure 5.3), but also in several other cases. More often than not, we use a
definition list because we want to be good netizens and use proper, se-
mantic markup, even when what we visually wanted was just a few lines
of name/value pairs. For example, consider this markup:

<dl>
<dt>Name:</dt>
<dd>Lea Verou</dd>

<dt>Email:</dt>
<dd>lea@verou.me</dd>

<dt>Location:</dt>
<dd>Earth</dd>
</dl>

The visual result we wanted was something like the simple styling shown in
Figure 5.3. The first step is usually to apply some basic CSS like the
following:

dd {
margin: 0;
font-weight: bold;

by
However, because <dt>s and <dd>s are block elements, we end up Name: Lea Verou Email:
with something that looks more like Figure 5.4, with both names and values lea@verou.me Location: Earth

on their own line. The next attempt usually involves trying different values
of the display property on <dt>s, <dd>s, or both, often even at random display: inline just breaks
as we slowly become more desperate. However, that way, we usually end everything even worse
up with something like Figure 5.5.

Before we start pulling our hair out, cursing at the CSS gods, or giving
up separation of concerns and modifying our markup, is there a way to keep

both our sanity and our (coding) morals?

The solution

Basically, what we need to do is add line breaks at the end of every <dd>.
If we didn't mind presentational markup, we could have done it with good
ol"
 elements, like so:

<!-- If you do this, kittens die -->
<dt>Name:</dt>
<dd>Lea Verou
</dd>

Then, we would apply display:inline; to both <dt>sand <dd>s
and we'd be done with it. Of course, not only is this a bad practice for
maintainability, but it also bloats our markup. If only we could use generated

Technically, @x@00A corresponds to
“Line Feed” characters, which is
what we get in JavaScript with
"\n". Thereis also the “Carriage Re-
turn” character ("\r" inJS, "\D" in
CSS), but that is not needed in
modern browsers.

content to add line breaks that work like
 elements, then our problem
would be solved! But we can't do that, right? ...Or can we?

There is actually a Unicode character that corresponds to line breaks:
Ox000A. In CSS, this would be written as "\@00A", or more simply "\A".
We could use it as the content of our : :after pseudo-element in order to
add it at the end of every <dd>, like so:

dd::after {
content: "\A";

This looks like it could work, but if we try it out, the results are disappointing:
nothing changed from Figure 5.5. However, this doesn’t mean we're not
on the right track; it just means we forgot something. \What we effectively
did with this CSS code is equivalent to adding line breaks in our HTML
markup, right before the closing </dd> tags. Remember what happens
with line breaks in HTML code? By default, they're collapsed along with
the rest of our whitespace. This is usually a great thing, otherwise we'd have
to format our entire HTML page as one line! However, sometimes we want
to retain whitespace and line breaks, such as in code blocks. Remember
what we usually do in such cases? We apply white-space: pre;. We
can do exactly the same here, and apply it only to the generated line break.

We only have one line break character, so we don't really care whether
whitespace will be preserved or not (because there is none), so any pre
value would work (pre, pre-line, pre-wrap). | would recommend
pre, for its wider browser support. Let's put it all together:

dt, dd { display: inline; }

dd {
margin: 9;
font-weight: bold;

dd::after {
content: "\A";

white-space: pre;

If you test this, you will see that it actually works and it renders exactly like
Figure 5.3! However, is it really flexible? Assume we want to add a second
email to the user our definition list was describing:

<dt>Email:</dt>
<dd>lea@verou.me</dd>
<dd>leaverou@mit.edu</dd>

Name: Lea Verou , . !

Our solution breaks with multiple
Email: lea@verou.me <dd>s
leaverou@mit.edu

Location: Earth

Now the result looks like Figure 5.6, which is really confusing. Because we
have a line break after every <dd>, every value is on a separate line, even
when there’s no need to wrap. It would be much better if the multiple values
were separated by commas, and on the same line (provided there is suffi-
cient space).

Ideally, we would want to target the last <dd> before a <dt> and only
add line breaks in that one, not in all <dd >s. However, this is still not possible
with the current state of CSS selectors, because they cannot look ahead to
elements after the subject in the DOM tree. We need to think of a different
way. One idea would be to try adding the line breaks before <dt>s instead
of after <dd>s:

dt::before {
content: '"\A';

white-space: pre;

However, this leads to a blank first line, as the selector applies to the first
<dt> too. To mitigate this, we could try using any of the following selectors
instead of dt:

dt:not(:first-child)
dt ~ dt
dd + dt

We are going to use the latter, as it also works when there are multiple
<dt>s for the same value, unlike the first two selectors which would break
in that case. We also need to separate the multiple <dd>s somehow, unless
we're fine with multiple values being space separated (which is perfectly
fine for some cases, but not others). Ideally, we want to be able to tell the
browser “add a comma after every <dd> that precedes another <dd>,” but
again, that's not possible with CSS selectors today. So, we will have to resort
to adding a comma before every <dd> that follows another <dd>. Here's
the CSS we end up with (you can see the result in Figure 5.7):

dd + dt::before {
content: "\A';

white-space: pre;

dd + dd::before {

content: ', °';

font-weight: normal;

Name: Lea Verou
Email: lea@verou.me, leaverou@mit.edu

Location: Earth

Keep in mind that if your markup includes (uncommented) whitespace be-
tween the multiple consecutive <dd>s, there will be a space before the
comma. There are many ways to fix this, none perfect. For example, neg-
ative margins:

dd + dd::before {
content: ', ';
margin-left: -.25em;

font-weight: normal;

This would work, but it's quite flimsy. If your content is displayed on a
different font, with different metrics, the space might be wider or nar-
rower than ©.25em, in which case the result could look a little off. How-
ever, with most fonts, the difference is negligible.

play.csssecrets.io/line-breaks

The final result

http://play.csssecrets.io/line-breaks

Zebra-striped
text lines

Prerequisites

CSS gradients, background-size, the “Striped backgrounds” secret
on page 40, the “Flexible background positioning” secret on page 32

The problem

When we first got the :nth-child()/:nth-of-type() pseudo-classes
a few years ago, one of the most common use cases was “zebra-striping”
tables (Figure 5.8). While this previously required server-side code, client-
side scripts, or tedious handcoding, it had now become as simple as these
lines of code:

tr:nth-child(even) {
background: rgba(0,0,0,.2);

ece [css-secrets

< =~ oo = o o #- O a
css-secrats
Favorites Name Date Modified Size Kind ~
22 Dropbox >
) » [figures Today, 17:23 — Folder
& AMyFiles |) iy ngme Nov 22, 2013, 02:67 - Folder
& iCloud Drive € chapter-animations.htmi Nov 12, 2014, 00:23 63KB HTMLtext
@ AirDrop & chapter-backgrounds.htm| Feb 1, 2015, 17:11 B85 KB HTML text
€ chapter-efiects.html Today, 16:23 55KB HTML text
[§) Documents € chapter-introduction.htm Yesterday, 17:22 B1KB HTMLtext
© Downloads € chapter-layouthtmi Jan 28, 2015, 12:06 55KB HTMLtext
5 Deskiop & chapter-shapes.htmi Feb 1, 2015, 16:17 BBKB HTML text
[chapter-typography.html Today, 18:00 60 KB HTML text
i) Pictures € chapter-uxhtml Today, 16:23 63KB HTML text
1} leaverou € copyright.htmi Nov 11, 2013, 04:51 161 bytes HTML text
P < coverntmi Nov 11,2013, 04:53 62bytes HTML text
& index-spec.html Jan 27, 2015, 21:06 Tdbytes HTML text
B Movies € preface html Nov 11,2013, 04:51 TObytes HTML text
= € testhtml Sep 29, 2014, 03:01 856bytes HTML text
© titlepage.ntmi Nov 11, 2018, 04:44 166 bytes HTML text
[Screenshots © toc.html Nov 11, 2013, 04:30 10bytes HTML text

1 of 24 selected, 125.67 GB available

However, we were still left powerless when it came to applying the
same effect to lines of text, instead of rows in a table. This is especially
useful for making snippets of code more readable. Many authors ended
up using JavaScript to wrap every line in its own <div> so they can follow
the same :nth-child() technique, often abstracting this ugliness away
in the syntax highlighters. Not only is this suboptimal for theoretical purity
reasons (JS should not be concerned with styling), but also because too
many DOM elements can slow down the page and it’s a fragile solu-
tion anyway (what happens when you increase the text size and one of
the “lines” wraps?). Is there a better way?

The solution

Instead of applying a darker background to elements that represent rows,
let's think about the problem in a different way. Why not apply a background
image to the whole element, and have the zebra striping baked in it?
This might sound like an terrible idea at first, but remember that we can
generate backgrounds directly in CSS, through CSS gradients, and size
them in ems, so that they automatically adapt to font-size changes.

Let's give this idea a spin to make the code in Figure 5.9 zebra striped.
First, we need to create horizontal stripes, in the way described in the
"Striped backgrounds” secret on page 40. The background-size

Tables with zebra-striped rows have
always been common both in Ul
design (such as the Mac OS X
Yosemite file listing shown here) as
well as print design, as the zebra
striping helps our eyes follow a long
line more easily

Many authors even ended up re-
questing an :nth-1ine() pseudo-
class from the CSS Working Group,
which was rejected for performance
reasons.

while (true) {
var d = new Date();
if (d.getDate()==1 &&
d.getMonth()==3) {
alert("TROLOLOL");

A snippet of code, without any zebra
striping, just a plain ol” solid color
background

while (true) {
var d = new Date();
if (d.getDate()==1 &&
d.getMonth()==3) {
alert("TROLOLOL");
b
}

Our first attempt at zebra-striping
our code snippet

while (true) {
var d = new Date();
if (d.getDate()==1 &&
d.getMonth()==3) {
alert("TROLOLOL");
¥
¥

The final result

needs to be twice the 1ine-height, as each stripe accounts for two
lines. The code for our first attempt would look like this:

padding: .5em;
line-height: 1.5;
background: beige;
background-image: linear-gradient(
rgba(0,0,0,.2) 50%, transparent 9);

background-size: auto 3em;

As Figure 5.10 demonstrates, the result is very close to what we
wanted. We can even try to change the font size, and the stripes shrink or
grow as necessary! However, there’s a bit of a serious issue: the lines are
misaligned, which kind of defeats the purpose. Why is that?

If you look more closely at Figure 5.10, you will notice that the first
stripe begins at the top of our container, as we would expect from a back-
ground image. However, our code doesn’t start there, as then it would
look ugly. As you can see, we have applied a . 5em padding to it, which is
exactly the offset our stripes have from where they should be.

One way to solve this would be to use background-position to
move the stripes . 5em to the bottom. However, if we decide to later adjust
the padding, we would also need to adjust the background position as well,
which is not very DRY. Can we make the background automatically fol-
low the padding length?

Let's remember background-origin from the "“Flexible back-
ground positioning” secret on page 32. This is exactly what we need: a
way to tell the browser to use the content box edge as the reference
for resolving background-position, instead of the default, which is
the padding box edge. Let’s add that to the mix as well:

padding: .5em;
line-height: 1.5;
background: beige;

background-size: auto 3em;

background-origin: content-box;
background-image: linear-gradient(rgba(0,0,0,.2) 50%,

transparent 9);

As you can see in Figure 5.11, this was exactly what we needed to
achieve the zebra-striped effect! Because we used semi-transparent colors
in the stripes, we can even adjust the background color, and the zebra strip-
ing will still work. Basically, it's so flexible that the only way to break it*
would be to change the line-height, without changing the
background-size accordingly.

m play.csssecrets.io/zebra-1lines

CSS Backgrounds & Borders RELATED
w3.org/TR/css-backgrounds SPECS

CSS Image Values
w3.0org/TR/css-images

* This assumes we're dealing with code snippets. In the general case, it can also break when there are
inline elements that force a larger line height, such as images or inline content with a larger font-
size.

Why did we not just use the
background shorthand for all our
background-related values? Because
then we would need a separate fall-
back declaration for older browsers,
so we would need to include beige
twice, making our code WET.

SECRET #22: ZEBRA-STRIPED TEXT LINES

http://play.csssecrets.io/zebra-lines
http://w3.org/TR/css-backgrounds
http://w3.org/TR/css-images

while (true) {
var d = new Date();
if (d.getDate()==1
d.getMonth()==3
alert("TROL

Code displayed with the default tab
width of eight characters

Adjusting
tab width

The problem

Code-heavy web pages, such as documentation or tutorials, come with their
own styling challenges. The <pre> and <code> elements that we use to
display code do come with some default styling by the user agent, which
looks like this:

pre, code {
font-family: monospace;

}

pre {
display: block;
margin: lem 9;
white-space: pre;

}

However, this is hardly sufficient to account for all the unique chal-
lenges of displaying code. One of the biggest issues is that while tabs are
ideal for indenting code, they are often avoided on the Web because

browsers display them with a width of eight characters (!). Take a look at
Figure 5.12 and see how bad such wide indents look and how wasteful
they are: our code didn’t even fit in its box!

The solution

Thankfully, in CSS Text Level 3, we got a new CSS property to control that:
tab-size. It accepts a number (of characters) or a length (which is rarely
useful). We would usually want to set it at 4 (meaning four characters wide),
or 2, which seems to be the latest trend in indent sizes:

pre {
tab-size: 4;

As you can verify in Figure 5.13, it now looks much easier to read. You could
even set tab-size to @ to completely disable tabs, but that's rarely (if ever)
a good idea, as you can see for yourself in Figure 5.14. If the property is
not supported, nothing breaks—we just get the default awfully wide tabs
that we've learned to live with all these years.

play.csssecrets.io/tab-size

= CSS Text
w3.0org/TR/css-text

RELATED

SPECS

Did you just wince at the mention of
tabs for indentation? The topic is out
of scope for this book, but you can
find my reasoning here
(Lea.verou.me/2012/01/why-
tabs-are-clearly-superior).

while (true) {
var d = new Date();
if (d.getDate()==1 &&
d.getMonth()==3) {
alert("TROLOLOL");
}
}

FIGURE 5.13

The same code as Figure 5.12,
displayed with a tab width of two
characters

while (true) {

var d = new Date();

if (d.getDate()==1 &&
d.getMonth()==3) {

alert("TROLOLOL");

¥

}

FIGURE 5.14

Code displayed with a tab size of 0,
making all tab-based indents
disappear—don’t do this!

SECRET #23: ADJUSTING TAB WIDTH

http://play.csssecrets.io/tab-size
http://w3.org/TR/css-text
http://lea.verou.me/2012/01/why-tabs-are-clearly-superior

f1
f1 fl
tfi

Common ligatures found in most

serif typefaces

Ligatures

The problem

Just like people, not all glyphs go naturally well together. For exam-
ple, take f and i in most serif fonts. The dot in the i often clashes with the
ascender of the f, making the pair look clumsy (first example in Figure 5.15).

To mitigate this, type designers often include extra glyphs in their
fonts, called ligatures. These are individually designed pairs and triplets
of glyphs, destined to be used by the typesetting program when their
equivalent characters are next to each other. For example, look at
Figure 5.15 for some common ligatures and how much better they look
than their equivalent glyphs put together.

There are also the so-called discretionary ligatures (Figure 5.16), which
are designed as a stylistic alternative, and not because there is an issue when
their equivalent pairs of characters are next to each other.

However, browsers never use discretionary ligatures by default (which
is the correct behavior) and often don't even utilize common ligatures
(which is a bug). In fact, until recently, the only way to explicitly use any
ligature was to use its equivalent Unicode character—for example, typing
ûo1; for the fi ligature. This method brings more problems than
it solves:

Obviously, it makes the markup difficult to read and even more difficult to
write (good luck figuring out what word deû@1 ;ne is!).

If the current font doesn’t include this ligature character, the result will re-
semble ransom notes (Figure 5.17).

Not every ligature has an equivalent, standardized, Unicode character. For
example, the ct ligature does not correspond to any Unicode character and
any fonts that include it need to place it in the Unicode PUA (Private Use
Area) block.

It can break accessibility of the text, including copy/paste, searches, and
voice. Many applications are smart enough to handle this well, but not all.
It even breaks search in some browsers.

Surely, at this time and age, there ought to be a better way, right?

The solution

In CSS Fonts Level 3 (w3.0rg/TR/css3-fonts), the good ol" font-
variant was converted to a shorthand, comprised of many new long-
hand properties. One of them is font-variant-ligatures, designed
specifically for the purpose of turning ligatures on and off. To turn on all
possible ligatures, you would have to use three identifiers:

font-variant-ligatures: common-ligatures
discretionary-ligatures

historical-ligatures;

The property is inherited. You might find that discretionary ligatures can
hinder readability and you might want to turn them off. In that case, you
might want to only turn on common ligatures:

font-variant-ligatures: common-ligatures;

In fact, the humble ampersand (&)
we all know and love started off as a
ligature of the letters E and t (“et” is
latin for “and”).

st §t
ct ¢t

Discretionary ligatures found in
many professionally designed serif
typefaces

pctlle

Using hardcoded ligatures can often
have awful results, when the used
font doesn’t have a glyph for our
ligature

http://w3.org/TR/css3-fonts

You can even explicitly turn the other two kinds off:

font-variant-ligatures: common-ligatures
no-discretionary-ligatures

no-historical-ligatures;

font-variant-ligatures also accepts the value none, which turns off
ligatures altogether. Don’t use none unless you absolutely know what
you're doing. Toreset font-variant-ligatures toitsinitial value, you
should use normal, not none.

CSS Fonts RELATED

w3.org/TR/css-fonts SPECS

CHAPTER 5: TYPOGRAPHY

http://play.csssecrets.io/ligatures
http://w3.org/TR/css-fonts

A few nice ampersands in fonts that

are readily available in most

computers; from left to right:
Baskerville, Goudy Old Style,
Garamond, Palatino (all italic)

Fancy
ampersands

Prerequisites

Basic font embedding through @font-face rules

The problem

& & &

You will find many hymns to the humble ampersand in typographic litera-
ture. No other character can instantly add the elegance a nicely designed
ampersand has the power to add. Entire websites have been devoted to
finding the font with the best looking ampersands. However, the font with
the nicest ampersand is not necessarily the one you want for the rest of your
text. After all, a really beautiful and elegant effect for headlines is the

contrast between a nice sans serif font and beautiful, intricate serif
ampersands.
Web designers realized this a while ago, but the techniques employed HTML & CSS
to achieve it are rather crude and tedious. They usually involve wrapping
every ampersand with a , through a script or manually, like so: HTML &'59 CSS

HTML & CSS Our “HTML & CSS"” headline, before
and after the ampersand treatment

Then, we apply the font styling we want to just the . amp class:

.amp {
font-family: Baskerville, "Goudy 0ld Style",

Garamond, Palatino, serif;

font-style: italic;

This works fine and you can see the before and after in Figure 5.19. How-
ever, the technique to achieve it is rather messy and sometimes even down-
right impossible, when we cannot easily modify the HTML markup (e.g.,
when using a CMS). Can't we just tell CSS to style certain characters
differently?

The solution

It turns out that we can, indeed, style certain characters (or even ranges of
characters) with a different font, but the way to do it is not as straightfor-
ward as you might have hoped.

We usually specify multiple fonts (font stacks) in font-family dec-
larations so that in case our top preference is not available, the browser can
fall back to other fonts that would also fit our design. However, many
authors forget that this works on a per-character basis as well. If a font
is available, but only contains a few characters, it will be used for those
characters and the browser will fall back to the other fonts for the rest. This

HTML & CSS

Including local fonts through
@font-face results in them being
applied to the whole text by default

applies to both local and embedded fonts included through @font-
face rules.

It follows that if we have a font with only one character (guess which
onel), it will only be used for that one character, and all others will get the
second, third, etc. font from our font stack. So, we have an easy way to only
style ampersands: create a web font with just the ampersand we want, in-
clude it through @font-face, then use it first in your font stack:

@font-face {
font-family: Ampersand;

src: url("fonts/ampersand.woff");

h1 {

font-family: Ampersand, Helvetica, sans-serif;

While this is very flexible, it's suboptimal if all we wanted was to style
ampersands with one of the built-in fonts. Not only is it a hassle to create
a fontfile, it also adds an extra HTTP request, not to mention the potential
legal issues, if the font you were going for forbids subsetting. Is there a
way to use local fonts for this?

You might know that the src descriptor in @font-face rules also
accepts a local() function, for specifying local font names. Therefore,
instead of a separate web font, you could instead specify a font stack of
local fonts:

@font-face {
font-family: Ampersand;
src: local('Baskerville'),
local('Goudy 0ld Style'),
local('Garamond'),
local('Palatino');

However, if you try to apply the Ampersand font now, you will notice that
our serif font was applied to the entire text (Figure 5.20), as these fonts
include all characters. This doesn’t mean we're going the wrong way; it just
means we are missing a descriptor to declare that we are only interested
in the ampersand glyph from these local fonts. Such a descriptor exists, and
its name is unicode-range.

The unicode-range descriptor only works inside @font-face rules
(hence the term descriptor; it is not a CSS property) and limits the characters
used to a subset. It works with both local and remote fonts. Some browsers
are even smart enough to not download remote fonts if those characters
are not used in the page!

Unfortunately, unicode-range is as crypticin its syntax as it is useful
in its application. It works with Unicode codepoints, not literal characters.
Therefore, before using it, you need to find the hexadecimal codepoint of
the character(s) you want to specify. There are numerous online sources for
that, or you can just use the following snippet of JS in the console:

"&".charCodeAt(0).toString(16); // returns 26

Now that you have the hex codepoint(s), you can prepend them with U+
and you've already specified a single character! Here's how the declaration
would look for our ampersand use case:

unicode-range: U+26;

If you wanted to specify a range of characters, you would still need one U+,
like so: U+400-4FF. In fact, for that kind of range, you could have used
wildcards and specified it as U+4?? instead. Multiple characters or
ranges are also allowed, separated by commas, such as U+26, U+4??,
U+2665-2670. In this case, however, a single character is all we need. Our
code now looks like this:

String#charCodeAt () re-

turns incorrect results for Uni-
code characters beyond the BMP
(Basic Multilingual Plane). However,
99.9% of the characters you will
need to look up will be in it. If the
result you get is in the D800-DFFF
range, it means you have an “astral”
character and you're better off using
a proper online tool to figure out
what its Unicode codepoint is. The
ES6 method
String#codePointAt () will
solve this issue.

HTML & CSS

Applying a different font to our
ampersands, with the help of font
stacks and the unicode-range
descriptor

To find a font's PostScript Name in
Mac OS X, select it in the FontBook
application and press l.

@font-face {
font-family: Ampersand;
src: local('Baskerville'),
local('Goudy 0ld Style'),
local('Palatino'),
local('Book Antiqua');

unicode-range: U+26;

h1 {

font-family: Ampersand, Helvetica, sans-serif;

If you try it out (Figure 5.21), you will see that we did, in fact, apply a
different font to our ampersands! However, the result is still not exactly what
we want. The ampersand in Figure 5.19 was from the italic variant of the
Baskerville font, as in general, italic serif fonts tend to have much nicer
ampersands. We're not styling the ampersands directly, so how can we
italicize them?

Our first thought might be to use the font-style descriptor in the
@font-face rule. However, this does not have the effect we want at all.
It merely tells the browser to use these fonts in italic text. Therefore, it will
make our Ampersand font be completely ignored, unless the whole headline
is italic (in which case, we will indeed get the nice italic ampersand).

Unfortunately, the only solution here is a bit of a hacky one: instead of
using the font family name, we need to use the PostScript Name of the
individual font style/weight we want. So, to get the italic versions of the
fonts we used, the final code would look like this

@font-face {
font-family: Ampersand;
src: local('Baskerville-Italic'),
local('GoudyOldStyleT-Italic"'),
local('Palatino-Italic'),

local('BookAntiqua-Italic');
unicode-range: U+26;

hl {

font-family: Ampersand, Helvetica, sans-serif;

And this finally works great to give us the ampersands we wanted, just like
in Figure 5.19. Unfortunately, if we need to customize their styling even
more (e.g., to increase their font size, reduce their opacity, or anything else),
we would need to go the HTML element route. However, if we only want a
different font and font style/weight, this trick works wonders. You can use
the same general idea to also style numbers with a different font, symbols,
punctuation—the possibilities are endless!

play.csssecrets.io/ampersands

Hat tip to Drew MclLellan (allinthehead. com) for coming up with the
first version of this effect (24ways.orqg/2011/creating-custom-

font-stacks-with-unicode-range).

HAT TIP

® CSS Fonts RELATED

w3.org/TR/css-fonts SPECS

SECRET #25: FANCY AMPERSANDS

http://play.csssecrets.io/ampersands
http://allinthehead.com
http://24ways.org/2011/creating-custom-font-stacks-with-unicode-range
http://24ways.org/2011/creating-custom-font-stacks-with-unicode-range
http://w3.org/TR/css-fonts

Custom
underlines

Prerequisites

CSS gradients, background-size, text-shadow, the “Striped
backgrounds” secret on page 40

The problem

Designers are a picky bunch. We always strive to customize things and care-
fully craft them to closely match our vision and make our designs more
intuitive and easier to use. The default is rarely good enough.

Text underlines are one of those things we'd love to customize. Al-
though the default is useful, it's usually too intrusive, not to mention it's
rendered differently in every browser. Although text underlines have
been with us since the dawn of the Web, we never really got more ways to
customize them. Even after CSS came along, it merely gave us an on/off
switch for them:

text-decoration: underline;

As usual, when we are not given the tools we need, we hack them
together. We had no way to customize text underlines, so we started faking
them with borders, probably one of the first CSS tricks we ever came
up with:

alhref] {
border-bottom: 1px solid gray;

text-decoration: none;

While emulating a text underline with border-bottom gave us control
over color, thickness, and style, it wasn't perfect. As you can see in
Figure 5.22, these “underlines” have a very large distance from the
text, being even underneath the descenders of the glyphs! We could at-
tempt to fix the issue by giving the links adisplay of inline-block and
a smaller 1ine-height, like so:

display: inline-block;
border-bottom: 1px solid gray;
line-height: .9;

This works to bring the underline closer to the text, but it prevents proper
text wrapping, as you can see in Figure 5.23.

These days, we might try to use an inset box-shadow to emulate an
underline:

box-shadow: © -1px gray inset;

“The only way to get
rid of a temptation is

to yield to it.”

Fake underlines created with
border-bottom

“The only way to

get r1d of a tempta-
tion

is to yield to 1t.”

Trying to fix the issue with border-
based “underlines” works, until the
text needs to wrap—then hell breaks
loose

How much closer? As much as the However, this has the same issues as border-bottom, except that it's

line thickness, as the only difference . .
of this method is that it drawn in- drawn slightly closer to the text. Is there any way to get proper, flexible,

side the box. custom underlines?

The solution

Often the best solutions come from the most unexpected places. In this case,
it comes in the form of background-image and related properties. You
might think this is insane, but bear with me for a bit. Backgrounds follow
wrapped text perfectly, and with the new background-related properties we
got in CSS Backgrounds & Borders Level 3 such as background-
size, we have very fine-grained control over them. We don’t even need a
separate HTTP request for them, as we can generate the image on the fly,
through CSS gradients:

background: linear-gradient(gray, gray) no-repeat;
background-size: 100% 1px;

background-position: @ 1.15em;

You can see how elegant and unobtrusive the result looks in
Figure 5.24. However, we can still make one small improvement. Notice

m Text underlines in the future

In the future, we will not have to resort to such hacks for customizing our underlines. There are several

properties planned in CSS Text Decoration Level 3 (w3. org/TR/css-text-decor-3), specifically for this,

such as:

text-decoration-color to customize the color of underlines and other decorations
text-decoration-style to customize the style of decorations (e.g., solid, dashed, wavy, etc.)
text-decoration-skip to skip spaces, descenders, and other objects

text-underline-position to fine-tune the exact placement of the underline line

However, these properties currently have very little browser support.

196 CHAPTER 5: TYPOGRAPHY

http://w3.org/TR/css-text-decor-3

how our underlines cross the descenders of letters like p and y. Wouldn't
it look so much nicer if there was some breathing space around them? If
our background is a solid color, we can fake that with two solid text-
shadows in the same color as our background (Figure 5.25):

background: linear-gradient(gray, gray) no-repeat;
background-size: 100% 1px;

background-position: @ 1.15em;

text-shadow: .05em @ white, -.05em @ white;

The brilliant thing about using gradients for this is that they are ex-
tremely flexible. For example, to create a dashed underline, you could do
something like (Figure 5.26):

background: linear-gradient(9edeg,

gray 66%, transparent @) repeat-x;
background-size: .2em 2px;
background-position: © lem;

Then you could control the dash and gap proportion via the color stop po-
sitions and their size via background-size.

play.csssecrets.io/underlines

As an exercise, you could try to create wavy red underlines, such as the
ones used for highlighting spelling mistakes. (Hint: You will need two
gradients.) You will find the solution in the following Play! example, but try
to avoid peeking at the solution without giving it a shot—it's more fun
that way!

play.csssecrets.io/wavy-underlines

“The only way to get
rid of a temptation is

to yield to it.”

Our carefully crafted custom
underlines, through CSS gradients

“The only way to get
rid of a temptation is

to yield to it.”

Our custom underlines, treated with
text-shadow to not cross our
descenders

“The only way to get
rid of a temptation is

to yield to it.”

Fully customized dashed underlines,
with CSS gradients

http://play.csssecrets.io/underlines
http://play.csssecrets.io/wavy-underlines

HAT TIP

CHAPTER 5: TYPOGRAPHY

Hat tip to Marcin Wichary (aresluna.org) for coming up with the first
version of this effect (medium.com/designing-medium/crafting-
Link-underlines-on-medium-7c03a92745f9).

CSS Backgrounds & Borders RELATED
w3.org/TR/css-backgrounds SPECS

CSS Image Values
w3.0org/TR/css-images

CSS Text Decoration

w3.org/TR/css-text-decor

http://www.aresluna.org
http://medium.com/designing-medium/crafting-link-underlines-on-medium-7c03a9274f9
http://medium.com/designing-medium/crafting-link-underlines-on-medium-7c03a9274f9
http://w3.org/TR/css-backgrounds
http://w3.org/TR/css-images
http://w3.org/TR/css-text-decor

Realistic
text effects

Prerequisites

Basic text-shadow

The problem

Sometimes, certain text treatments become very widespread on the Web.
For example, letterpress text, blurring text on mouseover, extruded
(pseudo-3D) text, and so on. These usually depend on a combination of
carefully crafted text shadows, and some knowledge of how our eyes work,
as many of these are based on optical illusions to some degree. They are
easy to make, once you know the tricks involved, but not always as easy to
reverse engineer through developer tools.

This secret is devoted to creating such effects, so that you never again
find yourself wondering, “How on Earth does this effect work?”

o Tweet 386

contrast 1]

Background: Text cok

hsl(21e, 13%, 4%)| < Jhsl(21e, 13%, 75%) |
T::::b:;‘;l:vrgim(ahm %round colori

As you type, the contrast ratio indicated will update

Hover over the circle to get more detailed information.
When semi-transparent colors are involved as
backgrounds, the contrast ratio will have an error

margin, to account for the different colors they may be
ver.

Letterpress

The letterpress effect is one of the most popular text treatments on skeuo-
morphic design websites. While skeuomorphic design is not as trendy as it
used to be, it will always have its devoted fans.

This effect works best with a medium lightness background with darker
text, but it can also be used with lighter text on darker backgrounds, as long
as the text is not black and the background is not completely white or black.

It's based on the same premise that has been used since the very first
GUIs to create the impression of pressed or extruded buttons: a lighter
shadow at the bottom (or a darker one at the top) creates the illusion that
an object is “carved in” the main surface. Similarly, a darker shadow at
the bottom (or a lighter one at the top), creates the illusion that an object
is extruded from the main surface. The reason this works is that we usu-
ally assume that the light source is above us, so an extruded object would
create a shadow underneath it, and an embossed object would be lit at the
bottom.

Let's use the colors in Figure 5.28 as a starting point. The text color is
@hsl(210, 13%, 30%) and @hsl(210, 13%, 60%) is the back-
ground color:

background: hsl(210, 13%, 60%);
color: hsl(210, 13%, 30%);

FIGURE 5.217

It's easy to forgo accessibility when
using such effects, but never forget
to test your contrast ratios (a useful
tool for this is leaverou.github.io/
contrast-ratio, as it accepts any
supported CSS color format)

FIGURE 5.28

The letterpress effect on dark text on

a lighter background (top: before,
bottom: after)

SECRET #27: REALISTIC TEXT EFFECTS

http://leaverou.github.io/contrast-ratio
http://leaverou.github.io/contrast-ratio

When we have darker text on lighter background (like in our example here),
a lighter shadow at the bottom usually works best. How light depends
on the exact colors you have and how subtle you want the effect to be, so
you need to experiment a bit with the alpha parameter until it looks good.
In this case, we settled on 80% white, but your mileage may vary:

background: hsl(210, 13%, 60%);
color: hsl(210, 13%, 30%);
text-shadow: @ 1px 1px hsla(0,0%,100%, .8);

Letterpress gone wrong: applying You can see the result in Figure 5.28. In this case, we used pixels instead
h ious eff hat i . . _
the previous eflect on text that is of ems for the effect, but if you have text that could be any size, from tiny
lighter than its background

to very large, ems might suit your case better:

text-shadow: © .03em .03em hsla(@,0%,100%, .8);

“The only way to get What happens when we have lighter text on a darker background? Our

rid of a temptation is shadow above would yield awful results if the colors were reversed
0 vield to it.” (Figure 5.29), making our text blurry. Does this mean we cannot apply a
: letterpress effect in this case? No, it just means we need to adjust our ap-
proach. In these cases, a darker shadow on the top works best, as you can

verify in Figure 5.30. The CSS code would look like this:

background: hsl(210, 13%, 40%);
color: hsl(21e, 13%, 75%);
text-shadow: @ -1px 1px black;

Letterpress effect when using lighter

text on darker background (top:
before, bottom: after)

play.csssecrets.io/letterpress

http://play.csssecrets.io/letterpress

Stroked text

In the future, outlined/stroked text will be quite easy, as we will be able to
just use the spread parameter of text-shadows to make them larger so
that they look like a stroke, akin to how we use box-shadow spread to
emulate outlines. Unfortunately, browser support for this is currently very
limited, so we have to resort to other ways to emulate it, with more or less
satisfying results.

The most widespread way is to layer multiple text-shadows with
slightly different offsets, like so (Figure 5.32):

background: deeppink;

color: white;

text-shadow: 1px 1px black, -1px -1px black,
1px -1px black, -1px 1px black;

Alternatively, you could layer multiple slightly blurred shadows, with no
offsets:

text-shadow: © @ 1px black, © © 1px black,
@ @ 1px black, © © 1px black,
0 @ 1px black, © @ 1px black;

However, this doesn’t always produce great results and is more expen-
sive performance-wise, due to blurring.

Unfortunately, the thicker the stroke, the worse the result both of these
ideas produce. For example, see how bad a 3px outline looks (Figure 5.33):

background: deeppink;

color: white;

text-shadow: 3px 3px black, -3px -3px black,
3px -3px black, -3px 3px black;

CSS

True stroked text, via text-shadow
spread

CSS

Fake 1px outline by layering multiple
text-shadows

CSS

An (awful) 3px outline, created with
multiple text-shadows with
slightly different offsets

There is always the solution of using SVG, but it adds a lot of cruft to our
markup. For example, assume we wanted to use it in a first-level heading.
The HTML would look like this:

<hl><svg width="2em" height="1.2em">
CSS <use xlink:href="#css" />
<text id="css" y="1lem">CSS</text>
</svg></hl>

Using SVG for proper thick outlines Then in our CSS, we'd write something like:

hl {
font: 500%/1 Rockwell, serif;
background: deeppink;

color: white;

¥
hl text {

fill: currentColor;
by

hl svg { overflow: visible }

hl use {
stroke: black;
stroke-width: 6;

stroke-linejoin: round;

Certainly not ideal, but it produces the best visual results (Figure 5.34), and
even in ancient browsers where SVG is not supported, the text is still read-

able, styled, and crawlable.

play.csssecrets.io/stroked-text

http://play.csssecrets.io/stroked-text

Glowing text

Glowing text is a rather common effect for hovering over links, or headlines
in certain types of websites. It's one of the easiest effects to create. In its
simplest form you just use a couple layered text-shadows, with no offsets

and the same color as the text (Figure 5.35):

Glowing text with only two simple

background: #203;
color: #ffc;
text-shadow: 0 @ .1lem, @ 0 .3em;

text-shadows

If used as a hover effect, you should also include a transition, like so:

a {
background: #203;

color: white;

transition: 1s;
} Pseudo-blurred text, by hiding the

text and showing only its shadows
a:hover {

text-shadow: © @ .lem, © @ .3em;

You can create an even more interesting effect by hiding the text itself
on :hover, effectively making it appear like it's slowly blurring (see
Figure 5.36):

a {
background: #203;
color: white;
transition: 1s;

}

a:hover {

color: transparent;
text-shadow: © @ .lem white, © © .3em white;

However, keep in mind that depending on text-shadow for text to appear
does not degrade gracefully: if text-shadow is not supported, no text will
show up. So, you need to be careful to only apply this in environments that
support text-shadow. Alternatively, you can blur the text through CSS
filters:

a {
background: #203;
color: white;
transition: 1s;

}

a:hover {
filter: blur(.lem);

It may have worse browser support this way, but at least nothing will break
when it's not supported.

play.csssecrets.io/glow

Extruded text

Another popular (and perhaps overused) effect in skeuomorphically de-
signed websites is extruded (pseudo-3D) text (Figure 5.37). The main idea
is having lots of stacked shadows, with no blur and only 1px difference,
getting progressively darker, with a highly blurred dark shadow at the end,
emulating the shade the whole thing would create.

Let's use the text on Figure 5.38 as a starting point, which is styled
through this simple CSS code:

http://play.csssecrets.io/glow

background: #58a;
color: white;

Now let's add a few progressively darker text -shadows:

background: #58a;

color: white;

text-shadow: @ 1px hsl(0,0%,85%),
0 2px hsl(0,0%,80%), FIGURE 5.37

0 3px hsl (0-‘ 0%, 75%)) Extruded text through multiple CSS
0 4px hsl(0,0%,70%), text-shadows

0@ 5px hsl(0,0%,65%);

As you can see in Figure 5.39, we're getting there, but the result still looks
quite unrealistic. Believe it or not, all we need to go from this to the finished

result in Figure 5.37 is one more shadow at the bottom:
FIGURE 5.38

Our starting point

background: #58a;
color: white;
text-shadow: @ 1px hsl(0,0%,85%),

0 2px hsl(0,0%,80%),

0 3px hsl(0,0%,75%),

@ 4px hsl(e,0%,70%), FIGURE 5.39

@ 5px hsl(0,0%,65%), Almost there, but still looks
@ 5px 10px black; unrealistic

play.csssecrets.io/extruded

This kind of repetitive, unwieldy code is a prime candidate for a preprocessor
mixin. Here is one way we could do this in SCSS:

@mixin text-3d($color: white, $depth: 5) {

http://play.csssecrets.io/extruded

$shadows: ();

$shadow-color: $color;

$i from 1 through $depth {
$shadow-color: darken($shadow-color, 10%);
$shadows: append($shadows,

0 ($i * 1px) $shadow-color, comma);

color: $color;
text-shadow: append($shadows,
0 ($depth * 1px) 1@px black, comma);

hl { text-3d(#eee, 4); }

There are many variations of this effect. For example, by having all
shadows be [black and removing the last blurry shadow, you can emu-
late a typography effect commonly found in old/retro signage (Figure 5.40):

RETRO color: white;

background: hsl(0,50%,45%);
f%pdgqupf%p text-shadow: 1px 1px black, 2px 2px black,
3px 3px black, 4px 4px black,

S5px 5px black, 6px 6px black,

Retro-style typography

7px 7px black, 8px 8px black;

This one is even easier to convert to a mixin, or—more appropriately for this
case—a function:

text-retro($color: black, $depth: 8) {
$shadows: (1px 1px $color,);

@for $i from 2 through $depth {
$shadows: append($shadows,
($i*1px) ($i*1px) $color, comma);

@return $shadows;

}
hi {
color: white;
background: hs1(0,50%,45%);
text-shadow: text-retro();
}

CSS Text Decoration RELATED
w3.org/TR/css-text-decor SPECS

SECRET #27: REALISTIC TEXT EFFECTS

http://w3.org/TR/css-text-decor

Circular
text

Prerequisites

ENIVE]

The problem

Although it's not a particularly common effect, sometimes the need arises
to have a short line of text follow a circular path. When that time comes,
CSS leaves us in the cold. There is no CSS property or feature to achieve this
and the only CSS ways we can think of are so hacky they make us feel dirty
just for thinking about them. Is there any way to achieve such a type treat-
ment without resorting to images and without losing our sanity and
self-respect?

The solution

There are a few scripts out there to accomplish this. They rely on wrapping
each letter in a separate element and rotating them separately to

| A Brrrisa Rusy/RAILS DEVELOPER
| WITH A PENCHANT FOR TWEED, FINE
| COFFEE, AND HOMEBREWING.

! When not working for clients, I help organise fun

- events around the world that teach people to

; program flying robots. I also occasionally speak at

| . international conferences on the intersection of

! programming and robotics. In the past, I've
worked as a Systems Developer at The University

| | of Bath for five years. More recently, I was the

! Lead Developer at Artolo,

form a circle. Not only is this extremely hacky, it also adds a lot of bloat and
dozens of DOM elements to our page for no good reason.

Although there is currently no better way to accomplish this with
pure CSS, we can easily do it with a little inline SVG. SVG natively supports
text on any path, and circles are just a special case of a path. Let’s give it
a shot!

The basic way text on a path works in SVG is by having a <textPath>
element containing our text, inside a <text> element. The <textPath>
element also references a <path> element defining our path by its id. Text
within inline SVG also inherits most of our font styling (except line-
height, as that's manual in SVG), so we don't have to worry about that,
like we do with an external SVG image.

Let's assume we want to style the phrase “circular reasoning works
because” as circular text, occupying the entire circumference of a circle, like
it looks in Figure 5.42. We start by adding an inline SVG inside our HTML
element, and defining a path for our circle:

<div class="circular">
<svg viewBox="0 © 100 100">
<path d="M 0,50 a 50,50 0 1,1 0,1 z"
id="circle" />
</svg>
</div>

Circular text used on
juliancheal.co.uk for the
buttons (see what [did there?) on
the left side; note that circular text
here was the only way to avoid
breaking the button metaphor, as
the center of the button shape is
taken by the holes and thread

Unfortunately, <textPath> only
works with <path> elements, which
is why we cannot use the much more
readable <circle> element for our
circle.

O
Ny %.
(&) >
% s

The final result we want to

accomplish

http://juliancheal.co.uk

Why is the SVG path syntax so
cryptic? Back when it was designed,
it was believed that nobody would
author SVG by hand, so the SVG WG
went for the most compact syntax
possible, to reduce filesize.

Our path is currently a circle, with the
default i black fill

Note that we defined its units via viewBox and not the width and height
attributes. This enables us to set the coordinate system and aspect ratio of
the graphic, without it having an intrinsic size. Not only is this more compact,
it also saves us a few lines of CSS, as we no longer need to apply a width
and height of 100% to the <svg> element—it just naturally adjusts to the
size of its container.

If you do not understand the path syntax, do not worry. Hardly any-
one does, and even those initiated into the secret art of SVG path syntax
tend to forget about it in a matter of minutes. If you are curious, the three
commands this exceedingly cryptic syntax includes are:

M 0,50: Move to the point (0,50)

a © 1,1 0,1: Draw an arc from the point you are at currently, to
a point that is 0 units to the right and 1 unit to the bottom of your current
position. The arc should have a radius of 50, both horizontally and vertically.
and
, hot the one
on the left.

z: Close the path via a straight line segment.

Currently, our path is just a black circle (Figure 5.43). We add the text via
the <text> and <textPath> elements and link it to our circle via the
xlink:href property, like so:

<div class="circular">
<svg viewBox="0 © 100 100">
<path d="M 0,50 a 50,50 © 1,1 0,1 z"
id="circle" />
<text><textPath xlink:href="#circle">
circular reasoning works because
</textPath></text>
</svg>
</div>

As you can see in Figure 5.44, although we still have a lot of work to
do to make this presentable and readable, we've already achieved some-
thing that we could not in a million years have done with CSS!

The next step would be to remove the black fill from our circle
path. We don’t want the circle to be visible in any way; we only want it to
act as a guide for our text. There are many ways to do that, such as nesting
itinto a <defs> element (which is designed for this very purpose). However,
here we want to minimize the amount of SVG markup we need for this
effect, so we are going to apply a fill: none via CSS:

.circular path { fill: none; }

Now that the black circle is gone (Figure 5.45), we can study the other
problems more carefully. The next biggest issue is that most of our text is
outside the SVG element, and clipped by it. To correct this, we need to
make our containing element smaller, and apply overflow: visible to
the SVG element, so that it doesn’t clip any content outside its viewport:

.circular {
width: 30em;
height: 30em;

.circular svg {
display: block;

overflow: visible;

You can see the result in Figure 5.46. Note that we are almost there, but
some text is still clipped. The reason is that the SVG element affects flow
only based on its dimensions, not its overflow. Therefore, the fact that there
is text overflowing outside the box the <svg> element creates does not
push the SVG element down. We need to do that manually, via a margin:

Although there is a lot left to do, we

have already achieved something
that CSS simply cannot do

Coliid - /
o°\ %o

2

;’ ¢
{

¢ S
&, -4&0

After making our path invisible, the
other issues become easier to see

@) q .circular {

v K width: 3@em;

L ¢ height: 30em;

N < margin: 3em auto 0;
% o)

. _ad)

.circular svg {

o\'O‘) vq's\o display: block;
9 2‘ overflow: visible;
) = }
) «Q
D s
9 That's it! Our example now looks exactly like Figure 5.42, and the text is
() (o) p y g
OQq s‘A‘ perfectly accessible. If we only have one instance of circular text (e.g., a

website logo), then we are done. However, if we have more than one in-
stance of this type treatment, we don’t want to have to repeat this SVG
Top: Applying a width and height to markup every time. To avoid that, we can write a short script that gener-

our container element ates the necessary SVG elements automatically, from markup like this:
Bottom: Adding overflow:

visible to the mix
<div class="circular">
circular reasoning works because

</div>

The code would go through all elements with a class of “circular”, re-
move their text and store it in a variable, and add the necessary SVG ele-

ments to it:

$$('.circular').forEach(function(el) {
var NS = "http://www.w3.0rg/2000/svg";
var x1inkNS = "http://www.w3.0rg/1999/x1link";
var svg = document.createElementNS(NS, "svg");
var circle = document.createElementNS(NS, “"path");
var text = document.createElementNS(NS, "text");
var textPath = document.createElementNS(NS, "textPath");

svg.setAttribute("viewBox", "0 0 100 100");

circle.setAttribute("d", "M0,50 a50,50 0 1,1 0,1z");
circle.setAttribute("id", "circle");

textPath.textContent = el.textContent;
textPath.setAttributeNS(x1inkNS, “xlink:href", "#circle");

text.appendChild(textPath);
svg.appendChild(circle);
svg.appendChild(text);
el.textContent = '';

el.appendChild(svg);
1

play.csssecrets.io/circular-text

® Scalable Vector Graphics (SVG) RELATED

w3.org/TR/SVG SPECS

SECRET #28: CIRCULAR TEXT

http://play.csssecrets.io/circular-text
http://w3.org/TR/SVG

User
Experience

Picking the
right cursor

The problem

The purpose of a mouse pointer is not just to display where the cursor is on
the screen, but also to communicate which actions are possible to the user.
This common UX practice in desktop applications often gets forgotten in
web apps.

Authors are not the only ones to blame for this. Back in the days of CSS
2.1, we didn't really have access to many built-in cursors. We mainly used
the cursor property to indicate that something is clickable, with a
pointer cursor, or sometimes to indicate tooltips with a help cursor. Some
also utilized a the wait or progress cursors instead of (or alongside) a
loader. But that was about it. However, although in CSS User Interface
Level 3 (w3.0rg/TR/css3-ui/#cursor)we got a boatload of new built-
in cursors to utilize, most authors comfortably stayed in their old cursor
habits. Like many UX improvements, you don't really realize there is a prob-
lem, until you reach the solution. Let's advance to that then!

http://w3.org/TR/css3-ui/#cursor
http://w3.org/TR/css3-ui/#cursor

A -+ ? &+

default crosshair help move

% o I N

pointer progress text wait
N 72 S T
e-resize ne-resize nw-resize n-resize
~ v d <
se-resize sw-resize s-resize w-resize

The solution

You can see the full list of new built-in cursors in Figure 6.2 and read about
their purpose in the specification, but as you can imagine, not all of them
are useful for most web apps. For example, there’s even a cell cursor,
which “indicates that a cell or set of cells may be selected.” As you can
imagine, there aren’t many use cases for that beyond spreadsheets and ed-
itable grids.

This secret is not aiming to be an exhaustive reference of the potential
use cases of all these new cursors. However, a few of them stand out, as
they can instantly improve the usability of a large number of web apps, with
very little code.

The set of built-in cursors in CSS 2.1
was rather limited (cursors shown as
they're displayed in OS X)

The new built-in cursors we got in
CSS User Interface Level 3
(w3.0rg/TR/css3-ui/#cursor)
(cursors shown as they're displayed

. none context-menu cell vertical-text
in OS X)
h r r
ﬁ
©
alias copy no-drop not-allowed
o ! "4 gV
ew-resize ns-resize nesw-resize nwse-resize
col-resize row-resize all-scroll zoom-in
zoom-out
Indicating disabled state
Arguably, the most widely applicable addition is the not-allowed cursor
B UttOQ (Figure 6.3). It's incredibly useful to hint that interaction with a certain con-

@ trol is not possible for whatever reason—usually because said control is dis-
abled. Especially these days, where most forms are extremely stylized, it can
often be difficult to tell whether a form control is enabled or not, and this

Using a not-allowed cursor to
hint that a control is disabled

L=

-

is @ welcome aid. You could use it in a quite generic way, like so:

http://w3.org/TR/css3-ui/#cursor

:disabled, [disabled], [aria-disabled="true"] {

cursor: not-allowed;

play.csssecrets.io/disabled

Hiding the cursor

Hiding the cursor sounds like a usability nightmare, doesn’t it? Why on Earth
would somebody want to do that and why would web standards make it
easier for them? Before you get angry at all these people that clearly have
some unresolved issues against usability, remember all those times when
you used one of those awful public touchscreens (e.g., those used for in-
formation booths or in-flight entertainment) and the developers forgot to
hide the mouse cursor, so there was one lingering on the screen in weird
places. Or those times when you had to move your mouse to the right of
the screen while watching a video, because your cursor was in the way.

Clearly, there are multiple use cases where hiding the cursor can ac-
tually improve usability. This is why one of the new cursor keywords is
none. Hiding the cursor was possible in CSS 2.1, but it involved using a
transparent 1x1 GIF, like so:

video {

cursor: url(transparent.gif);

These days, we don't need this, as we can just use cursor: none. How-
ever, you might still want to provide a fallback, for browsers that haven't
caught up with Level 3 cursors yet. We can easily do that with the cascade:

cursor: url('transparent.gif');

cursor: none;

If you hide the cursor over vid-

eos, make sure you don't acci-
dentally also hide it over playback
controls as well, otherwise you will
be causing more harm than good.

http://play.csssecrets.io/disabled

CSS Basic User Interface RELATED

w3.org/TR/css3-ui SPECS

CHAPTER 6: USER EXPERIENCE

http://w3.org/TR/css3-ui

See Fitts’ Law in action,

via the interactive visuali-
zation at simonwallner.at/ext/
fitts.

Extending the
clickable area

The problem

If you are interested in user experience, you have likely heard of Fitts’ Law.
First proposed by American psychologist Paul Fitts in as early as 1954, Fitts'’
law is the idea that the time required to rapidly move to a target area
is a logarithmic function of the ratio between the distance to the
target and the width of the target. Its most commonly used mathemat-
ical formulation is expressed as T = a + b log, (1 + %) where T is the time
taken, D is the distance to the center of the target, W is the width of the
target, and a and b are constants.

Although graphical user interfaces did not exist at the time, Fitts’ Law
applies perfectly to pointing devices and has now become the most widely
known HCI (Human-Computer Interaction) principle. This may sound sur-
prising at first, but keep in mind that Fitts’ Law has more to do with human
motor control than with specific hardware.

An obvious corollary is that the bigger the target, the easier it is to
reach. Therefore, it often increases usability to extend the clickable
area (hit area) around smaller controls that might otherwise be difficult to
reach, if enlarging them is not an option. With the increasing popularity of
touch screens, this has become even more important. Nobody wants to

http://simonwallner.at/ext/fitts
http://simonwallner.at/ext/fitts

tap a dozen times trying to get that pesky little button and yet, this
is still an everyday occurence.

Other times, we want an element to slide in when we hover over a side
of the window—for example, an auto-hiding header that slides from the
top when the mouse is near, which also involves increasing its hit area (to-
ward one direction only). Can we do this with plain CSS?

The solution

Let’s assume we have a simple button like the one shown on Figure 6.4 and
we want to increase its hit area by 10px in all four directions. We have
already applied some simple styling to it, as well as cursor: pointer,
which both provides an affordance* for mouse interaction, but also helps
us test where the hit area actually is.

The easiest way to extend our hit area is a transparent solid border, as
mouse interaction on borders triggers these mouse events on the element,
unlike outlines and shadows. For example, extending an element’s hit area
by 10px toward all directions is as simple as this:

border: 10px solid transparent;

However, as you can see in Figure 6.5, this is no good, as it also makes
our button larger! The reason is that backgrounds extend underneath bor-
ders by default. Good ol background-clip can help constrain the back-
ground where it should be:

border: 10px solid transparent;

background-clip: padding-box;

In usability, an affordance is a property of a control that visibly hints how we can interact with
it. For example, a button’s 3D appearance hints that it can be pushed, and a doorknob'’s appearance
that it can be pulled or turned. For more info, check out en.wikipedia.org/wiki/Affordance.
There is some debate among usability professionals as to whether mouse cursor changes are an
affordance or visual feedback.

e

R

Our starting point in two states: with
the cursor on the button (right) or
further down (left)

Oops! Extending our hit area with
border also made our button larger

http://en.wikipedia.org/wiki/Affordance

© @
&

Getting our button size back to
normal with background-clip

© @
%

Using an inset box-shadow to
emulate a border

o e

Adding an actual shadow as well
doesn’t work well with this solution

As you can see in Figure 6.6, this works fine. Until you end up needing
an actual border around the button and realize you've already used up the
only one you get to extend the hit area. What happens then? Easy, you
could emulate a (solid) border with an inset shadow (Figure 6.7):

border: 10px solid transparent;
box-shadow: © © @ 1px rgba(0,0,0,.3) inset;
background-clip: padding-box;

play.csssecrets.io/hit-area-border

Unlike borders, you don’t only get one box-shadow, so if you need more,
you can just use a comma-separated list of shadows instead. However, if we
combine inset and outset (non-inset) shadows, we get a very weird effect,
because outset shadows are drawn outside the border box. For ex-
ample, we might think of doing something like this to add an actual blurred
shadow to make the button “pop out” of the page, which is another af-
fordance for clicking:

box-shadow: © © © 1px rgba(0,0,0,.3) inset,
@ .lem .2em -.05em rgba(0,0,0,.5);

However, if we try that, we see that the result is very different from what
we might expect (Figure 6.8). This solution is not perfect for other reasons
too. Borders affect layout, and that might be out of the question in certain
cases. What do we do then? We remove the border and take advantage of
the fact that pseudo-elements also capture mouse interaction for their
parent element.

We can then overlay a transparent pseudo-element on our button that
is 1@px larger on every direction:

http://play.csssecrets.io/hit-area-border

button {
position: relative;
/* [rest of styling] */

button: :before {
content: '';
position: absolute;
top: -10px; right: -10px;
bottom: -10px; left: -10px;

This just works, and as long as we don’t need both pseudo-elements, it
doesn't really interfere with anything. The pseudo-element solution is in-
credibly flexible—we could basically make the hit area be any size, place,

or shape we want, even completely disconnected from the element
itself!

play.csssecrets.io/hit-area

® CSS Backgrounds & Borders RELATED

w3.0org/TR/css-backgrounds SPECS

SECRET #30: EXTENDING THE CLICKABLE AREA

http://play.csssecrets.io/hit-area
http://w3.org/TR/css-backgrounds

For readability, we will refer to

“checkboxes” throughout this se-
cret, but everything discussed ap-

plies to both checkboxes and
radio buttons unless otherwise
noted.

Custom
checkboxes

The problem

Designers always wanted more control over every element in a web page.
When a graphic designer with limited CSS experience is tasked to create a
website mockup, they almost always produce one with customized form
elements, making the developer tasked to convert it to CSS want to pull
their hair out.

When CSS was first introduced, form styling was extremely limited and
is still not clearly defined in any of the various CSS specifications. However,
browsers got more and more permissive over the years about what CSS
properties they allow on form controls, enabling us to style most of them
quite extensively.

Unfortunately, checkboxes and radio buttons are not among those
form controls. To this day, most browsers allow little to no styling when
it comes to them. As a result, authors end up either coming to terms with
their default look or employing awful, inaccessible hacks, such as recreating
them with divs and JS.

Is there a way to get around these restrictions and customize the look
of our checkboxes, without bloat and without giving up on semantics and
accessibility?

The solution

Until a few years ago, this task was impossible without scripting. However,
in Selectors Level 3 (w3.0rg/TR/css3-selectors), we got a new
pseudo-class: : checked. This pseudo-class only matches when the check-
box is checked, whether that is done through user interaction, or through
script.

It's not very useful when applied directly to checkboxes, as—like we
previously mentioned—there aren’t many properties we can successfully
apply to them. However, we can always use combinators to style other
elements based on a checkbox state.

You might be wondering what other elements we may want to style
based on whether a checkbox is checked or not. Well, there is one kind of
element that has special behavior around checkboxes: <label>s. A
<label> that is associated with a checkbox also acts as a toggle
for it.

Because labels—unlike checkboxes—are not replaced elements,* we
can add generated content to them and style that based on checkbox
state. Then, we could hide the real checkbox in a way that doesn’t re-
move it from the tabbing order, and have the generated content act as
a styled checkbox instead!

Let's see this in action. We will start from the following simple markup:

<input type="checkbox" id="awesome" />

<label for="awesome">Awesome!</label>

The next step is to generate a pseudo-element that will be used as our styled
checkbox, and apply some basic styling to it:

From the CSS 2.1 specification: “[A replaced element is] an element whose content is outside the

scope of the CSS formatting model, such as an image, embedded document, or applet.” Replaced
elements cannot have generated content applied to them, though some browsers allow it.

Wondering what the dif-
ference is be-
tween :checked and the attribute
selector [checked]? The latter
doesn’t update based on user inter-
action, as user interaction doesn’t af-
fect the HTML attribute.

Nesting the checkbox in the label
would free us from using ids, but
then we wouldn’t be able to target
the label based on the checkbox sta-
tus, because we do not yet have par-
ent selectors.

I Awesome!

Our rudimentary custom checkbox
alongside the original checkbox

http://w3.org/TR/css3-selectors

The style we will apply to our check-
boxes in these examples is pretty ba-
sic, but the possibilities are endless.
You could even skip CSS styling al-
together and use images for all dif-
ferent checkbox states!

¥ & Awesome!

Styling our pseudo-element as a
customized checked checkbox

Be careful when using such per-

missive selectors. Using
input[type="checkbox"] will
also hide checkboxes without a
label after them (e.g., those nested
in a label), essentially making them
unusable.

input[type="checkbox"] + label::before {
content: '\a@'; /* non-break space */
display: inline-block;
vertical-align: .2em;
width: .8em;
height: .8em;
margin-right: .2em;
border-radius: .2em;
background: silver;
text-indent: .15em;
line-height: .65;

You can see how our checkbox and label currently look in Figure 6.9.
The original checkbox is still visible, but we will hide it later. Now we need
to apply a different style to our checkbox when it's checked. This could be
as simple as applying a different color and adding a checkmark as content:

input[type="checkbox"]:checked + label::before {
content: '\2713°;

background: yellowgreen;

As you can see in Figure 6.10, this is already functioning as a rudi-
mentary styled checkbox. Now, we need to hide the original checkbox in an
accessible way, which means we can't use display: none, as that would
remove it from the keyboard tabbing order entirely. Instead, we could use
something like this:

input[type="checkbox"] {
position: absolute;
clip: rect(0,0,0,0);

That'sit, we've made a very basic custom checkbox! We could of course
improve it further—for example, by changing its style when it's focused or
disabled, which you can see in Figure 6.11:

input[type="checkbox"]:focus + label::before {
box-shadow: © © .lem .lem #58a;

input[type="checkbox"]:disabled + label::before {
background: gray;
box-shadow: none;
color: #555;

You could even make these effects smoother by applying transitions or ani-
mations or go nuts and create things like skeuomorphic switches. The pos-
sibilities really are endless!

play.csssecrets.io/checkboxes

Hat tip to Ryan Seddon for coming up with the first version of this effect,
now known as “the checkbox hack” (thecssninja.com/css/custom-
inputs-using-css). Ryan has since used this idea to implement all sorts
of widgets that require state persistence (Labs.thecssninja.com/
bootleg), such as modal dialogs, dropdown menus, tabs, and carousels,
though abusing checkboxes this much results in accessibility problems.

Toggle buttons

You could use a variation of “the checkbox hack” to emulate toggle but-
tons, as HTML does not provide a native way to create them. Toggle buttons
are push buttons that act like checkboxes: they are used to toggle a setting
on or off, and look pressed when checked and unpressed when unchecked.

Awesome!
® Awesome!

& Awesome!

Top to bottom: customized focused
checkbox, customized disabled
checkbox, and checked checkbox

Although the possibilities are end-
less, avoid styling checkboxes as cir-
cles: most users associate round tog-
gles with radio buttons. Same ap-
plies to square radio buttons.

HAT TIP

Awesome!

{ Awesomel! 1

A toggle button in both its states

http://play.csssecrets.io/checkboxes
http://thecssninja.com
http://thecssninja.com/css/custom-inputs-using-css
http://labs.thecssninja.com/bootleg
http://labs.thecssninja.com/bootleg

Semantically, there is no real difference between toggle buttons and check-
boxes, so you can both use this trick and maintain semantic purity.

To create toggle buttons with this trick, you would just style the labels
as buttons, instead of using pseudo-elements. For example, to create the
toggle buttons shown in Figure 6.12, the code would look like this:

input[type="checkbox"] {
position: absolute;
clip: rect(0,0,0,0);

input[type="checkbox"] + label {
display: inline-block;
padding: .3em .5em;
background: #ccc;
background-image: linear-gradient(#ddd, #bbb);
border: 1px solid rgba(0,0,0,.2);
border-radius: .3em;
box-shadow: 0 1px white inset;
text-align: center;

text-shadow: 0 1px 1px white;

input[type="checkbox"]:checked + label,
input[type="checkbox"]:active + label {
box-shadow: .05em .lem .2em rgba(0,0,0,.6) inset;
border-color: rgba(0,0,0,.3);
background: #bbb;

However, be wary about using toggle buttons. In most cases, toggle but-
tons hinder usability as they can easily be confused with regular buttons
that perform an action when pressed.

play.csssecrets.io/toggle-buttons

Selectors RELATED

w3.org/TR/selectors SPECS

SECRET #31: CUSTOM CHECKBOXES @

http://play.csssecrets.io/toggle-buttons
http://w3.org/TR/selectors

De-emphasize
by dimming

Prerequisites

RGBA colors

The problem

Quite often, we need to dim everything behind an element through a semi-
transparent dark overlay, to emphasize and draw user attention to a certain
Ul element. For example, lightboxes (Figure 6.13) and interface “quick
tours” often benefit from this effect. The most common technique to do
this is to add an extra HTML element for the dimming and apply some CSS
that looks like this:

.overlay { /* For dimming */
position: fixed;
top: ©;
right: 0;

bottom: ©;
left: o;
background: rgba(0,0,0,.8);

.lightbox { /* The element to draw attention to */
position: absolute;
z-index: 1;
/* [rest of styling] */

The overlay is responsible for dimming everything behind the element we
want to draw attention to. The .lightbox then gets a higher z-index
to be drawn above the overlay. All this is fine and dandy, but it requires an
extra HTML element, which means the effect cannot be applied with CSS
alone. This is not a major problem, but it's an inconvenience that we'd rather
avoid, if possible. Thankfully, in most cases we can.

Twitter is using this effect for its
popup dialogs

Pseudo-element solution

We can use pseudo-elements to eliminate the need for an extra HTML ele-
ment, like so:

body.dimmed: :before {
position: fixed;
top: ©;
right: 0;
bottom: 9;
left: 0;
z-index: 1;
background: rgba(0,0,0,.8);

This is a slightly better solution, as it means we can now apply this effect
directly from CSS. However, the problem is that it's not very portable, as the
<body> element might already have something else applied on
its : :before pseudo-element. Also, it means that to apply this effect we
usually need some sort of JavaScript to apply the dimmed class.

We could solve this by applying the overlay on the element’s
own : :before pseudo-element and giving it a z-index: -1; so that
it's underneath our element. Although this solves the portability issue, it
doesn’t give us very fine-grained control over the overlay’s Z axis placement.
It might end up being underneath our element (which is desirable) or un-
derneath our element and several of its ancestors.

Another issue with this is that pseudo-elements cannot have their
own JavaScript event handlers. \When using a separate element for an
overlay, we could assign event handlers to it so that—for example—the
lightbox closes when the user clicks on the overlay. When using pseudo-
elements on the same element we want to highlight, it becomes trickier to
detect whether the user clicked on the overlay or the element.

box-shadow solution

The pseudo-element solution is more flexible and usually fits what most
people expect from an overlay. However, for simpler use cases or prototyp-
ing, we can take advantage of the fact that a box-shadow’s spread radius
enlarges it by the amount you specify on every side. This means we can
create an extremely large shadow with zero offsets and zero blur, to emulate
an overlay the quick-and-dirty way:

box-shadow: @ @ @ 999px rgha(0,0,0,.8);

One obvious problem with this first pass solution is that it won't work with
very large resolutions (> 2000px). We can mitigate this either by using a
larger number, or solve it completely by using viewport units, so that we
can be sure that the “overlay” is always larger than our viewport. Because
we can't use different horizontal and vertical spread radius values, the view-
port unit that makes the most sense to use is vmax. In case you're not fa-
miliar with the vmax unit, 1vmax is equivalent to either 1vw or 1vh,
whichever is larger. 100vw is equal to the viewport's width and, similarly,
100vh is equivalent to its height. Therefore, the minimum value that covers
our needs is 5@vmax, as it will be added on each side, so our overlay’s final
dimensions will be 1@@vmax + our element’s dimensions:

box-shadow: © © © 50vmax rgba(0,0,0,.8);

This technique is very quick and easy to apply, but it has two rather serious
issues that limit its usefulness. Can you spot them?

First, because the dimensions of our element are viewport related and
not page related, we will see the boundaries of the overlay when we
scroll, unless the element has position: fixed; or the pageisn'tlong
enough for scrolling. Furthermore, because pages can be really long, it
wouldn’t be wise to attempt to overcome this by just increasing the spread
radius even more. Instead, I'd recommend limiting your use of this

LIMITED
SUPPORT

technique to elements with fixed positioning or pages with minimal
to no scrolling.

Second, using a separate element (or a pseudo-element) as the overlay
doesn’t only visually guide the user’s focus to the element we want. It also
prevents them from using the mouse to interact with the rest of the
page, because it captures pointer events. A box-shadow does not have
this property. Therefore, it only visually helps draw the user’s attention
to a particular element, but it will not capture any mouse interaction
by itself. Whether this is acceptable or not depends on your specific
use case.

play.csssecrets.io/dimming-box-shadow

backdrop solution

If the element you want to bring into focus is a modal <dialog> (a
<dialog> element displayed via its showModal () method), it already has
an overlay, via the User Agent stylesheet. This native overlay can also be
styled via the : : backdrop pseudo-element, for example, to make it darker:

dialog: :backdrop {
background: rgba(e, 0, 0, .8);

The only caveat of this method is that at the time of writing, browser sup-
port for it is very limited, so make sure to check its current status before
using it. Keep in mind, however, that even if it's not supported, nothing will
break if a dialog has no overlay because it's just a UX improvement.

play.csssecrets.io/native-modal

http://play.csssecrets.io/dimming-box-shadow
http://play.csssecrets.io/native-modal

CSS Values & Units RELATED

w3.0org/TR/css-values/#viewport-relative- SPECS

Lengths
CSS Backgrounds & Borders
w3.org/TR/css-backgrounds

Fullscreen API

fullscreen.spec.whatwg.org/#: :backdrop-pseudo-element

SECRET #32: DE-EMPHASIZE BY DIMMING

http://w3.org/TR/css-values/#viewport-relative-lengths
http://w3.org/TR/css-backgrounds
http://fullscreen.spec.whatwg.org/#::backdrop-pseudo-element

De-emphasize
by blurring

Prerequisites

Transitions, the “Frosted glass effect” secret on page 146, the “De-
emphasize by dimming” secret on page 234

The problem

In the “De-emphasize by dimming” secret on page 234, we saw a way
to de-emphasize parts of a web app by dimming them, through a semi-
transparent black overlay. However, when there is a lot going on the page,
we need to dim it quite a lot to provide sufficient contrast for text to appear
on it, or to draw attention to a lightbox or other element. A more elegant
way, shown in Figure 6.14, is to blur everything else in addition to (or in-
stead of) dimming it. This is also more realistic, as it creates depth by mim-
icking how our vision treats objects that are physically closer to us
when we are focusing on them.

x

¢ Polygon

LOGIN SIGN UP

£ §31

However, this is a far more difficult effect to achieve. Until Filter Effects
(w3.org/TR/filter-effects), it was impossible, but even with the
blur() filter, it is quite difficult. What do we apply the blur filter to, if we
want to apply it to everything except a certain element? If we apply it to the
<body> element, everything in the page will be blurred, including the ele-
ment we want to draw attention to. It's very similar to the problem we ad-
dressed in the “Frosted glass effect” secret on page 146, but we cannot
apply the same solution here, as anything could be behind our dialog box,
not just a background image. What do we do?

The solution

Unfortunately, we will need an extra HTML element for this effect: we will
need to wrap everything in our page except the elements that shouldn't be
blurred in a wrapper element, so that we can apply the blurring to it. The
<main> element is perfect for this, because it serves a double purpose: it
both marks up the main content of the page (dialogs aren’t usually main
content) and gives us the styling hook we need. The markup could look
like this:

<main>Bacon Ipsum dolor sit amet..</main>

<dialog>

The gaming website polygon.com
features an excellent example of
drawing user attention to a dialog
box by blurring everything else
behind it

LIMITED
SUPPORT

http://w3.org/TR/filter-effects
http://polygon.com

We assume that all <dialog> ele-
ments will be initially hidden and at
most one of them will be visible at

any time.

Bacon ipsum dolor sit amet consectetur short loin ut
tri-tip alc »afin

pork. Elit X nille ex
O HAI, I'm a dialog.

boudin p;
P Click on me to dismiss.

tongue.

Pork choj) alcatra
cillum Mg T e T T o sint
magna ca pork belly duis. Shoulder ullamco chicken
porchetta, ham anim veniam venison. Fugiat

tenderlnin venican tardncken nan nark chon riheve

A plain dialog with no overlay to de-
emphasize the rest of the page

O HAL I'm a dialog.
Click on me to dismiss.

|)
Y AR

Blurring the <main> element when
the dialog is visible

B gmsm b ot ot oo et bt b
pork
tn i 4

O HAI, I'm a dialog.

Click on me to dismiss.

magra ca gk by dum Nhondder wllame o e ben

s [VUE R —

B N S

Applying both blurring and
dimming, both via CSS filters

O HAI, I’°m a dialog. Click on me to dismiss.
</dialog>

<!-- any other dialogs go here too -->

You can see how this looks with no overlay in Figure 6.15. Then, we need
to apply a class to the <main> element every time we make a dialog appear
and apply the blur filter then, like so:

main.de-emphasized {
filter: blur(5px);

As you can see in Figure 6.16, this already is a huge improvement.
However, right now the blurring is applied immediately, which doesn't look
very natural and feels like rather awkward UX. Because CSS filters are ani-
matable, we can instead smoothly transition to the blurred page:

main {

transition: .6s filter;

main.de-emphasized {
filter: blur(5px);

It's often a good idea to combine the two de-emphasizing effects (dimming
and blurring). One way to do this is using the brightness() and/or
contrast() filters:

main.de-emphasized {
filter: blur(3px) contrast(.8) brightness(.8);

You can see the result in Figure 6.17. Dimming via CSS filters means that
if they are not supported, there is no fallback. It might be a better idea to
perform the dimming via some other method, which can also serve as a
fallback (e.g., the box-shadow method we saw in the previous secret). This
would also save us from the “halo effect” you can see on the edges of
Figure 6.17. Notice how in Figure 6.18 where we used a shadow for the
dimming, this issue is gone.

play.csssecrets.io/deemphasizing-blur

Hat tip to Hakim El Hattab (hakim. se) for coming up with a smiliar effect
(Lab.hakim.se/avgrund). In addition, in Hakim’s version of the effect, the
content also becomes smaller via a scale () transform, to further enhance
the illusion that the dialog is getting physically closer to us.

= Filter Effects RELATED
w3.org/TR/filter-effects SPECS

® CSS Transitions

w3.org/TR/css-transitions

O HAL I'm a dialog.
Click on me to dismiss.

FIGURE 6.18

Applying blurring via CSS filters and
dimming via a box-shadow, which
also serves as a fallback

HAT TIP

SECRET #33: DE-EMPHASIZE BY BLURRING

http://play.csssecrets.io/deemphasizing-blur
http://hakim.se
http://lab.hakim.se/avgrund
http://w3.org/TR/filter-effects
http://w3.org/TR/css-transitions

Ada Catlace
Alan Purring

Schrédingcat
Tim Purrners-Lee
WebKitty

This box has more content and is
scrollable, but unless you interact
with it, you won't know

Scrolling
hints

Prerequisites

CSS gradients, background-size

The problem

Scrollbars are the primary control to indicate that there is more content in
an element than meets the eye. However, they are often clunky and visually
distracting, so modern operating systems have started to streamline them,
often hiding them completely until the user is actually interacting with the
scrollable element.

While scrollbars are rarely used to control scrolling these days (users
tend to scroll via gestures instead), indicating that there is more content
in an element than what meets the eye is very useful information that
is helpful to convey in a subtle way, even for elements the user is not cur-
rently interacting with.

The UX designers working on Google Reader, a (now discontinued)
feed reader by Google, found a very elegant way to indicate this: when there

was more content, a subtle shadow was displayed on the top and/or bottom

side of the sidebar (Figure 6.20).

Home
» All items (418)
¥ Explore
¥ Subscriptions

~ [Funny (380)
&) A Programmer's Life

SUBSCRIBE
¥ A LISTAparT
[E1 QuirksBlog (2)
£ The Daily Nerd (5)
W3C Blog
CSS WG Blog

£ Christian Heilman... (1)

[E] HTMLS Doctor

! Smashing Magazi... (10)

L LY UpSIa @SS
&) David Baron's Web...
&) Eli Grey

@! aralbalkan.com
FunctionSource Po...
&) Marcofolio.net ()

I Mathias Bynens

£ mir.aculo.us

Google Reader’s elegant UX pattern
to indicate that scrolling is needed to
view the full contents of the sidebar
Left: Scrolled all the way up
Middle: Scrolled to the middle of
the feed list

Right: Scrolled all the way to the

™ Abstruse Goose % CSS-Tricks Ugly JS bottom
it cat versus human 0 Deskiop Team &) Bricss
O Damn You Auto C... (228) +# hacks.mozilla.org (7) P UNSTOPPABLE R...
) fuck yeah comput... (1)] Broken Links W CSS Wizardry
Garfield &) The CSS Ninja T Veerle's blog 3.0
[Geek And Poke (1) ¥l 24 ways §B wifis

However, to achieve this effect in Google Reader, quite a bit of scripting was
used. Was that really needed, or can we achieve the same effect with CSS?

The solution

Let’s first start with some simple markup, a plain unordered list with some
placeholder content (geeky cat names!):

Ada Catlace</1li>
Alan Purring</1li>
Schrodingcat</1i>
<1i>Tim Purrners-Lee</1i>
WebKitty</1i>
<1li>Json</1i>
<1i>Void</1i>
Neko</1i>
<1li>NaN</1i>
Cat5</1i>

Ada Catlace
Alan Purring
Schrédingcat
Tim Purrners-Lee
WebKitty

Our top shadow

Vector</1i>

We can then apply some basic styling to the to make it smaller than
its contents and scrollable:

overflow: auto;
width: 10em;
height: 8em;
padding: .3em .5em;

border: 1px solid silver;

This is where things start to get interesting. Let's apply a shadow at the
top, with a radial gradient:

background: radial-gradient(at top, rgba(0,0,0,.2),
transparent 70%) no-repeat;

background-size: 100% 15px;

You can see the result in Figure 6.21. Currently it stays in the same place
when we scroll. This is on par with how background images work by default:
their position is fixed relative to the element, regardless of how far the ele-
ment is scrolled. This also applies to images with background-
attachment: fixed. Their only difference is that they also stay in place
when the page itself scrolls. Is there any way to get a background image
to scroll with an element’s contents?

Until a few years ago, this simple thing was impossible. However, the
problem was pretty obvious and a new background-attachment key-
word was added in Backgrounds & Borders Level 3 (w3.0rg/TR/css3-
background/#locale) to address it: local.

However, background-attachment: local doesn'tsolve our use
case out of the box. If we apply it to our shadow gradient, it gives us the
exact opposite result: we get a shadow when we scroll all the way to the

http://w3.org/TR/css3-background/#local0

top, but when we scroll down, the shadow disappears. It is a start, though
—we're starting to get somewhere.

The trick is to use two backgrounds: one for the shadow, and one
that is basically a white rectangle to cover the shadow, acting as a mask.
The background that generates the shadow will have the default
background-attachment (scroll), because we want it to stay in place
at all times. However, we will give the masking background a
background-attachment of 1local, so that it covers the shadow when
we are scrolled all the way up, but scrolls with the contents when we scroll
down, thus revealing the shadow.

We will use a linear gradient to create the masking rectangle, with the
same color as the element’s background (in our case, white):

background: linear-gradient(white, white),
radial-gradient(at top, rgba(e0,0,0,.2),
transparent 70%);
background-repeat: no-repeat;
background-size: 100% 15px;

background-attachment: local, scroll;

You can see how this looks in different stages of scrolling in Figure 6.22.
You may notice that this seems to produce the desired effect, but it has one
significant drawback: when we are only slightly scrolled, the way the shad-
ow is revealed is very choppy and awkward. Is there any way to make it

smoother?
Ada Catlace Ada Catlace Alan Purring
Alan Purring Alan Purring Schrédingcat

Schrédingcat

Schrédingcat Tim Purrners-Lee

Tim Purmers-Lee | 11M Purmers-Lee ' \yapitty

\AlahKittyv WebKItty lean

Our two backgrounds in different
stages of scrolling

Left: Scrolled all the way to the top
Middle: Slightly scrolled down
Right: Scrolled down significantly

Using a gradient of white to
transparent as a first attempt to
fade the shadow in smoothly

Why transparent white and not just
transparent? The latter is actually
an alias of rgba(0,0,0,0), so the
gradient might include shades of
gray as it transitions from opaque
white to transparent black. If brows-
ers are interpolating colors in what is
called a premultiplied RGBA space
per the specification, this shouldn’t
happen. Different interpolation al-
gorithms are outside the scope of
this book, but there is a lot of mate-
rial on this online.

Ada Catlace

Ada Catlace Alan Purring

Alan Purring

Alan Purring Schrédingcat

Schrédingcat Tim Purrners-Lee

WebKitty
WebKitty lemm

Schrédingcat

Tim Purrners-Lee | 11M Purrners-Lee

\AlahKittyv

We can take advantage of the fact that our “mask” is a (degenerate)
linear gradient and convert it to a real gradient from white to transparent
white (hsla(@,0%,100%,0) or rgba(255,255,255,0)), so that it
smoothly reveals our shadow:

background: linear-gradient(white, hsla(©,0%,100%,0)),
radial-gradient(at top, rgba(e0,0,0,.2),
transparent 70%);

This is a step in the right direction. As you can see in Figure 6.23, it does
progressively reveal the shadow, like we wanted. However, it currently has
a pretty serious flaw: it no longer completely obscures the shadow when
we are scrolled all the way to the top. We can fix this by moving the white
color stop a little lower down (15px to be precise, equal to our shadow
height), so that we get an area of solid white before the fading starts. Fur-
thermore, we need to increase the size of the “mask” to be larger than the
shadow, otherwise we would get no gradient. The exact height depends on
how smooth we want the effect to be (i.e., how quickly should shadow be
revealed when we scroll?). After some experimentation, it seems that 50px
is a reasonable value. The final code looks as follows, and you can see the
result in Figure 6.24:

Ada Catlace — FIGURE 6.24
Ada Catlace Alan Purrlng The final result

Alan Purring

Alan Purring Schrédingcat

Schrédingcat

Schrédingcat Tim Purrners-Lee

Tim Purrners-Lee Tim Purrners-Lee WebKitty

\AahKittv WebKltty

lenn

background: linear-gradient(white 30%, transparent),
radial-gradient(at 50% @, rgba(0,0,0,.2),
transparent 70%);
background-repeat: no-repeat;
background-size: 100% 50px, 100% 15px;
background-attachment: local, scroll;

Of course, to achieve the original effect, we need two more gradients for
the bottom shadow and its mask, but the logic is exactly the same, so
this can be left as an exercise for the reader (or check out the following Play!
example for the solution).

play.csssecrets.io/scrolling-hints

Hat tip to Roman Komarov for coming up with an early version of this
effect (kizu.ru/en/fun/shadowscroll). His version used pseudo-
elements and positioning instead of background images, and might be an
interesting alternative for certain use cases. HAT TIP

B CSS Backgrounds & Borders RELATED
w3.org/TR/css-backgrounds SPECS

B CSS Image Values

w3.org/TR/css-images

SECRET #34: SCROLLING HINTS

http://play.csssecrets.io/scrolling-hints
http://kizu.ru/en
http://kizu.ru/en/fun/shadowscroll
http://kizu.ru/en/fun/shadowscroll
http://w3.org/TR/css-backgrounds
http://w3.org/TR/css-images

Interactive
image
comparison

The problem

Sometimes the need arises to showcase the visual differences between two
images, usually as a before-and-after comparison. For example, demon-
strating the effects of photo manipulation in a portfolio, the results of cer-
tain beauty treatments in a beautician’s website or the visible results of a
catastrophic event in a geographical area.

The most common solution would be to just place the images side by
side. However, this way the human eye only notices very conspicuous dif-
ferences and misses the smaller ones. This is fine if the comparison is un-
important or the differences are large, but in all other cases, we need some-
thing more helpful.

There are many solutions to this problem from a UX perspective. A
common solution is to show both images in the same place in quick suc-
cession, through an animated GIF or a CSS animation. This is much better
than showing the images next to each other, but it's time consuming for the
user to notice all the differences as they have to wait for several iterations,
fixating their eyes at a different area of the images every time.

theguardian Custom Searen

News US| World Sports Comment Culture Business | Money Environment Science Travel Tech Media Life & style Data

News) UK news) UK riots 2011

London riots: before and after photographs st 1
Images of damaged buildings in Croydon and Tottenham show W Tweet |0
the full force of the riots on local communities. Move the slider galn

to see the effect on each property Share o

Email

Ranjit Dhaliwal, Jonathan Richards, Martin Shuttleworth, Alex Graul
theguardian.com, Tuesday © August 2011 08.56 EDT

2]

UK news

UK riots 2011 - London
Hackney

More interactives

“Credits: Google, AFP,
Getty Images, PA

E ,--f REYHOUNI MOTORS

Fire crews douse Royal Mansions on London Road in Croydon

1.

A solution that is much more usable is what is known as an “image
comparison slider.” This control superimposes both images and lets the user
drag the divisor to reveal one or the other. Of course, such a control does
not actually exist in HTML. We have to emulate it via the elements we do
have, and there have been many such implementations over the years, usu-
ally requiring JavaScript frameworks and a boatload of JS code.

Is there a simpler way to implement such a control? Actually, there

are two!

CSS resize solution

If we think about it, an image comparison slider basically includes an image
and a horizontally resizable element that progressively reveals another im-
age. This is where the JavaScript frameworks usually come in: to make the
top image horizontally resizable. However, we don't really need scripting to
make an element resizable. In CSS User Interface Level 3 (w3.o0rg/TR/
css3-ui/#resize), we got a property for that: the humble resize!

An example of an interactive image
comparison widget, enabling users
to compare the catastrophic results
of the 2011 London riots, from
major UK news outlet The Guardian.
The user is supposed to drag the
white bar separating the two
images, but there is no affordance
to indicate the bar is draggable,
which is why the help text (“Move
the slider... ") was needed. Ideally, a
good, learnable, interface doesn’t
need help text.

Source: theguardian.com/uk/
interactive/2011/aug/09/
london-riots-before-after-
photographs

In some variations, the user just
moves the mouse instead of drag-
ging. This has the benefit of being
easier to notice and use, but the ex-

perience can be quite irritating.

http://w3.org/TR/css3-ui/#resize
http://theguardian.com/uk/interactive/2011/aug/09/london-riots-before-after-photographs
http://theguardian.com/uk/interactive/2011/aug/09/london-riots-before-after-photographs
http://theguardian.com/uk/interactive/2011/aug/09/london-riots-before-after-photographs
http://theguardian.com/uk/interactive/2011/aug/09/london-riots-before-after-photographs

It's usually a good idea to apply
resize: verticalto
<textarea>s to maintain resizabil-
ity but disable horizontal resizing,
which usually breaks layouts.

Once object-fit and object-
position gain more widespread
browser support, this won't be an is-
sue, as we'll be able to control how
images scale in the same way as
we're able to control background
image scaling.

After some basic styling, this is

already starting to resemble an
image slider, but we can’t change
the width of the top image yet

Even if you've never heard of this property, you've probably experienced
its behavior as it's set to both by default on <textareass, which makes
them resizable in both directions. However, it can actually be set on any
element, as long as its overflow property is not visible. In almost every
element resize is set to none by default, which disables resizing. Besides
both, it also accepts the values horizontal and vertical, which re-
strict the direction of the resizing.

This might make one wonder: could we perhaps use this property to
implement our image slider? We can’t know until we give it a shot!

Our first thought might be to just include two elements. How-
ever, applying resize directly to an would look awful, as resizing
an image directly distorts it. It makes more sense to apply it to a container
<div>. Therefore, we end up with markup like the following:

<div class="image-slider">

<div>

</div>

</div>

Then we need to apply some basic CSS for positioning and dimensions:

.image-slider {
position:relative;

display: inline-block;

.image-slider > div {
position: absolute;
top: 0; bottom: 0; left: o;
width: 50%; /* Initial width */
overflow: hidden; /* Make it clip the image */

.image-slider img { display: block; }

Right now the result looks like Figure 6.26 but is still static. If we manually
change the width, we can see it going through all stages that a user would
resize it to. To make the width change dynamically with user interaction,
through the resize property, we need two more declarations:

.image-slider > div {
position: absolute;
top: 9; bottom: 0; left: o;
width: 50%;
overflow: hidden;

resize: horizontal;

The only visual change is that a resize handler now appears at the
bottom-right corner of the before image (Figure 6.27), but we can now
drag it and resize it to our heart’s content! However, playing with our widget
a little reveals a few weaknesses:

We can resize the <div> past the width of the images.

The resize handler is difficult to spot.

The first issue is very easy to solve. All we need is to specify a max-width
of 100%. However, the second issue is a bit more complicated. Unfortu-
nately, there is still no standard way to style the resize handler. Some ren-
dering engines support proprietary pseudo-elements (such as : : -webkit-
resizer) for this, but their results are limited, both in terms of browser
support, as well as styling flexibility. However, hope is not lost: it turns out
that overlaying a pseudo-element on the resize handle doesn’t interfere with
its function, even without pointer-events: none. So, a cross-browser
solution to style the resize handler would be to just ...overlay another on
top of it. Let's do that:

Our image slider now actually

functions like an image slider, but
still has a few issues

.image-slider > div::before {
content: '';
position: absolute;
bottom: ©; right: ©;
width: 12px; height: 12px;

background: white;

cursor: ew-resize;

}
Styling the resize handler as a white
square, by overlaying a pseudo-
element on it Note the cursor: ew-resize declaration: this adds an extra af-

fordance, as it hints to the user that they can use this area as a resize han-
dler. However, we should not depend on cursor changes as our only
affordance, because they are only visible when the user is already inter-
acting with a control.

Right now, our resize handler will appear as a white square (see
Figure 6.28). At this point, we can go ahead and style it to our liking. For
example, to make it a white triangle with 5px spacing from the sides of the
image (Figure 6.29), we could write:

padding: 5px;

background:

linear-gradient(-45deg, white 50%, transparent 0);
background-clip: content-box;

Styling the fake resizer pseudo-

element as a triangle with 5px

spacing from the edges of theimage ¢ 3y additional improvement, we could apply user-select: none to
both images, so that failing to grab the resize handler would not result in
them pointlessly being selected. To sum up, the full code would look

like this:

.image-slider {
position:relative;

display: inline-block;

.image-slider > div {
position: absolute;
top: 0; bottom: 0; left: 0O;
width: 50%;
max-width: 100%;
overflow: hidden;

resize: horizontal;

.image-slider > div::before {
content: '';
position: absolute;
bottom: @; right: 9;
width: 12px; height: 12px;
padding: 5px;
background:
linear-gradient(-45deg, white 50%, transparent 0);
background-clip: content-box;

cursor: ew-resize;

.image-slider img {
display: block;

user-select: none;

play.csssecrets.io/image-slider

Range input solution

The CSS resize method described in the previous section works great and
involves very little code. However, it has a few shortcomings:

http://play.csssecrets.io/image-slider

It's not keyboard accessible.

Dragging is the only way to resize the top image, which can be tedious for
large images or motor-impaired users. Being able to also click to a point
and have the image resize to that point offers a much better experience.

The user can only resize the top image from its bottom-right corner, which
might be hard to notice, even if we style it in the way previously described.

If we are willing to use a little scripting, we could use a slider control (HTML
range input) overlaid on top of the images to control the resizing, which
solves all three issues. Because we're using JS anyway, we can add all extra
elements via scripting, so we can start with the cleanest possible markup:

<div class="image-slider">

</div>

Then, our JS code will convert it to the following, and add an event on the
slider so that it also sets the div's width:

<div class="image-slider">
<div>

</div>

<input type="range" />
</div>

The JavaScript code is fairly straightforward:

$$('.image-slider').forEach(function(slider) {
// Create the extra div and

// wrap it around the first image

var div = document.createElement('div');
var img

slider.querySelector('img"');
slider.insertBefore(img, div);
div.appendChild(img);

// Create the slider
var range = document.createElement('input');
range.type = 'range’;
range.oninput = function() {
div.style.width = this.value + '%';
¥
slider.appendChild(range);
})s

The CSS we will use as a starting point is basically the same as in the previous
solution. We will only delete the parts we no longer need:
We don't need the resize property.

We don't need the .image-slider > div::before rule, because we
no longer have a resizer.

We don’t need max-width because the slider will control that.

Here's how our CSS code will look after these modifications:

.image-slider {
position:relative;

display: inline-block;

.image-slider > div {

position: absolute;
top: 9; bottom: 0; left: o;
width: 50%;

Our control now works, but we still
overflow: hidden; need to style that range input

.image-slider img {
display: block;

user-select: none;

Use input:in-range If we test this code now, you will see that it already works, but it
instead of just input to . . .
o looks awful: there’s a range input just randomly placed under our images
only style the range input if

range inputs are supported. Then (Figure 6.30). We need to apply some CSS to position it on top of

you could use the cascade to hide it them, and make it as wide as they are:
or style it differently in older

browsers.

.image-slider input {
position: absolute;
left: 0;
bottom: 10px;
width: 100%;

margin: 9;

As you can see in Figure 6.31, this already looks decent. There are several
proprietary pseudo-elements to style range inputs exactly how we want

Our range input styled to be overlaid
on the images them. These include ::-moz-range-track, ::-ms-track, ::-

webkit-slider-thumb, ::-moz-range-thumb, and ::-ms-thumb.
Like most proprietary features, their results are inconsistent, flimsy, and un-
predictable, so | would recommend against using them, unless you really
have to. You've been warned.

However, if we just want to visually unify the range input with the
control a bit more, we could use a blending mode and/or a filter. The blend-
ing modes multiply, screen, or luminosity seem to produce good
results. Also, filter: contrast(4) would make the slider black and
white and a contrast value lower than 1 would make it more gray. The
possibilities are endless, and there’s no universally optimal choice here. You
could even combine blending modes and filters, like so:

filter: contrast(.5);

mix-blend-mode: luminosity;

We could also increase the area the user can use for resizing to make
it a more pleasant experience (per Fitts' Law), by reducing the width and
making up the difference with CSS transforms:

width: 50%;
transform: scale(2);
transform-origin: left bottom;

You can see the result of both treatments in Figure 6.32. Another benefit
of this approach—albeit a transient one—is that range inputs currently have
better browser support than the resize property.

Hat tip to Dudley Storey for coming up with the first version of
this solution (demosthenes.info/blog/819/A-Before-And-After-
Image-Comparison-Slide-Control-in-HTML5).

Using blending modes and filters to
visually unify the range input with
our control and CSS transforms to
make it larger

HAT TIP

http://demosthenes.info
http://demosthenes.info/blog/819/A-Before-And-After-Image-Comparison-Slide-Control-in-HTML5
http://demosthenes.info/blog/819/A-Before-And-After-Image-Comparison-Slide-Control-in-HTML5

CSS Basic User Interface RELATED
w3.org/TR/css3-ui SPECS

CSS Image Values
w3.0org/TR/css-images

CSS Backgrounds & Borders
w3.org/TR/css-backgrounds
Filter Effects
w3.org/TR/filter-effects
Compositing and Blending
w3.org/TR/compositing

CSS Transforms

w3.org/TR/css-transforms

CHAPTER 6: USER EXPERIENCE

http://w3.org/TR/css3-ui
http://w3.org/TR/css-images
http://w3.org/TR/css-backgrounds
http://w3.org/TR/filter-effects
http://w3.org/TR/compositing
http://w3.org/TR/css-transforms

Structure
& Layout

/|

Intrinsic
sizing

The problem

As we all know, if we don't set a specific height on an element, it auto-
matically adjusts to its contents. What if we want a similar behavior for the
width as well? For example, let's assume we have HTML5 figures, with
markup like the following:

<p>Some text [..]</p>
<figure>

<figcaption>
The great Sir Adam Catlace was named after
Countess Ada Lovelace, the first programmer.
</figcaption>
</figure>
<p>More text [..].</p>

Let's also assume we're applying some basic styling to them, such as a
border around the figures. By default, this looks like Figure 7.1. We want
to make the figures as wide as the image they contain (which could vary

in size) and center them horizontally. The current rendering is quite far
from what we want: the lines of text are much longer than the image. How
do we make the width of the figure determined by the width of the image
it contains instead of the width of its parent?* Over the course of our career,
we have probably built our own list of CSS styles that result in such width
behavior, usually as a side effect:

Floating the <figure> gives us the right width, but also drastically alters
the layout of the figure, in ways we might not want (Figure 7.2).

Applying display: inline-block to the figure does size it based on
its contents, but not in the way we want (Figure 7.3). In addition, even if
the width computation was on par with our expectations, it would be very
tricky to horizontally center figures this way. We would need to apply text-
align: center toits parent and text-align: left to any possible
child of that parent (p, ul, ol, dl, ...).

As a last resort, developers often apply a fixed width or max-width to
figures, and apply max-width: 100% to figure > img. However, this
underutilizes the available space, might still be off for overly small figures,
and is not responsive.

Is there any decent CSS solution to this problem or should we give up and
start coding a script to dynamically set the figure widths?

The solution

A relatively new specification, CSS Intrinsic & Extrinsic Sizing Module
Level 3 w3.org/TR/css3-sizing), defined several new width and
height keywords, one of the most useful of which was min-content.
This keyword gives us the width of the largest unbreakable element inside
the box (i.e., the widest word or image or fixed-width box). This is exactly
what we need! Now, giving our figures an appropriate width and horizon-
tally centering them as simple is two lines of code:

In CSS spec jargon, we need the width to be intrinsically determined instead of extrinsically.

The default way our markup is
rendered, after a bit of CSS for
borders and padding

Trying to solve the width issue by
floating creates new issues

Contrary to our expectations,
display: inline-block does
not result in the width we wanted

http://w3.org/TR/css3-sizing
http://w3.org/TR/css3-sizing

Another value, max-content,

would give us the same width as we figure {
saw with display: inline-
block earlier. And fit-content .
gives us the same behavior as floats margin: auto;
(which is often the same as min- }

width: min-content;

content, but not always).

You can see the result in Figure 7.4. To offer a graceful fallback for
older browsers, we could combine this technique with a fixed max-
width, like so

figure {
max-width: 300px;

max-width: min-content;

margin: auto;

FIGURE 7.4

The final result
figure > img { max-width: inherit; }

On a modern browser, the latter max-width declaration would override
the former and if the figure is sized intrinsically, max-width: inherit
has no effect.

play.csssecrets.io/intrinsic-sizing

Hat tip to Dudley Storey (demosthenes.info) for coming up with this
use case (demosthenes.info/blog/662/Design-From-the-Inside-
Out-With-CSS-MinContent).

HAT TIP

B CSS Intrinsic & Extrinsic Sizing RELATED

w3.org/TR/css3-sizing SPECS

CHAPTER 7: STRUCTURE & LAYOUT

http://play.csssecrets.io/intrinsic-sizing
http://demosthenes.info
http://demosthenes.info/blog/662/Design-From-the-Inside-Out-With-CSS-MinContent
http://demosthenes.info/blog/662/Design-From-the-Inside-Out-With-CSS-MinContent
http://w3.org/TR/css3-sizing

Taming table
column widths

The problem

Although we stopped using tables for layout long ago, tables still have their
place on modern websites, for tabular data such as statistics, emails, listings
of items with lots of metadata, and many other things. Also, we can make
other elements behave like table-related elements, by using the table-
related keywords for the display property. However, convenient as they
may seem at times, their layout is very unpredictable for dynamic content.
This is due to the fact that column dimensions are adjusted based on their
contents and even explicit width declarations are treated more like hints,
as Figure 7.5 illustrates.

For this reason, we often end up using different elements even for tab-
ular data or we just accept the unpredictability of it all. Is there any way we
could get tables to just behave?

The solution

The solution comes in the form of a little-known CSS 2.1 property called
table-layout. Its default value is auto, which results in the so-called
automatic table layout algorithm, with the familiar behavior shown in

specify a cell width, they will be assigned one that depends

If we don’t... | on their contents. Notice how the cell with more content
here is much wider.
specify a cell width, they will be assigned one
If we don’t... that depends on their contents. Notice how

the cell with more content here 1s much wider.

All rows take part in
calculating the widths, not

just the first one.

Notice how the dimensions here are different

than the previous example.

If we specify a width, it
will not always be
followed. I have a width
of 1000pX...

...and I have a width of 2000pX. Because
there’s not enough space for 3000pX, they are
reduced proportionally, to 33.3% and 66.6%
of the total width.

FIGURE 1.5

The default table layout algorithm
for tables with 2 columns and varied
contents (the container of these
tables is shown with a dashed
border)

If we prevent
word
wrapping, the
table can
become so
wide it grows
beyond its

container.

..and text-overflow: ellipsis doesn’t help either.

Large images
and blocks of
code can also
cause the

same issue.

SECRET #37: TAMING TABLE COLUMN WIDTHS 261

HAT TIP

Figure 7.5. However, there is a second value, fixed, which results in more
predictable behavior. It leaves more up to the author (you, that is!) and
less up to the rendering engine. Styling is respected and not treated like
some sort of hint, overflow behaves the same way as any other element
(including text-overflow), and table contents only affect the height of
each row and nothing else.

In addition to being more predictable and convenient, the fixed table
layout algorithm is also considerably faster. Because table contents do
not affect cell widths, no redraws/repaints are needed while the page is
downloading. We are all familiar with the disruptive image of a table that
keeps readjusting the widths of its columns as the page is downloading.
This never happens with fixed table layouts.

To use it, we apply the property to <table> elements and elements
with display: table. Note that you need to specify a width to these
tables (even if it's 100%) for the magic to happen. Also, for text-
overflow: ellipsis to work, we need to set a width to that column
as well. That's all! You can see the results in Figure 7.6:

table {
table-layout: fixed;
width: 100%;

play.csssecrets.io/table-column-widths

Hat tip to Chris Coyier (css-tricks.com) for coming up with this tech-

nique (css-tricks.com/fixing-tables-Llong-strings).

http://play.csssecrets.io/table-column-widths
http://css-tricks.com
http://css-tricks.com/fixing-tables-long-strings
http://css-tricks.com/fixing-tables-long-strings

FIGURE 1.6

The same tables as in Figure 7.5, but

specify a cell width, they will be

assigned one that depends on their with table-layout: fixed
If we don’t....

contents. Notice how the cell with applied. Note the following, in order:

more content here is much wider. = When we don't define any widths,

all columns get the same width.

specify a cell width, they will be = A second row does not affect the
] : column widths.
assigned one that depends on their

If we don’t... . . = Large widths are applied as-is, not
contents. Notice how the cell with
shrunk down.

more content here is much wider. = The overflow and text-

All rows take part in calculating the | Notice how the dimensions here are TR L SR RIS It

widths, not just the first one. different than the previous example. | Content can overflow table cells (if

overflowis visible)

If we specify a width, it will not always be followed. I have a width of 1000pX...

If we prevent
word
wrapping, the
table can ..
..and text-overflow: ellipsis doesn’t h..
become so
wide it grows
beyond its

container.

Large images
and blocks of _ ’ —
code can also

cause the

same issue.

SECRET #37: TAMING TABLE COLUMN WIDTHS .

Styling by
sibling count

The problem

There are many cases when we need to style elements differently based on
how many siblings they have total. The main use case is improving UX and
conserving screen real estate in an expanding list, by hiding controls or
making them more compact as the list grows. Here are a few examples:

A list of emails or similar text-based items. If we only have a handful of items,
we can display a long preview. As the list grows, we reduce the lines of
preview we can show. When the length of the list is longer than the viewport
height, we might opt to hide previews completely and make any buttons
smaller, to minimize scrolling.

A to-do list app, where we show every item with a large font when there
are fewer items, but progressively make the font size smaller (for all items)
as the total number of items increases.

A color palette app, with controls displayed on every color. One might want
to make these controls more compact as the number of colors increases and
the space they occupy decreases accordingly (Figure 7.7).

An app with multiple <textarea>s where every time we add a new one,
we make them all smaller (like in bytesizematters.com).

http://bytesizematters.com

oojloofloojoof oo 00 [o0oloo oo/

However, targeting elements based on their total number of siblings is
not trivial with CSS selectors. For example, suppose we want to apply certain
styles to a list'’s items when their total count is 4. We could use 1i:nth-
child(4) to select the fourth item in the list, but this is not what we
needed; we needed to select every item, but only when their total count
is 4.

Our next idea might be to use the generalized sibling combinator (~)
together with :nth-child(), like 1li:nth-child(4), li:nth-
child(4) ~ 1i. However, this only targets the fourth child and items
after it (Figure 7.8), regardless of the total count. Because there is no
combinator that can “look backward” and select previous siblings, is
attempting to accomplish this with CSS doomed to fail? Let's not lose hope
just yet.

FIGURE 1.1

Progressively making controls
smaller as the number of colors
increases and the available space
shrinks. Note the special handling on
the case where we only have one
color: We then hide the delete
button.

Colors are taken from the Adobe
Color (color.adobe. com) palettes:

Agave (color.adobe. com/
agave-color-theme-387108)

Sushi Maki (color. adobe. com/
Sushi-Maki-color-
theme-350205)

v
4

FIGURE 7.8

Which elements get selected with
li:nth-child(4),
li:nth-child(4) ~ 1i

SECRET #38: STYLING BY SIBLING COUNT

http://color.adobe.com
http://color.adobe.com
http://color.adobe.com/agave-color-theme-387108
https://color.adobe.com/Sushi-Maki-color-theme-350205

We will use :nth-child() selec-
tors throughout this section, but ev-
erything discussed applies to :nth-
of-type() selectors equally,
which are often a better fit, as we
usually have siblings of different
types and we are only concerned
with one type. We will be using list
items in the examples, but what we
discuss is applicable to elements of
any type.

The solution

For the special case of having exactly one item, there is an obvious
solution: :only-child, which was created exactly for this purpose. This
is not only useful as a starting point, but there are several use cases for it,
which is why it was added to the specification. For example, note in
Figure 7.7 that we are hiding the delete button when we only have one
color; this could be done by a CSS selector using :only-child:

li:only-child {

/* Styles for when we only have 1 item */

However, :only-child is equivalent to : first-child:last-child,
for obvious reasons: if the first item is also the last item, it logically follows
thatitis the only item. However, : last-childisalsoashortcut, to :nth-
last-child(1):

li:first-child:nth-last-child(1) {
/* Same as li:only-child */

However, now 1 is a parameter, and we can tweak it to our liking. Can you
guess what 1i:first-child:nth-last-child(4) targets? If you an-
swered that it generalizes :only-child by targeting list items when their
total count is four, you might be overdoing it a bit with the optimism. We're
not there yet, but we are on the right track. Think about both pseudo-classes
separately: we are looking for elements that match both :first-child
and :nth-last-child(4). Therefore, elements who are—at the same
time—the first child of their parent counting from the start, and the fourth
child counting from the end. Which elements would fulfill this criteria?
The answer is the first element in a list with exactly four elements
(Figure 7.9). This is not quite what we wanted, but it's very close: because

we now have a way to target the first child of such a list, we can use the
general sibling combinator (~) to target every sibling that follows such a
first child, effectively targeting every list item in a list if and only if it
contains four items total, which is exactly what we were trying to
accomplish:

li:first-child:nth-last-child(4),
li:first-child:nth-last-child(4) ~ 1i {
/* Target list items iff the list

contains exactly four items */

To avoid the verbosity and repetition of the solution just shown, a prepro-
cessor, such as SCSS, could be used, although the syntax of existing pre-
processors for this is rather clumsy:

/* Define mixin */

@mixin n-items($n) {
&:first-child:nth-last-child(#{$n}),
&:first-child:nth-last-child(#{$n}) ~ & {

@content;

/* Use it like so: */
1i {
@include n-items(4) {

/* Properties and values */

Which elements get selected with
li:first-child:nth-last-
child(4) inlists of three, four, and
eight elements

HAT TIP

It can be hard to wrap
one’s head

around :nth-* selectors. If you're

having trouble, you could use an on-

line tester to experiment with a few
expressions. I've written one at
lea.verou.me/demos/nth.html,
but there are plenty of others
around.

Which elements get selected with
1li:nth-child(n+4) in lists of
three, four, and eight elements

Hat tip to André Luis (andr3.net) for coming up with an idea that in-
spired this technique (andr3.net/blog/post/142).

Selecting by range of sibling count

In most practical applications, we do not want to target specific numbers
of items, but ranges thereof. There is a handy trick that we can use to
make :nth-child() selectors target ranges such as “select everything
after the fourth child.” Besides simple numbers as parameters, we can also
use an+b expressions (e.g., :nth-child(2n+1)), where n stands for a
variable that ranges from 0 to +eo in theory (in practice, values after a certain
point don't select anything anymore because the number of elements we
have is finite). If we use an expression of the form n+b (where a is implied
to be 1), then there is no positive integer for n that could give us a value
smaller than b. Therefore, expressions of the form n+b can be used to select
every child from the bth onward; for example, :nth-child(n+4) se-
lects every child except the first, second, and third (Figure 7.10).

n
0 O

We can take advantage of this to select list items when the total num-
ber of items is four or more (Figure 7.11). In this case, we could use n+4
as the expression inside :nth-last-child():

li:first-child:nth-last-child(n+4),
li:first-child:nth-last-child(n+4) ~ 1i {
/* Target list items iff the list

contains at least four items */

http://andr3.net
http://andr3.net/blog/post/142
http://andr3.net/blog/post/142
http://lea.verou.me/demos/nth.html

Similarly, expressions of the form -n+b can be used to select the first b
elements. Therefore, to select all list items if and only if there are four or
fewer of them in the same list (Figure 7.12), we would write:

li:first-child:nth-last-child(-n+4),
li:first-child:nth-last-child(-n+4) ~ 1i {
/* Target list items iff the list

contains at most four items */

Of course, we could combine the two, but the code now gets even more
unwieldy. Assume we want to target list items when the list contains be-
tween 2-6 items:

li:first-child:nth-last-child(n+2):nth-last-child(-n+6),
li:first-child:nth-last-child(n+2):nth-last-child(-n+6) ~ 1i {
/* Target list items iff the list

contains 2-6 items */

play.csssecrets.io/styling-sibling-count

® Selectors RELATED

w3.org/TR/selectors SPECS

v v v v
1 2 3 4

v v v v
) 6 7 8

FIGURE 7.11

Which elements get selected with
li:first-child:nth-last-
child(n+4),
li:first-child:nth-last-
child(n+4) ~ 1iin lists of three,
four, and eight elements

v v v
1 2 3

v v v v
1 2 3 4

FIGURE 7.12

Which elements get selected with
li:first-child:nth-last-
child(-n+4),
li:first-child:nth-last-
child(-n+4) ~ 1iin lists of
three, four, and eight elements

SECRET #38: STYLING BY SIBLING COUNT

http://play.csssecrets.io/styling-sibling-count
http://w3.org/TR/selectors

Popular home-sharing website

airbnb.com uses this pattern in its
footer

Fluid
background,
fixed content

The problem

In the past few years, there is a certain web design trend that has been
growing in popularity: it's what | call “fluid background width, fixed content
width.” The typical characteristics of this pattern are:

There are multiple sections, each occupying the entire width of the viewport
and each with a different background.

The content is of fixed width, even if that width varies in different resolutions
because said fixed width is modified by media queries. In some cases, dif-
ferent sections have different content widths as well.

Sometimes the entire website is comprised of sections styled this way
(Figure 7.15, or, more subtly, Figure 7.14). More frequently, only specific
sections follow this pattern, especially footers (Figure 7.13).

http://airbnb.com

HOTELS FLIGHTS CARS PACKAGES DEALS

Flights

Round-trip One-way Multi-city

Boston (80S) San Francisco (SFO) 5 Depar £ Retum 1 adult, Economy

Include nearby Include nearby.

Compare hundreds of travel sites at once.
Find the best deals faster.

P Eléﬁlﬁﬁm =

The most common way to accomplish something like this is using two
elements for each section, one for the fluid background and one for the
fixed content width. The latter is centered horizontally via margin:
auto. For example, the markup for such a footer could look like this:

<footer>
<div class="wrapper">
<!-- Footer content here -->
</div>
</footer>

The CSS usually involves rules of this general structure:

footer {

background: #333;
}
.wrapper {

max-width: 900px;

margin: lem auto;

Popular travel booking website
kayak.com uses this pattern
throughout its homepage, in a very
subtle way

http://kayak.com

OUR STORY

THE SOURCE OF OUR
INSPIRATION

The beautiful Irish website of
Cono Sur Vineyards and Winery
(conosur. ie) makes extensive use
of this pattern

Don't forget to include white-

space around any - and + oper-
ators in calc(), otherwise it's a
parsing error! The reason for this
weird rule is forward compatibility: in
the future, identifiers might be al-
lowed inside calc(), and they can
contain hyphens.

Looks familiar? Most web designers/developers have written similar code at
some point. Are the extra elements a necessary evil, or can we use modern
CSS to avoid them?

The solution

Let's think for a bit about what margin: auto does in this case. The mar-
gin it produces is equal to half of the viewport width, minus half of our page
width. Because percentages here refer to the viewport width (assuming
there is no ancestor with an explicit width), we could express this in our case
as 50% - 450px. However, the calc() function, defined in CSS Values
and Units Level 3 (w3.0rg/TR/css-values-3/#calc), allows us to spec-
ify this kind of simple math directly in our stylesheet. By substituting auto
with calc(), our wrapper rule will become:

.wrapper {
max-width: 900px;
margin: lem calc(50% - 450px);

The only reason we had to use a second wrapper element was to be able
to apply the magic auto keyword on its margin. However, now we re-
moved the magic and replaced it with calc(), so it's just another CSS
length value that can be used in any property that accepts lengths. This
means that if we want, we can now apply it to the parent instead as
padding:

footer {
max-width: 900px;
padding: lem calc(50% - 450px);
background: #333;

}

.wrapper {}

http://w3.org/TR/css-values-3/#calc
http://w3.org/TR/css-values-3/#calc
http://conosur.ie
http://conosur.ie

As you can see, by doing that, we've eliminated any CSS code from the
wrapper, which means we don't really need it anymore and we can safely
get rid of it from our markup. We have now achieved the style we wanted
with no redundant HTML. Can we improve it even further? As usual, the
answer to this question is yes.

Notice that if we comment out the width declaration, nothing hap-
pens. The visual result is exactly the same, and behaves the same regardless
of viewport size. Why is that? Because a padding of 50% - 450px only
leaves 900px (2 x 450px) of available space anyway. We would see a dif-
ference if width was anything other than 900px, smaller or larger. But
900px is the space we get anyway, so it's redundant and we can remove
it, which results in DRY-er code.

Another improvement we can make is to improve backward compati-
bility, by adding a fallback so that we at least get some padding if calc()
is not supported:

footer {
padding: 1lem;
padding: lem calc(50% - 450px);
background: #333;

This is it: we've achieved a flexible, DRY, backward-compatible result in only
three lines of CSS and no extra markup!

play.csssecrets.io/fluid-fixed

m CSS Values & Units RELATED

w3.org/TR/css-values SPECS

FIGURE 7.16
Popular Mac OS productivity

application Alfred
(alfredapp.com)also uses this style
throughout its website

This solution could end up with

no padding if the screen got
narrower than the content width!
We can fix that with media queries.

SECRET #39: FLUID BACKGROUND, FIXED CONTENT

http://play.csssecrets.io/fluid-fixed
http://w3.org/TR/css-values
http://alfredapp.com

Vertical
centering

The problem

“44 years ago we put a man on the moon, yet we still can’t vertically centre
things in CSS.”

— James Anderson (twitter.com/jsa/status/358603820516917249)

Centering an element horizontally in CSS is very straightforward: if it's an
inline element, we apply text-align: center toits parent, if it's a block
element, we apply margin: auto to it. However, just the thought of
vertically centering an element is enough to make our skin crawl.

Over the years, vertical centering has become the holy grail of CSS, as
well as a popular inside joke between frontend professionals. The reason
being that it has all of the following properties at the same time:

It's very frequently needed.
It sounds exceedingly easy and simple in theory.
It used to be incredibly difficult in practice, especially for elements of variable

dimensions.

Frontend developers over the years have exhausted their creativity in coming
up with solutions to this conundrum, most of them disturbingly hacky. In
this secret, we are going to explore some of the best modern techniques to

https://twitter.com/jsa/status/358603820516917249

achieve vertical centering for all needs. Note that there are a few popular
techniques that are not discussed here, for various reasons:

The table layout method (using table display modes) is not included, as it
requires several redundant HTML elements.

The inline-block method is not included, as it's too hacky for my taste.

However, if you are interested, you can read about both of these techniques
on Chris Coyier's excellent article “Centering in the Unknown"” (css-
tricks.com/centering-in-the-unknown).

Unless otherwise noted, we will use the following markup right inside
the <body> element, although the solutions we will explore should work
regardless of container:

<main>
<h1>Am I centered yet?</hil>
<p>Center me, pleasel!</p>

</main>

We also apply some basic CSS for backgrounds, padding, and so on, in order
to get to the starting point shown in Figure 7.17.

The absolute positioning solution

One of the earliest vertical centering techniques was the following, which
required a fixed width and height:

main {
position: absolute;
top: 50%;
left: 50%;
margin-top: -3em; /* 6/2 = 3 */
margin-left: -9em; /* 18/2 = 9 */
width: 18em;

Am | centered yet?

Center me, please!

Our starting point

http://css-tricks.com/centering-in-the-unknown

Am | centered

Vertical centering with unspecified
dimensions via our CSS transforms
trick

height: 6em;

Essentially, it places the element’s top-left corner at the center of the view-
port (or the closest positioned ancestor) and then uses negative margins of
half its width and height to move it up and left so that the element’s center
is at the center of the viewport. With calc() it could be simplified to
use two declarations fewer:

main {
position: absolute;
top: calc(50% - 3em);
left: calc(50% - 9em);
width: 18em;
height: 6em;

Obviously, the biggest problem with this technique is that it requires
fixed dimensions, while we often need to center elements whose dimen-
sions are determined by their contents. If only we had a way to use percen-
tages that resolve to the element’s dimensions, our issue would be solved!
Unfortunately, for most CSS properties (including margin), percentages
resolve relative to the dimensions of their parent.

As is common with CSS, often solutions come from the most unlikely
places. In this case, CSS transforms. When we use percentages in
translate() transforms, we are moving the element relative to its own
width and height, which is exactly what we need here. We can thus replace
the negative offsets that hardcode our elements dimensions with
percentage-based CSS transforms and get rid of the hardcoded dimensions:

main {
position: absolute;
top: 50%;
left: 50%;
transform: translate(-50%, -50%);

You can see the result in Figure 7.18, but there aren't really any surprises
there: our container is perfectly centered, just like what we'd expect.
Of course, no technique is perfect, and this one has a few caveats:

Absolute positioning is often not an option as its effects on the whole layout
are quite drastic.

If the element to be centered is taller than the viewport, its top is clipped
(Figure 7.19). There are ways to work around this, but they are incredibly
hacky.

In some browsers, this can cause elements to appear slightly blurry, due to
them being placed on a half pixel. This can be fixed by applying
transform-style: preserve-3d, although this is a hack and is not
guaranteed to be future-proof.

play.csssecrets.io/vertical-centering-abs

It proved quite difficult to track down who originally came up with this
helpful trick, but the earliest source seems to be the StackOverflow
(stackoverflow.com) user “Charlie” (stackoverflow.com/users/
479836/charlie) as a response to the question “Align vertically using
CSS 3?"” (stackoverflow.com/a/16026893/90826) on April 16, 2013.

If the element we are trying to center
is taller than the viewport, its top is
clipped

HAT TIP

http://play.csssecrets.io/vertical-centering-abs
http://stackoverflow.com
http://stackoverflow.com/users/479836/charlie
http://stackoverflow.com/a/16026893/90826
http://stackoverflow.com/a/16026893/90826

Am | centered yet?

Center me, please!

Using percentages in margin to
refer to the viewport dimensions
does not produce the expected
results

The viewport unit solution

Assuming we want to avoid absolute positioning, we could still use the
translate() trick to move the element by half its width and height.
However, how do we give it the initial offsets of 50% from the top and left
corner of the container, without 1eft and top?

Our first thought might be to use percentages in the margin property,

like so:
main {
width: 18em;
padding: lem 1.5em;
margin: 50% auto ©;
transform: translateY(-50%);
}

However, as you can see in Figure 7.20, this produces rather odd re-
sults. The reason is that percentages in margin are computed relative
to the width of the parent. Yes, even percentages for margin-top and
margin-bottom!

Thankfully, if we are trying to center an element on the viewport, there
is still hope. CSS Values and Units Level 3 (w3.0rg/TR/css-values-3/
#viewport-relative-Lengths) defined a family of new units, called
viewport-relative lengths:

VW is relative to the viewport width. Contrary to many expectations, 1vw
stands for 1% of the viewport width, not 100%.
Similarly to vw, 1vh represents 1% of the viewport height.

1vmin is equal to 1vw if the viewport width is smaller than the height,
otherwise it is equal to 1vh.

1vmax is equal to 1vw if the viewport width is larger than the height, other-
wise it is equal to 1vh.

In this case, what we need is vh for our margins:

http://w3.org/TR/css-values-3/#viewport-relative-lengths

main {
width: 18em;
padding: lem 1.5em;
margin: 50vh auto ©;
transform: translateY(-50%);

As you can see in Figure 7.21, this works flawlessly. Of course, the useful-
ness of this technique is severely limited due to the fact that it only works
for vertically centering in the viewport.

play.csssecrets.io/vertical-centering-vh

The Flexbox solution

This is undoubtedly the best solution available, as Flexbox (w3.org/TR/
css-flexbox)was designed precisely to help with issues like this. The only
reason other solutions are still discussed is because other methods have
better browser support, although these days browser support for Flexbox in
modern browsers is very good

All it takes is two declarations: display: flex on the parent of the
centered element (the <body> element in our example) and our familiar
margin: auto on the child to be centered (<main> in our example):

body {
display: flex;
min-height: 100vh;
margin: 9;

main {

margin: auto;

Note that you can also use viewport-
relative lengths to create full-screen
sections with no scripting. For more
details, see “Make full screen sec-
tions with 1 line of CSS” by An-
drew Ckor (medium.com/@ckor/
make-full-screen-sections-
with-1-line-of-css-
b82227c75chd).

Am | centered yet?

Center me, please!

Using 50vh as the top margin solved
our problem and now our box is
vertically centered

http://play.csssecrets.io/vertical-centering-vh
http://w3.org/TR/css-flexbox
https://medium.com/@ckor/make-full-screen-sections-with-1-line-of-css-b82227c75cbd
https://medium.com/@ckor/make-full-screen-sections-with-1-line-of-css-b82227c75cbd
https://medium.com/@ckor/make-full-screen-sections-with-1-line-of-css-b82227c75cbd

Using Flexbox to center anonymous
text boxes

We could have used the same prop-

erties on <body> to center the
<main> element, but the margin:
auto approach is more elegant and
doubles as a fallback.

Note that when using Flexbox, margin: auto doesn’t only cen-
ter the element horizontally, but vertically as well. Also note that we
didn’t even have to set a width (though we could, if we wanted to): the
assigned width is equivalent to max-content (remember the intrinsic siz-
ing keywords from the “Intrinsic sizing” secret on page 262?).

If Flexbox is not supported, the result would look like our starting point
in Figure 7.17 (if we set a width), which is perfectly acceptable, even if not
vertically centered.

Another advantage of Flexbox is that it can be used to vertically center
anonymous containers (i.e., text without any wrapper). For example, if our
markup was the following:

<main>Center me, please!</main>

We could specify fixed dimensions to main and center the text inside
it too, via the align-items and justify-content properties that
Flexbox introduced (Figure 7.22):

GEED Align all the things!

As is already planned in CSS Box Alignment Level 3 (w3.0rg/TR/css-align-3), in the future we won't
even need to use a different layout mode for easy vertical centering, we will just be able to do it with the

following line:

: center;

This will just work, regardless of what other properties are applied to the element. It may sound too good

to be true, but it's coming soon at a browser near you!

286 CHAPTER 7: STRUCTURE & LAYOUT

http://w3.org/TR/css-align-3

main {
display: flex;
align-items: center;
justify-content: center;
width: 18em;
height: 1@em;

m play.csssecrets.io/vertical-centering

CSS Transforms RELATED
w3.0org/TR/css-transforms SPECS

CSS Values & Units

w3.org/TR/css-values
CSS Flexible Box Layout
w3.org/TR/css-flexbox

CSS Box Alignment
w3.org/TR/css-align

SECRET #40: VERTICAL CENTERING

http://play.csssecrets.io/vertical-centering
http://w3.org/TR/css-transforms
http://w3.org/TR/css-values
http://w3.org/TR/css-flexbox
http://w3.org/TR/css-align

Specifically, the issue appears on

pages whose content is shorter than
the viewport height minus the footer
height.

Sticky
footers

Prerequisites

Viewport-relative units (see the “Vertical centering” secret on page
280), calc()

The problem

This is one of the oldest and most common problems in web design, so
common that most of us have experienced it at one point or another. It can
be summarized as follows: a footer with any block-level styling, such as a
background or shadow, works fine when the content is sufficiently long,
but breaks on shorter pages (such as error messages). The breakage in this
case being that the footer does not “stick” at the bottom of the viewport
like we would want it to, but at the bottom of the content.

Itis not only its ubiquity that made it popular, but also how deceptively
easy it looks at first. It's a textbook case of the type of problem that re-
quires significantly more time to solve than expected. In addition, this is
still not a solved problem in CSS 2.1: almost all classic solutions require

a fixed height for the footer, which is flimsy and rarely feasible. Furthermore,
all of them are overly complicated, hacky, and have specific markup
requirements. Back then, this was the best we could do, given the limita-
tions of CSS 2.1. But can we do better with modern CSS, and if so, how?

Fixed height solution

We will work with an extremely bare-bones page with the following markup
inside the <body> element:

<header>
<h1>Site name</h1>
</header>
<main>
<p>Bacon Ipsum dolor sit amet..
<!-- Filler text from baconipsum.com --></p>
</main>
<footer>
<p>© 2015 No rights reserved.</p>
<p>Made with % by an anonymous pastafarian.</p>

</footer>

We have also applied some basic styling to it, including a background
on the footer. You can see how it looks in Figure 7.23. Now, let's reduce
the content a bit. You can see what happens then, in Figure 7.24. This is
the sticky footer problem in all its glory! Great, we have recreated the prob-
lem, but how do we solve it?

If we assume that our footer text will never wrap, we can deduce a CSS
length for its height:

2 lines x line height + 3 x paragraph margin + vertical padding =

2x1.5em+ 3 x1lem+ lem=7em

If you‘ve never had the pleasure of
pulling your hair out and diving in
the existing literature for this prob-
lem, here are a few popular links
with existing, widely used solutions
that have served many a web devel-
oper before CSS Level 3 specs were
conceived:

cssstickyfooter.com

ryanfait.com/sticky-footer

css-tricks.com/
snippets/css/sticky-footer

pixelsvsbytes.com/blog/
2011/09/sticky-css-footers-
the-flexible-way

mystrd.at/modern-clean-css-
sticky-footer

The last two are the most minimal in
the lot, but still have their own
limitations.

Site name

pancetta, Qui drumstick t

capicola laborum. M;

ipsu

thone pariatur. Ham hock reprehenderit sint beef,

figiat

cupim

pork chop beef ribs Ie amburger cillum turkey

ut doner culpa.

Made with 15 pastafarian

How our simple page looks when its
content is sufficiently long

http://cssstickyfooter.com
http://ryanfait.com/sticky-footer
http://css-tricks.com/snippets/css/sticky-footer
http://css-tricks.com/snippets/css/sticky-footer
http://pixelsvsbytes.com/blog/2011/09/sticky-css-footers-the-flexible-way
http://pixelsvsbytes.com/blog/2011/09/sticky-css-footers-the-flexible-way
http://pixelsvsbytes.com/blog/2011/09/sticky-css-footers-the-flexible-way
http://mystrd.at/modern-clean-css-sticky-footer
http://mystrd.at/modern-clean-css-sticky-footer

Site name

The sticky footer problem in all its
glory

Be careful when using calc()

with subtraction or addition:
the + and - operators require
spaces around them. This very odd
decision was made for future com-
patibility. If at some point keywords
are allowed in calc(), the CSS
parser needs to be able to distinguish
between a hyphen in a keyword and
a minus operator.

Site name

The footer after we've applied CSS

to make it stick

Similarly, the header height is 2.5em. Therefore, by using viewport-
relative units and calc(), we can “stick” our footer to the bottom with
essentially one line of CSS:

main {
min-height: calc(1@@vh - 2.5em - 7em);
/* Avoid padding/borders screwing up our height: */

box-sizing: border-box;

Alternatively, we could apply a wrapper around our <header> and <main>
elements so that we only need to calculate the footer height:

#wrapper {
min-height: calc(100vh - 7em);

This works (Figure 7.25) and it seems to be slightly better than the existing
fixed height solutions, mainly due to its minimalism. However, except for
very simple layouts, this is not practical at all. It requires us to assume that
the footer text will never wrap, we need to edit the min-height every
time we change the footer metrics (i.e., it is not DRY), and unless we're
willing to add a wrapper HTML element around our header and content,
we need to do the same calculations and modifications for the header as
well. Surely, in this day and age we can do better, right?

play.csssecrets.io/sticky-footer-fixed

Flexible solution

Flexbox is perfect for these kinds of problems. We can achieve perfect flex-
ibility with only a few lines of CSS and there is no need for weird calculations

http://play.csssecrets.io/sticky-footer-fixed

or extra HTML elements. First, we need to apply display: flex to the
<body> element, as it's the parent of all three of our main blocks, to toggle
Flexible Box Layout (Flexbox) for all three of them. We also need to set
flex-flow to column, otherwise they will be all laid out horizontally on
a single row (Figure 7.26):

body {
display: flex;
flex-flow: column;

At this point, our page looks about the same as it did before all the Flexbox
stuff, as every element occupies the entire width of the viewport and its size
is determined by its contents. Ergo, we haven't really taken advantage of
Flexbox yet.

To make the magic happen, we need to specify a min-height of
100vh on <body>, so that it occupies at least the entire height of the
viewport. At this point, the layout still looks exactly like Figure 7.24, be-
cause even though we have specified a minimum height for the entire body
element, the heights of each box are still determined by their contents (i.e.,
they are intrinsically determined, in CSS spec parlance).

What we need here is for the height of the header and footer to be
intrinsically determined, but the height of the content should flexibly
stretch to all the leftover space. We can do that by applying a flex value
that is larger than @ (1 will work) to the <main> container:

body {
display: flex;
flex-flow: column;
min-height: 100vh;

main { flex: 1; }

Site

name

Applying flex without applying
anything else arranges the children
of our element horizontally

The flex property is ac-

tually a shorthand of
flex-grow, flex-shrink, and
flex-basis. Any element with a
flex value greater than @ becomes
flexible and f1ex controls the ratio
between the dimensions of different
flexible elements. For example, in
our case, if <main> had flex: 2
and <footer> had flex: 1, the
height of the footer would be twice
the height of the content. Same if
the values were 4 and 2 instead of 2
and 1, because it's their relation-
ship that matters.

That's it, no more code required! The perfect sticky footer (same visual result

as in Figure 7.25), with only four simple lines of code. Isn't Flexbox
beautiful?

play.csssecrets.io/sticky-footer

Hat tip to Philip Walton (philipwalton.com) for coming up with this
technique (philipwalton.github.io/solved-by-flexbox/demos/
sticky-footer).

HAT TIP

CSS Flexible Box Layout RELATED
w3.0org/TR/css-flexbox SPECS

CSS Values & Units

w3.org/TR/css-values

CHAPTER 7: STRUCTURE & LAYOUT

http://play.csssecrets.io/sticky-footer
http://philipwalton.com
http://philipwalton.github.io/solved-by-flexbox/demos/sticky-footer
http://philipwalton.github.io/solved-by-flexbox/demos/sticky-footer
http://w3.org/TR/css-flexbox
http://w3.org/TR/css-values

Transitions &
Animations

Elastic
transitions

Prerequisites

Basic CSS transitions, basic CSS animations

The problem

Elastic transitions and animations (i.e., transitions that “bounce”) are a pop-
ular way to make an interface feel more playful and realistic—when objects
are moving in real life, they rarely go from A to B with no elasticity.
Why use transforms and not some From a technical point of view, a bouncing effect is when a transition
other CSS property, like top or

. ,) reaches the final value, then rewinds for a little bit, then reaches the final
margin-top? At the time of writ-

ing, transforms tend to be smoother, value again, one or more times diminishingly, until it reaches the end for

whereas other CSS properties often good. For example, let's assume we are animating an element styled like a

s1ap to pixel boundares. falling ball (see Figure 8.1), by transitioning transform from none to
translateY(350px).

Of course, bounces are not just about positional movement. They can
greatly enhance almost any kind of transition, including:

= Size transitions (e.g., making an element larger on :hover, displaying a
popup that grows from transform: scale(®), animating the barsin a
bar chart)

= Angular movement (e.g., rotations, a pie chart whose slices grow from 0 via

an animation)

Quite a few JavaScript libraries offer animation capabilities with bounce built
in. However, these days we don't need scripting for animations and transi-
tions any longer. However, what'’s the best way to code a bounce in CSS?

FIGURE 8.1
' A real-life bouncing movement

J

J
_9

Bouncing animations

Our first hunch might be to use a CSS animation, with keyframes such as
the following:

SECRET #42: ELASTIC TRANSITIONS

(50%, 80%)

The default timing function (ease)
for all transitions and animations

@keyframes bounce {
60%, 80%, to { transform: translateY(350px); }
70% { transform: translateY(250px); }
90% { transform: translateY(300px); }

¥

.ball {
/* Dimensions, colors, etc. */
animation: bounce 3s;

}

The keyframes in the preceding code specify exactly the same steps as
in Figure 8.1. However, if you run this animation, you will notice that it
looks very artificial. One of the reasons for this is that every time the ball
changes direction, it continues accelerating, which looks unnatural. The
reason is that its timing function is the same across all these keyframes.

“Its timing...what?” you might ask. Every transition and animation is
associated with a curve that specifies how it progresses over time (also
known as “easing” in some contexts). If you don’t specify a timing function,
it will get the default one, which unlike what you might expect is not linear
and is shown in Figure 8.2. Note (as shown by the pink point in
Figure 8.2) how when half of the time has elapsed, the transition is
about 80% along the way!

The default timing function can also be explicitly specified with the
keyword ease, either in the animation/transition shorthand or the
animation-timing-function/transition-timing-function
longhands. However, because ease is the default timing function, it's not
very useful. There are four more pre-baked curves you can use to change
the way the animation progresses, shown in Figure 8.3.

As you can see, ease-out is the reverse of ease-in. This is exactly
what we wanted for our bounce effect: we want to reverse the timing
function every time the direction reverses. \We can therefore specify a
main timing function in the animation property and override it in the
keyframes. We want the timing function of the main direction to be the

The available keywords that
correspond to predetermined timing

functions

(50%, 68%)

(50%, 32%)

ease-out

(50%, 50%) (50%, 50%)

ease-in-out linear

accelerating one (ease-out) and the one of the reverse direction to be
decelerating (ease-1in):

@keyframes bounce {
60%, 80%, to {
transform: translateY(400px);
animation-timing-function: ease-out;
}
70% { transform: translateY(300px); }
90% { transform: translateY(360px); }

.ball {

A cubic Bézier curve for a spiral, with
its nodes and control points showing

The ease timing function with its
nodes and control points displayed

/* Rest of styling here */

animation: bounce 3s ease-in;

If you test the code out, you will see that even this simple change instantly
results in a considerably more realistic bounce. However, restricting
ourselves to these five predetermined curves is extremely limiting. If we
could pick arbitrary timing functions, we would be able to achieve much
more realistic results. For example, if the bounce animation is for a falling
object, then a higher acceleration (such as the one provided by ease)
would create a more realistic result. But how could we create the inverse of
ease, when there is no keyword for it?

All five of these curves are specified through (cubic) Bézier curves. Béz-
ier curves are the kinds of curves you work with in any vector application
(e.g., Adobe lllustrator). They are defined by a number of path segments,
with a handle on each end to control their curvature (these handles are often
called control points). Complex curves contain a large number of such seg-
ments, which are joined at their endpoints (Figure 8.4). CSS timing func-
tions are Bézier curves with only one segment, so they only have two
control points. As an example, you can see the default timing function
(ease) with its control points exposed in Figure 8.5.

In addition to the five predefined curves we discussed in the previous
section, there is also a cubic-bezier () function that allows us to spec-
ify a custom timing function. It takes four arguments, which are the co-
ordinates of the two control points, to create the Bézier curve we are
specifying, with the form cubic-bezier(xy, yi, X2, Y2) where (x4,
y1) are the coordinates of the first control point and (x5, y3) of the second.
The endpoints of the line segment are fixed at (9,0), which is the begin-
ning of the transition (zero elapsed time, zero progression) and (1,1),
which is its end (100% elapsed time, 100% progression).

Note that the restriction on having a single segment whose endpoints
are fixed is not the only one. The x values of both control points are restricted
to the [0, 1] range (i.e., we cannot move the handles outside of the graph
horizontally). This restriction is not arbitrary. As we cannot (yet?) travel
through time, we cannot specify a transition that begins before it is triggered

or ends after its duration. The only real limitation here is the number of
nodes: restricting the curve to only two nodes limits the result quite con-
siderably, but it also makes the cubic-bezier () function simpler to use.
Despite these limitations, cubic-bezier() allows us to create a very di-
verse set of timing functions.

It logically follows that we can reverse any timing function by
swapping the horizontal with the vertical coordinates for both its
control points. This applies to keywords too; all five keywords we discussed
correspond to cubic-bezier() values. For example, ease is equivalent
to cubic-bezier(.25,.1,.25,1),soitsreverse is cubic-bezier(.
1,.25,1,.25) and is shown in Figure 8.6. This way, our bounce anima-
tion can now use ease and look even more realistic:

@keyframes bounce {
60%, 80%, to {
transform: translateY(400px);
animation-timing-function: ease;
}
70% { transform: translateY(300px); }
90% { transform: translateY(360px); }

}
.ball {

/* Styling */

animation: bounce 3s cubic-bezier(.1,.25,1,.25);
}

Using a graphical tool like cubic-bezier.com (Figure 8.7) we can experi-
ment further and improve our bounce animation even more.

play.csssecrets.io/bounce

0%, 30%)

The reverse timing function for ease

http://cubic-bezier.com
http://play.csssecrets.io/bounce

Cubic Bézier curves are notoriously
hard to specify and understand
without a visualization, especially
when they are acting as timing
functions for a transition; thankfully,
there are quite a few online tools for
this, such as cubic-bezier.com
(shown here), made by yours truly

HAT TIP

If you were using a

height and not a trans-
form to show the callout, you would
notice that transitions from
height: @ (or any other) to
height: auto do not work, be-
cause auto is a keyword and cannot
be expressed as an animatable value.
In those cases, use max-height
instead with a sufficiently large
height.

PROGRESSION

TIME

cubic-bezier(.82,.14,.34,.93)

Preview & compare

Duration: €7@ 1 second

Library

Click on a curve to compare it with the current one.

k.

ease linear ease-in ease-out ease-in-out
f / N N J J
double b+~ bounce weird mi-+ mid pause accelerat:-

Tip: Right click on any library curve and select *Copy Link Address" to get a permalink to it which you

can share with others

1,681

W Tweet

In the animate.css animation library by Dan Eden (daneden.me), the

timing function used is cubic-bezier(.215,.61,.355,1) and
cubic-bezier(.755, .05, .855,.06) instead of its reverse, which is
steeper, for increased realism.

Elastic transitions

Suppose we want to show a callout every time a text field is focused, to

supply additional information, such as allowed values. The markup could

look like this:

<label>

Your username: <input id="username" />

Only letters, numbers,

underscores (_) and hyphens (-) allowed!

</label>

http://daneden.me
http://cubic-bezier.com

Your username: Your username:

leaverou leaverou
Your username: Your username:
lcaver0|u leavero}u

Only letters, numbers, underscores
() and hyphens (-) allowed!

Your username:

leaverou

Your username:

leaverou

Only letters, numbers, underscores

(L) and hyphens (-) allowed!

And the CSS for toggling the display could look like the following (we have

omitted everything related to styling or layout):

input:not(:focus) + .callout {

transform: scale(9);

}
.callout {
transition: .5s transform;
transform-origin: 1.4em -.4em;
}

As it currently stands, when the user focuses on our text field, there is a half-
second transition that looks like Figure 8.8. Nothing wrong with that, but
it would look more natural and playful if it overshot a bit at the end (e.g., if
it grew to 110% its size, and then snapped back to 100%). We can do this
by converting the transition to an animation, and applying what we learned

in the previous section:

@keyframes elastic-grow {
from { transform: scale(9); }
70% {

transform: scale(1.1);

animation-timing-function:

cubic-bezier(.1,.25,1,.25); /* Reverse ease */

How our transition looks initially

Our Ul feels more realistic and playful
if we add some elasticity to our
transition

input:not(:focus) + .callout { transform: scale(9); }
input:focus + .callout { animation: elastic-grow .5s; }

.callout { transform-origin: 1.4em -.4em; }

If we try it out, we will see that it does indeed work. You can see how it
looks in Figure 8.9 and compare it with the previous transition. However,
we've essentially used an animation when we really needed a transition.
Animations might be very powerful, but in a case like this where all we
needed was to add some elasticity to our transition, it feels a bit overkill,
like using a chainsaw to cut ourselves a slice of bread. Is there a way to
accomplish something like this with a transition?

The solution lies again in custom cubic-bezier () timing functions.
So far, we have only discussed curves whose control points were in the O
1 range. As we mentioned in the previous section, we cannot exceed this
range horizontally, although this might change in the future if time ma-
chines are ever invented. However, we are allowed to exceed the 0-1
range vertically and get our transition to go below 0% progression or
above 100%. Can you guess what that means? It means that if we are
moving from a scale(@) transform to a scale(1) transform, we can
make it go further than the final value, and reach values like
scale(1.1), or even more, depending on how steep we make the timing
function.

Your username: Your username: Your username: Your username:

leaverou leaverou leavero)u leavero)u

Your username:

lcavcro}u

Your username:

leaverou

Only letters, numbers, underscores
() and hyphens (- allowed!

Your username:

leaverou

Only letters, numbers, underscores
(1) and hyphens (-) allowed!

Your username:

leaverou

Only letters, numbers, underscores
() and hyphens (- allowed!

In this case, we only want very little elasticity, so we want our timing
function to reach 110% progression (which corresponds to scale(1.1))
and then start transitioning back to 100%. Let’s start from the initial ease
timing function (cubic-bezier(.25,.1,.25,1))and move the second
control point toward the top until we reach something like cubic-
bezier(.25,.1,.3,1.5). Asyou can see in Figure 8.10, the transition
now reaches 100% progression at roughly 50% of its total duration. How-
ever, it does not stop there; it continues moving past the end value until
it reaches 110% progression at the 70% time mark and then spends the
remaining 30% of its available time transitioning back to the final value,
resulting in a transition that is very similar to our animation, but is achieved
with only one line of code. For the sake of comparison, our code is now:

input:not(:focus) + .callout { transform: scale(9); }

.callout {
transform-origin: 1.4em -.4em;

transition: .5s cubic-bezier(.25,.1,.3,1.5);

However, although our transition looks as expected when we focus on the
text field and the callout shows up, the results might not be exactly what
one would expect when the text field loses focus and the callout shrinks and
disappears (Figure 8.11). What happened here?! Odd as the result might
look, it's actually expected: when we tab out of the input field, the transition
that fires has scale(1) as its starting value and scale(®) as it's final
value. Therefore, because the same timing function is applied, the transition
will still reach 110% progression after 350ms. Only this time, 110% pro-
gression does not translate to scale(1.1), but to scale(-0.1)!

Don't give up just yet though, because fixing this issue only adds one
more line of code. Assuming we just want a regular ease timing function
when the callout shrinks, we can do it by overriding the current timing
function in the CSS rule that defines its closed state:

(70%, 110%)

(50%; 100%)

A custom timing function with
vertical coordinates outside the 0-1
range

Your username: Your username:

What happened here?! leaverou leaverou

Only letters, numbers, underscores

Only letters, numbers, underscores
() and hyphens () allowed!

(_) and hyphens (-) allowed!

Your username: Your username:

leaverou leaverou

input:not(:focus) + .callout {

transform: scale(9);

Your username:

leaverou

Only leters, mumbers, underscores

() and byphens () allowed!

Your username:

crou
?1?

transition-timing-function: ease;

transition: .5s cubic-bezier(.25,.1,.3,1.5);

}
.callout {

transform-origin: 1.4em -.4em;
}

If you try it again, you will see that it now closes in exactly the same way as
it did before our custom cubic-bezier() function, but when it opens,
it has the nice elastic effect we were going for.

The most vigilant of readers will also notice another issue: closing the
callout feels very slow. Why is that? Think about it. When it's growing, it
reaches 100% of its final size at 50% progression (i.e., after 250ms). How-
ever, when it is shrinking, going from 0% to 100% takes up all of the time

we specified for the transition (500ms), so it feels half as fast.

To fix that last issue, we can just override the duration as well, either
by using transition-duration orby usingthe transition shorthand
and overriding everything. If we do the latter, we don’t have to explicitly

specify ease, because it is the initial value:

input:not(:focus) + .callout {
transform: scale(9);
transition: .25s;

}
.callout {

transform-origin: 1.4em -.4em;

transition: .5s cubic-bezier(.25,.1,.3,1.5);
}

While elastic transitions can be a nice touch in many kinds of transitions

(some of which we mentioned in the “The problem” section of this secret),
they are a terrible idea for others. The typical case where you don't want
elastic transitions is colors. Although elastic transitions on colors can be
quite amusing (see Figure 8.12), they are usually not desirable for a Ul.

To guard against accidentally applying elastic transitions to colors, try
to restrict transitions to specific properties, instead of not specifying any
like we did before. When we don't specify any properties in the
transition shorthand, transition-property gets its default value:
all. This means that anything that can be transitioned, will be tran-
sitioned. Therefore, if we later add a background change on the rule that
is applied to open callouts, the elastic transition will now be applied to that
too. The final code looks like this:

input:not(:focus) + .callout {

FIGURE 8.12

An elastic color transition from

@ rgb(100%, 0%, 40%) to

@ sray (rgb(50%, 50%, 50%))
with a timing function of cubic-
bezier(.25,.1,.2,3). Each
RGB coordinate interpolates
individually, so we reach weird colors
like @ rgb(0%, 100%, 60%).
Check out play.csssecrets.io/
elastic-color.

SECRET #42: ELASTIC TRANSITIONS

http://play.csssecrets.io/elastic-color
http://play.csssecrets.io/elastic-color

m Speaking of restricting

transitions to specific
properties, you can even queue the
transitions for the different proper-
ties, via transition-delay,
which is the second time value in the
transition shorthand. For exam-
ple, if both width and height are
transitioning and you want the
height to go first and the width sec-
ond (an effect popularized by many
lightbox scripts), you could do it with
something like transition: .5s
height, .8s .5s width; (i.e.,
the delay of the width transition is
equal to the duration of the height
transition).

transform: scale(9);

transition: .25s transform;

¥
.callout {

transform-origin: 1.4em -.4em;

transition: .5s cubic-bezier(.25,.1,.3,1.5) transform;
}

m play.csssecrets.io/elastic

CSS Transitions RELATED
w3.org/TR/css-transitions SPECS

CSS Animations

w3.org/TR/css-animations

CHAPTER 8: TRANSITIONS & ANIMATIONS

http://play.csssecrets.io/elastic
http://w3.org/TR/css-transitions
http://w3.org/TR/css-animations

commented lin dabblet’s tii

#f06;
linear-gradient(45deg, #f06, yellow):

FIGURE 8.13

A semi-transparent progress
indicator (on dabblet.com); this is
impossible to achieve with animated
GlFs

Frame-by-frame
animations

Basic CSS animations, the “Elastic transitions” secret on page 294

The problem

Quite often, we need an animation that is difficult or impossible to achieve
by transitioning CSS properties on elements. For example, a cartoon moving
or a complex progress indicator. In this case, image-based frame-by-frame
animations are perfect, but surprisingly challenging to accomplish on the
Web in a flexible manner.

At this point, you might be wondering, “Can't we just use animated
GIFs?"” The answer is yes, for many cases, animated GIFs are perfect. How-
ever, they have a few shortcomings that might be a dealbreaker for certain
use cases:

= They are limited to a 256 color palette, shared across all frames.

http://dabblet.com

= They cannot have alpha transparency, which can be a big problem when
we don't know what will be underneath our animated GIF. For example, this
is very common with progress indicators (see Figure 8.13).

= There is no way to modify certain aspects from within CSS, such as duration,
repetitions, pausing, and so on. Once the GIF is generated, everything is
baked into the file and can only be changed by using an image editor and
generating another file. This is great for portability, but not for exper-
imentation.

Back in 2004, there was an effort by Mozilla to address the first two For more information about APNG,
issues by allowing frame-by-frame animation in PNG files, akin to the see wikipedia.org/Wiki/APNG.
way we can have both static and animated GIF files. It was called APNG and
was designed to be backward compatible with non-supporting PNG view-
ers, by encoding the first frame in the same way as traditional PNG files, so
old viewers would at least display that. Promising as it was, APNG never got
enough traction and to this day, has very limited browser and image editor
support.

Developers have even used JavaScript to achieve flexible frame-by-
frame animations in the browser, by using an image sprite and animating
its background-position with JS. You can even find small libraries to
facilitate this! Is there a straightforward way to achieve this with only nice,
readable CSS code?

The solution

Let's assume we have all frames of our animation in a PNG sprite like the

one shown in Figure 8.14.

FIGURE 8.14

Our spinner’s eight frames
(dimensions: 800x100)

We also have an element that will hold the loader (don't forget to include
some text, for accessibility!), to which we have already applied the dimen-
sions of a single frame:

SECRET #43: FRAME-BY-FRAME ANIMATIONS

http://wikipedia.org/wiki/APNG

<div class="loader">Loading..</div>

.loader {
width: 100px; height: 100px;

background: url(img/loader.png) 0 0;

/* Hide text */
text-indent: 200%;
white-space: nowrap;

overflow: hidden;

Currently, the result looks like Figure 8.15: the first frame is displayed,
but there is no animation. However, if we play with different background-
position values, we will notice that -10@px @ gives us the second frame,
-200px 0 gives us the third frame, and so on. Our first thought could be

to apply an animation like this:

@keyframes loader {
to { background-position: -800px 0; }

.loader {
width: 100px; height: 100px;
background: url(img/loader.png) 0 9;

The first frame of our loader shows,
but there is no animation yet
animation: loader 1s infinite linear;

/* Hide text */
text-indent: 200%;
white-space: nowrap;

overflow: hidden;

However, as you can see in the following stills (taken every 167ms), this

doesn't really work:

FIGURE 8.16

Our initial attempt for a frame-by-
frame animation failed, as we did
not need interpolation between
keyframes

[t might seem like we're going nowhere, but we are actually very close to
the solution. The secret here is to use the steps () timing function, instead
of a Bézier-based one.

“The what timing function?!” you might ask. As we saw in the previous
chapter, all Bézier-based timing functions interpolate between keyframes to
give us smooth transitions. This is great; usually, smooth transitions are ex-
actly the reason we are using CSS transitions or animations. However, in this
case, this smoothness is destroying our sprite animation.

Very unlike Bézier timing functions, steps () divides the whole ani-
mation in frames by the number of steps you specify and abruptly

PROGRESSION

switches between them with no interpolation. Usually this kind of abrupt- TIME

ness is undesirable, so steps() is not talked about much. As far as CSS
FIGURE 8.117

A comparison of steps(8),

timing functions go, Bézier-based ones are the popular kids that get invited
to all the parties and steps () is the ugly duckling that nobody wants to Linear and the default timing
have lunch with, sadly. However, in this case, it's exactly what we need. Once function, ease

we convert our animation to the following, our loader suddenly starts work-

ing the way we wanted it to:

animation: loader 1s infinite steps(8);

Keep in mind that steps() also accepts an optional second parameter,
start or end (default) that specifies when the switch happens on every
interval (see Figure 8.17 for the default behavior of end), but that is rarely

SECRET #43: FRAME-BY-FRAME ANIMATIONS

needed. If we only need a single step, there are also shortcuts: step-start
and step-end, which are equivalent to steps(1, start) and
steps(1, end), respectively.

play.csssecrets.io/frame-by-frame

Hat tip to Simurai (simurai.com/) for coming up with this useful techni-
que in Sprite sheet animation with steps() (simurai.com/blog/
2012/12/03/step-animation).

HAT TIP

u CSS Animations RELATED

w3.org/TR/css-animations SPECS

CHAPTER 8: TRANSITIONS & ANIMATIONS

http://play.csssecrets.io/frame-by-frame
http://simurai.com/
http://simurai.com/blog/2012/12/03/step-animation
http://w3.org/TR/css-animations

inking

Prerequisites

Basic CSS animations, the “Frame-by-frame animations” secret on
page 308

The problem

Remember the old <b1link> tag? Of course you do. It has become a cultural
symbol in our industry, reminding us of the humble, clumsy beginnings of
our discipline, and always willing to serve as an inside joke between old-
timers. It is universally despised, both because it violated separation of
structure and style, but mainly because its overuse made it a pain for anyone
browsing the Web in the late 90s. Even its own inventor, Lou Montulli, has
said “[l consider] the blink tag to be the worst thing I've ever done for the
Internet.”

However, now that the nightmare of the <blink> tag is long behind
us, we sometimes still find ourselves needing a blinking animation. It feels
weird at first, a bit like discovering some sort of strange perversion inside us

that we never knew we had. The identity crisis stops when we realize that
there are a few use cases in which blinking can enhance usability, rather
than reduce it.

A common UX pattern is blinking a few times (no more than three!) to
indicate that a change has been applied somewhere in the Ul or to highlight
the current link target (the element whose id matches the URL #hash). Used
in such a limited way, blinking can be very effective to draw the user’s at-
tention to an area, but due to the limited number of iterations, it doesn’t
have the adverse effects the <blink> tag did. Another way to keep the
good of blinking (directing user attention) without the bad (distracting, an-
noying, seizure inducing) is to “smoothe” it out (i.e., instead of alternating
between an abrupt “on” and “off” state, to have a smooth progression
between the two).

However, how do we implement all this? The CSS-only replacement for
the <blink> tag, text-decoration: blink, istoo limited to allow us
to do what we want, and even if it was powerful enough, its browser sup-
port is very poor. Can we use CSS animations for this, or is JS our only hope?

The solution

There are actually multiple ways to use CSS animations to achieve any kind
of blinking: on the whole element (via opacity), on the text color (via
color), on its border (via border-color), and so on. In the rest of this
section, we will assume that we want to blink the text only, as that is the
most common use case. However, the solution for other parts of an element
is analogous.

Achieving a smooth blink is rather easy. Our first attempt would prob-
ably look like this:

@keyframes blink-smooth { to { color: transparent } }

.highlight { animation: 1s blink-smooth 3; }

The progression of our text color
over three seconds (three iterations)

This almost works. Our text smoothly fades from its text color to transparent,
however it then abruptly jumps back to the original text color. Plotting
the change of text color over time helps us figure out why this happens
(Figure 8.18).

This might actually be desirable. In that case, we are done! However, when
we want the blinking to be smooth both when the text fades out and when
it fades in, we have a bit more work to do. One way to achieve this would
be by changing the keyframes to make the switch happen in the middle of
each iteration:

@keyframes blink-smooth { 50% { color: transparent } }

.highlight {

animation: 1s blink-smooth 3;

This looks like the result we wanted. However, although it doesn’t show in
this particular animation (because it's difficult to differentiate between tim-
ing functions with color/opacity transitions), it's important to keep in mind
that the animation is accelerating both when it fades in and when it fades
out, which could look unnatural for certain animations (e.g., pulsating ani-
mations). In that case, we can pull a different tool out of our toolbox:
animation-direction.

The only purpose of animation-direction is to reverse either all
iterations (reverse), every even one (alternate) or every odd one
(alternate-reverse). What is great about it is that it also reverses the
timing function, creating far more realistic animations. We could try it on
our blinking element like so:

@keyframes blink-smooth { to { color: transparent } }

.highlight {

animation: .5s blink-smooth 6 alternate;

Note that we had to double the number of iterations (instead of the dura-
tion, like the previous method), as now one fade-in/fade-out pair consists
of two iterations. For the same reason, we also cut animation-duration
in half.

o .

If we want a smooth blink animation, we're done at this point. However,

what if we want a classic one? How do we go about it? Our first attempt
might look like this:

@keyframes blink { to { color: transparent } }

.highlight {

animation: 1s blink 3 steps(1);

However, this will fail spectacularly: absolutely nothing will happen.
The reason is that steps(1) is essentially equivalent to steps(1,
end), which means that the transition between the current color and
transparent will happen in one step, and the value switch will occur
at the end (Figure 8.20). Therefore, we will see the start value for the
entire length of the animation, except one infinitesimally short point

All four values of animation-
direction and their effect on a
color animation from black to
transparent over three iterations

PROGRESSION

TIME

FIGURE 8.20

What steps (1) actually does to
our animation

in time at the end. If we change it to steps(1, start) the opposite
will happen: the switch will occur at the start, so we will only see transparent
text, with no animation or blinking.

A logical next step would be to try steps(2) in both its flavors (start
and end). Now we do see some blinking, but it's between semi-transparent
text and transparent or semi-transparent and normal respectively, for the
same reason. Unfortunately, because we cannot configure steps() to
make the switch in the middle, but only at the start and end, the only sol-
ution here would be to adjust the animation keyframes to make the switch
at 50%, like we did earlier:

@keyframes blink { 50% { color: transparent } }

.highlight {
animation: 1s blink 3 steps(1); /* or step-end */

This finally works! Who would have guessed that a classic abrupt blink
would have been harder to accomplish than a modern, smooth one? CSS
never ceases to surprise....

play.csssecrets.io/blink

® CSS Animations RELATED

w3.0org/TR/css-animations SPECS

CHAPTER 8: TRANSITIONS & ANIMATIONS

http://play.csssecrets.io/blink
http://w3.org/TR/css-animations

Typing
animation

Prerequisites

Basic CSS animations, the “Frame-by-frame animations” secret on
page 308, the “Blinking” secret on page 314

The problem

Sometimes we want to make text appear one by one character, to simulate
typing. This effect is especially popular on tech websites, using monospace
fonts to resemble a terminal command prompt. Used right, it can really
contribute to the rest of the design.

Usually, this is done with long, hacky, complicated JS code. Even
though this is pure presentation, using CSS for this kind of effect seems like

a pipe dream. Or could it be possible?

The World Wide Web project
WORLD WIDE WEB
The WorldWideWeb (W3] a hypermedialil information retr
aiming to g to a large universe of doc
Everything there is online about W3 is linked directly or indirectly to this
document, including an exec of the project, Mailing 1 8l ,

Policyl4] , November’s W3 news[5]1 , Frequently Asked Buestions[B] .

What’s out there?[?]Pointers to the world’s online information,
subjectsl8] , W3 servers[8],

Helpl10] on the browser you are using

Software

Products[i1]

t of W3 project components and their current
(e.g. Line Mode[12] ,X11 Uiolali3l ,
epl14] , s[151 , Tools[16] , Hail
robot[17] , Library[181)
Technicall19] Details of protocols, formats, program internals

etc

{ref.number>, Back, <RETURN> for more, or Help: I

The solution

The main idea is to animate the width of the element that contains our
text from @ to its content width one by one character. You might have al-
ready realized what the limitation of this approach is: it will not work for
multiline text. Thankfully, most of the time, you only want to use such
styling on single-line text anyway, such as headings.

Another thing to keep in mind is that every animation effect has
diminishing returns as its duration increases: short duration animations
make an interface appear more polished and in some cases can even im-
prove usability. However, the longer the duration of the animation, the more
it starts becoming annoying for the user. Therefore, even if the technique
could be used on longer, multiline text, in most cases that would not
be a good idea.

Let's get started with the code! Assume we want to apply this to a top-
level heading (<h1>) that we've already styled with monospace text, and
that looks like the following:

We used a variation of this kind of
animation at CERN, when creating a
web-based simulation of the first
line mode browser (Line-

mode. cern.ch)

Theoretically, we could make this
work for multiline text, but it would
involve wrapping each line in its own
element and maintaining the appro-
priate animation delays (i.e., it's the
kind of solution that is worse than
the problem).

http://line-mode.cern.ch
http://line-mode.cern.ch

CSS is awesome!

Our starting point

CSS
is
awesome!

CSS is
awesome!

CSS is awesome!
Our first attempt at a typing

animation does not resemble typing
at all

CS¢
CSS is aw
CSS is aweson

Our second attempt is closer, but still
not quite there

<h1>CSS is awesome!</hl>

We can easily add an animation that goes from @ to the final width of the
heading, like so:

@keyframes typing {
from { width: o }

}

hl {
width: 7.7em; /* Width of text */
animation: typing 8s;

}

It makes perfect sense, right? However, as you can see in Figure 8.23,
it's a trainwreck that has nothing to do with what we wanted.

You might have guessed what the problems are. First, we forgot to
apply white-space: nowrap; to prevent text wrapping, so as the width
grows, its number of lines changes. Second, we forgot to apply overflow:
hiddenj;, so there is no clipping. If we fix these issues, the real issues with
our animation get uncovered (Figure 8.24). Namely:

The obvious problem is that the animation is smooth instead of revealing
the text character by character.

The less obvious problem is that so far we have been specifying the width
in ems, which is better than doing it in pixels, but still suboptimal. Where
did this 7.7 come from? How do we calculate it?

We can fix the first issue by using steps(), just like in the “Frame-by-
frame animations” secret on page 308 and the “Blinking” secret on
page 314. Unfortunately, the number of steps we need is the number of
characters in our string, which is difficult to maintain or downright impos-
sible for dynamic text. However, we will see later on that we can automate
this with a tiny snippet of JavaScript code.

The second issue could be alleviated by using the ch unit. The ch unit
is one of the new units introduced in CSS Values and Units Level 3
(w3.0rg/TR/css3-values), and represents the width of the “0” glyph. It's
one of the most unknown new units, because in most cases, we don't care
about sizing things relative to the width of the 0 glyph. However, mono-
space fonts are special. In monospace fonts, the width of the “0” glyph
is the same as the width of every glyph. Therefore, the width in ch is
the number of characters: 15 in our example.

Let's put all this together:

@keyframes typing {
from { width: @; }

}
hi {
width: 15ch; /* Width of text */
overflow: hidden;
white-space: nowrap;
animation: typing 6s steps(15);
}

As you can see in the frames in Figure 8.25, now we finally got the
expected result: our text is revealed character by character. However, it still
doesn’t look realistic. Can you spot what's missing?

The last touch that will make this way more realistic is adding a blink-
ing caret. \We have already seen how to create blinking animations in the
“Blinking” secret on page 314. In this case, we could either implement
the caret via a pseudo-element, and use opacity for the blinking, or we
could save our limited pseudo-elements in case we need them for some-
thing else, and use a right border instead:

@keyframes typing {
from { width: o }

CS

CSS is a

CSS is aweso

Now the text is revealed character by

character, but something is still
missing

http://w3.org/TR/css3-values

@keyframes caret {
50% { border-color: transparent; }

}
hl {
width: 15ch; /* Width of text */
overflow: hidden;
white-space: nowrap;
border-right: .05em solid;
animation: typing 6s steps(15),
caret 1s steps(1) infinite;
}
CS Note that unlike the text revealing animation, the caret needs to blink
csS is a indefinitely (even after all of the text has been revealed), hence the
infinite keyword. Also, we did not have to specify a border color, as we
CSS is aweso want it to automatically get the text color. You can see a few stills from the
result on Figure 8.26.
Our animation is now complete with Now our animation works perfectly, although it’s still not very main-
a realistic blinking caret tainable: it requires setting different styles on every heading, depending on

the number of characters in the content, and having to update them every
time we edit said content. This is exactly the kind of task that JS is perfect
for:

$$('h1").forEach(function(hl) {
var len = hl.textContent.length, s = hl.style;

s.width = len + 'ch’;
s.animationTimingFunction = "steps("+len+"),steps(1)";

})s

Just with these few lines of JS we can now have our cake and eat it too: our
animation is not only realistic, but maintainable as well!

All this is nice and dandy, but what happens with browsers that don't
support CSS animations? They will essentially drop all animation-related
stuff, so they will only read this:

hi {
width: 15ch; /* Width of text */
overflow: hidden;
white-space: nowrap;

border-right: .05em solid;

CSS is awesome!
CSS is awesome!

Depending on whether or not they support the ch unit, they will see one
of the fallbacks in Figure 8.27. If you want to avoid the bottom one, you
can provide a fallback in em units as well. If you do not want a non-blinking
caret in your fallback, you could change the caret animation to include the
border in the keyframes, so that when it's dropped you only get an invisible
transparent border, like so:

@keyframes caret {
50% { border-color: currentColor; }

hi {
7% caa ¥
border-right: .05em solid transparent;
animation: typing 6s steps(15),

caret 1s steps(1) infinite;

The potential fallbacks for browsers
with no CSS animation support (top:
with ch unit support, bottom:
without ch unit support)

This is pretty much as good as fallbacks get: in older browsers, there is no
animation, but nothing breaks at all and the text is perfectly accessible and
even styled the same way.

CSS Animations RELATED
w3.0org/TR/css-animations SPECS

CSS Values & Units

w3.org/TR/css-values

CHAPTER 8: TRANSITIONS & ANIMATIONS

http://play.csssecrets.io/typing
http://w3.org/TR/css-animations
http://w3.org/TR/css-values

Smooth state
animations

Prerequisites

Basic CSS animations, animation-direction (briefly mentioned in

the “Blinking” secret on page 314)

The problem

Animations do not always start on page load. More often than not, we want
to use animations in response to a user action, such as hovering over
an element or holding the mouse down on it (:active). In that case, we
might not have control over the actual number of iterations, as user activity
might force the animation to stop before it gets a chance to finish the num-
ber of iterations we have specified. For example, the user might trigger a
fancy :hover animation and mouse out of the element before the anima-
tion finishes. What do you expect should happen in these cases?

If you answered something along the lines of “the animation should
stay at its current state” or “it should smoothly transition to the pre-
animation state” you are in for a nasty surprise. By default, the animation

! aBrrrise Rusy/RAILs DEVELOPER

i WITH A PENCHANT FOR TWEED,

| FINE COFFEE, AND HOMEBREWING.

. When not working for clients, L help organise fun
eyents around the world that teach people to

| program flying robots. I also occasionally speak at

! international conferences on the intersection of

! programming and robotics. In the past, I've

;. worked as a Systems Developer at The University

1 of Bath for five years. More recently, I was the
Lead Developer at Artolo.

A Brrrisa Rusy/RaiLs DEVELOPER
WITH A PENCHANT FOR TWEED, FINE
| COFFEE, AND HOMEBREWING.
When not working for clients, I help organise fun
{ | events around the world that teach people to
program flying robots. I also occasionally speak at
international conferences on the intersection of
programming and robotics. In the past, I’ve
worked as a Systems Developer at The University
of Bath for five years. More recently, I was the
Lead Developer at Artolo.

will just stop and abruptly jump back to the pre-animation state. This
might sometimes be acceptable in the case of very subtle animations. How-
ever, in most cases it just results in very choppy user experience. Can we
change this behavior?

The solution

Assume we have a very long landscape photo, such as the one in
Figure 8.29, but the space we have available to display it is a 150 x 150
pixel square. One way to solve the problem is animation: show the left edge
of the image by default, and make it scroll to reveal the rest when the user

| finally decided to find a solution to
this problem when working on a
simple one-page website as a
birthday gift for my friend Julian
(juliancheal.co.uk). Notice the
circular picture on the right. The
image file | had was actually
landscape. The circle crops its right
part, but when the user hovers over
it, it slowly starts scrolling to the left,
revealing the cropped part. By
default, when the user moved their
cursor away, it abruptly snapped
back to its original position, which
made the Ul feel broken. Because
this was a tiny website, and this
picture the centerpiece, | decided |
couldn’t turn a blind eye to the issue.

This is yet another reason to use tran-
sitions when possible. Instead of
abruptly jumping to the pre-
animation state, transitions play in
reverse to smoothly transition back
to the original value.

http://juliancheal.co.uk

The entire naxos-greece.jpg
image file, used in the examples

throughout this secret (photo taken
by Chris Hutchison)

is interacting with it (e.g., hovering over it). We will use a single element for

the image and animate its background position:

.panoramic {
width: 150px; height: 150px;
background: url("img/naxos-greece.jpg");

background-size: auto 100%;

Currently, it looks like Figure 8.30 and there is no animation or inter-
activity. If we experiment however, we can see that manually changing
background-position from the original @ @ to 100% 0 scrolls through
the entire image. We just found our keyframes!

@keyframes panoramic {
to { background-position: 100% 0; }

.panoramic {
width: 150px; height: 150px;

background: url("img/naxos-greece.jpg");

background-size: auto 100%;
Our image is cropped animation: panoramic 10s linear infinite alternate;

This works great. It sort of resembles a panoramic view and it almost feels
like being in the place and looking left or right. However, the animation is
triggered on page load, which could be distracting in the context of, for
example, a travel web page, where the user might be trying to focus on
reading the text about Naxos, instead of looking at the beautiful panoramic
picture. It would be better to enable the animation when the user hov-
ers over the image. So, our first thought would be this:

.panoramic {
width: 150px; height: 150px;
background: url("img/naxos-greece.jpg");
background-size: auto 100%;

.panoramic:hover, .panoramic:focus {

animation: panoramic 10s linear infinite alternate;

This does work as expected when we hover over the image: it starts from
the initial state of showing the leftmost part of the image and slowly scrolls
to reveal the right part of it. However, when we mouse out, it abruptly jumps
to the left position again (Figure 8.31). We've just stumbled on the problem

this secret is about!

Mousing over is very smooth, but
mousing out is abrupt and feels
broken

Now mousing out just pauses the
animation—no abrupt jumps
anymore

To fix this, we need to think differently about what we are trying to achieve
here. What we need is not to apply an animation on :hover, as this implies
no memory of its previous position. What we need is to pause it when
there is no :hover happening. Thankfully, we have a property just for

the purpose of pausing an existing animation: animation-play-state!

Therefore, we are going to apply our original animation to . panoramic,
but have it paused initially, until :hover applies. Because it's no longer a
matter of applying and canceling an animation, but just pausing and re-
suming an existing animation, there is no abrupt rewinding. The final
code looks like this and you can see the result in Figure 8.32:

@keyframes panoramic {
to { background-position: 100% ©; }

.panoramic {
width: 150px; height: 150px;
background: url("img/naxos-greece.jpg");
background-size: auto 100%;
animation: panoramic 1@s linear infinite alternate;

animation-play-state: paused;

.panoramic:hover, .panoramic:focus {

animation-play-state: running;

play.csssecrets.io/state-animations

CSS Animations RELATED

w3.0rg/TR/css-animations SPECS

SECRET #46: SMOOTH STATE ANIMATIONS @

http://play.csssecrets.io/state-animations
http://w3.org/TR/css-animations

Google+ uses animation on a
circular path to show that a new
member was added to a “circle”

Animation along
a circular path

Prerequisites

CSS animations, CSS transforms, the “Parallelograms” secret on page

84, the “"Diamond images” secret on page 90, the “Blinking” secret

on page 314

The problem

A few years ago, back when basic CSS animations were still new and ex-
citing, Chris Coyier (css-tricks.com) asked me if | could think of any
way to animate an element on a circular path with CSS animations. At the
time, it was just a fun CSS exercise, but in the future | stumbled on many
real use cases. For example, Google+ uses such an animation when a new
member is added to a circle with more than 11 members: the existing avatars
animate on a circular path to make space for the new one.

A different, fun example can be seen on the popular Russian tech web-
site habrahabr.ru (Figure 8.34). As is often a good practice with 404 pa-
ges, it offers a navigation menu to a few main areas of the website.

http://css-tricks.com
http://habrahabr.ru

404

CTPAHMLIA HE HARLEHA
- e
CNETAATE HA IPYTUE HALLM NNAHETBI

L
- e DPUIAHCHM

-]

a
@ MO3MOXPAHWIVILE
; *

‘GEEKTIMES

HA TTIABHYIO

However, each menu item is presented as a planet orbiting on a circle and
the text above reads “Fly to other planets of our universe.” Of course, it
makes sense to just move the planets on a circular path and not also rotate
them, which would make their text almost impossible to read.
These are only a few out of many possible examples. But how can we ach-
ieve such an effect with CSS animations?

We are going to work on a very simple example of an avatar animating
on a circular path, a bit like a simplified version of the aforementioned
Google+ effect. The markup would look like this:

<div class="path">

</div>

Before we start thinking about our animation, we will apply some basic
styling to it (sizes, backgrounds, margins, etc.), so that it looks like
Figure 8.35. Because this styling is pretty basic, it is not included here, but
if you are having difficulty with it, you can find it in the live example. The
main thing to keep in mind is that the diameter of the path is 3@0px, ergo
the radius is 150px.

After we're done with basic styling, we can start thinking about our
animation. We want to move the avatar in a circle, along the orange path.

The 404 page of popular Russian
tech website habrahabr.ru

If you're unsure about how to make
circular shapes with CSS, take a look
at the “Flexible ellipses” secret on
page 76.

Our starting point, after applying
some basic styling—now we can get
our hands dirty with some CSS
animation!

A few stills from our failed attempt

at animating on a circular path

How could we possibly use CSS animations to do this? When presented with

this problem, some are quick to reply with something like this:

@keyframes spin {
to { transform: rotate(lturn); }

}
.avatar {

animation: spin 3s infinite linear;

transform-origin: 50% 150px; /* 150px = path radius */
}

While this is a step in the right direction, it does not only move the avatar
on a circular path, it also rotates it around itself (Figure 8.36). For example,
notice how when the avatar is halfway through, it is also upside down. If it
had text, the text would also be upside down, which can be quite a read-
ability issue. We only wanted it to move along the circle, while still main-

taining the same orientation relative to itself.

2]

o
()

Back then, neither me nor Chris could think of a reasonable way. The best
way we could come up with was specifying multiple keyframes to
approximate a circle, which is obviously not a good idea by any possible
definition of one. There must be a better way, right?

Two element solution

| finally came up with a solution to Chris’ challenge a few months later, after
thinking about the problem as a background process for quite some time.
The main idea behind this solution is the same as in the “Parallelograms”
secret on page 84 or the “Diamond images” secret on page 90: nested
transforms canceling each other. However, instead of doing this stati-
cally, in this case it happens on every single frame of the animation. The
caveat is that, just like the aforementioned secrets, this requires two ele-
ments. Therefore, we need to amend our original clean HTML with an extra
wrapper div:

<div class="path">
<div class="avatar">

</div>
</div>

Let's apply the initial animation we tried earlier to the .avatar wrapper.
Now, as we've seen in Figure 8.36, this doesn’t work because it also rotates
the element itself. But what if we applied another rotation to the avatar,
and rotate it around itself by the same amount of degrees in the op-
posite direction? Then the two rotations would cancel each other, and we
would only see the circular movement created by the difference in transform
origins!

There is one problem though: we don’t have a static rotation that we
can cancel, but an animation that goes through a range of angles. For ex-
ample, if it was 60deg, we would cancel it with -60deg (or 300deg), if it
was 70deg we would cancel it with -70deg (or 290deg). But now that it's
anything between @-360deg (or @-1turn, which is the same thing), what
do we cancel it with? The answer is much easier than it might seem. We
just animate over the reverse range (360-0deg), like so:

@keyframes spin {
to { transform: rotate(lturn); }
}
@keyframes spin-reverse {
from { transform: rotate(lturn); }

}
.avatar {

animation: spin 3s infinite linear;

transform-origin: 50% 150px; /* 150px = path radius */
}

.avatar > img {

animation: spin-reverse 3s infinite linear;

Now, at any point, when the first animation is rotated by x degrees, the
second one is rotated by 360 - x degrees, because one of them is increasing
and the other is decreasing. This is exactly what we wanted and as you can
see in Figure 8.37, it produces the desired effect.

The code, however, could use some improvement. For one, we are re-
peating all parameters of the animation twice. If we need to adjust its du-
ration, we would need to do it twice, which is not very DRY. We can easily
solve this by inheriting all animation properties from the parent, and over-

riding the animation name:

We have now achieved the ﬂ

animation we wanted, but the code
is unwieldy

@keyframes spin {
to { transform: rotate(lturn); }
}
@keyframes spin-reverse {
from { transform: rotate(lturn); }

}
.avatar {

animation: spin 3s infinite linear;

transform-origin: 50% 150px; /* 150px = path radius */
}

.avatar > img {
animation: inherit;

animation-name: spin-reverse;

However, we shouldn’t need a whole new animation just to reverse our
initial one. Remember the animation-direction property from the
“Blinking” secret on page 314? In that secret, we saw why the
alternate value is useful. Here we are going to use the reverse value,
to get a reversed copy of our original animation, thus eliminating the
need for a second one

@keyframes spin {
to { transform: rotate(lturn); }

}
.avatar {

animation: spin 3s infinite linear;

transform-origin: 50% 150px; /* 150px = path radius */
}

.avatar > img {

You can read the whole discussion at
lists.w3.org/Archives/Public/
www-style/2012Feb/0201.html.

animation: inherit;

animation-direction: reverse;

And there we go! It might not be ideal, due to the extra element require-
ment, but we've achieved a rather complex animation, with fewer than 10
lines of CSS!

play.csssecrets.io/circular-2elements

Single element solution

The technique described in the previous section works, but is suboptimal,
as it requires HTML modifications. When | first came up with that technique,
| wrote to the mailing list of the CSS Working Group (of which | was not a
part of, at the time) and suggested that it should be possible to specify
multiple transform origins for the same element. That should make it pos-
sible to implement something like this with a single element, and it seemed
like a reasonable thing to ask for in general.

The discussion was in high gear, when at some point Aryeh Gregor,
one of the editors of the CSS Transforms specification at the time, made a
statement that seemed confusing at first:

“transform-origin is just syntactic sugar. You should always be able
to use translate() instead.”

— Aryeh Gregor

However, it turns out that every transform-origin can be simula-

ted with two translate() transforms. For example, the following two
code snippets are equivalent:

transform: rotate(30deg);
transform-origin: 200px 300px;

http://play.csssecrets.io/circular-2elements
http://lists.w3.org/Archives/Public/www-style/2012Feb/0201.html
http://lists.w3.org/Archives/Public/www-style/2012Feb/0201.html

transform: translate(200px, 300px)
rotate(30deg)
translate(-200px, -300px);

transform-origin: 0 0;

This seems strange at first, but becomes more clear if we keep in mind that
transform functions are not independent. Each of them doesn’t just
transform the element it is applied on, it transforms the entire coordi-
nate system of that element, thus affecting all transforms that come after
it. This is exactly why transform order matters, and different orderings
of the same transforms can produce entirely different results. If this is still
unclear, Figure 8.38 should help eliminate any confusion.

Therefore, we can use the same transform-origin for both our
previous animations by using this idea (we are going to use separate ani-
mations again as their keyframes are now completely different):

transform: rotate(3edeg);

transform-origin: 10@px 50px;

2
[¢«——100px——>|

+———100px

50px Jeep *

Wgedeg

transform: translate(10@px,50px); transform: translate(100px,50px)
rotate(30deg);

transform-origin: @ 9;

transform: translate(100px,50px)
rotate(30deg)
translate(-100px, -50px) ;

transform-origin: 0 0;

transform-origin: 0 0;

How we can substitute a transform
origin with two translations. The red
dot represents the transform origin
each time. Top: Using transform-
origin. Bottom: Using two
translations, step by step.

@keyframes spin {
from {
transform: translate(50%, 150px)
rotate(@turn)
translate(-50%, -150px);

}
to {
transform: translate(50%, 150px)
rotate(lturn)
translate(-50%, -150px);
}

}
@keyframes spin-reverse {
from {
transform: translate(50%,50%)
rotate(1turn)
translate(-50%, -50%) ;

}
to {
transform: translate(50%,50%)
rotate(@turn)
translate(-50%, -50%);
}
}
.avatar {
animation: spin 3s infinite linear;
}

.avatar > img {
animation: inherit;

animation-name: spin-reverse;

This looks awfully unwieldy, but do not worry, as we will improve it a lot by
the end of this section. Notice that we now no longer have different trans-
form origins, which was the only reason we needed two elements and two
animations earlier. Now that everything uses the same origin, we can com-
bine the two animations into one and only work with .avatar:

@keyframes spin {

from {
transform: translate(50%, 150px)
rotate(@turn)
translate(-50%, -150px)
translate(50%,50%)
rotate(lturn)
translate(-50%, -50%)
}
to {
transform: translate(50%, 150px)
rotate(lturn)
translate(-50%, -150px)
translate(50%,50%)
rotate(@turn)
translate(-50%, -50%);
}

.avatar { animation: spin 3s infinite linear; }

The code is definitely improving, but is still long and confusing. Can we
make it a bit more concise? There are a few potential improvements.

The low-hanging fruit is to combine consecutive translate() trans-
forms, specifically translate(-50%, -150px) and translate(50%,
50%). Unfortunately, percentages and absolute lengths cannot be com-
bined (unless we use calc() which is also quite unwieldy). However, the
horizontal translations cancel each other, so we basically have two transla-
tions on the Y axis (translateY(-150px) translateY(50%)). Also,

Note that we don’t need two HTML
elements anymore: we can just apply
the avatar class to the image itself,
as we're not styling them separately
any longer.

because the rotations cancel each other, we can remove the horizonta
translations before and after as well and combine the vertical ones. We
currently have these keyframes:

@keyframes spin {
from {
transform: translateY(150px) translateY(-50%)
rotate(@turn)
translateY(-150px) translateY(50%)
rotate(1lturn);

}
to {
transform: translateY(150px) translateY(-50%)
rotate(lturn)
translateY(-150px) translateY(50%)
rotate(@turn);

.avatar { animation: spin 3s infinite linear; }

This is a bit shorter and less repetitive, but still not great. Can we do
any better? If we start from the avatar in the center of the circle (like in
Figure 8.39), we can eliminate the first two translations, which essentially
just place it at the center. Then the animation becomes:

@keyframes spin {
from {
transform: rotate(@turn)
translateY(-150px) translateY(50%)
rotate(lturn);

transform: rotate(lturn)
translateY(-150px) translateY(50%)
rotate(@turn);

.avatar { animation: spin 3s infinite linear; }

This seems to be the best we can do today. It's not the DRY-est possible
code, but it's quite short. There is now minimal repetition and no re-
dundant HTML elements. To make it completely DRY and avoid repeating
the path radius, we could use a preprocessor, which is left as an exercise for
the reader.

play.csssecrets.io/circular

CSS Animations RELATED
w3.0org/TR/css-animations SPECS

CSS Transforms
w3.org/TR/css-transforms

FIGURE 8.39

If we center the avatar as the starting

point, our keyframes become a bit
shorter; however, note that this state
will also be our fallback in case
animations are not supported, which
may or may not be desirable

SECRET #47: ANIMATION ALONG A CIRCULAR PATH

http://play.csssecrets.io/circular
http://w3.org/TR/css-animations
http://w3.org/TR/css-transforms

Index

Symbols

(pseudo)random backgrounds, 62-65
.avatar, 337-340, 343
Jlightbox, 235
3D rotation, for trapezoids, 109-113
::backdrop, for dimming, 238
:nth-child() pseudo-class, 178, 271-275
-only-child, 272
<blink>, 314
<code> element, 182
<dd>, 173-177
<dialog>, 238
<div>, 252
<dt>, 173-177
<labels>, 229
<main>, 241
<path>, 211
<pre> element, 182
, 189, 210
<textPath>, 211
@font-face, 189
(soft hyphens), 168

A

absolute positioning, for vertical centering, 281

acceleration, timing function and, 296-299
affordance, 225
align-items, vertical centering and, 286
ampersands, fancy, 188-193
Anderson, James, 280
animated GIFs, shortcomings of, 308
animation, 294-345
along a circular path, 334-345
blinking, 314-318
bouncing, 295-299
converting to transition, 301
duration vs. effectiveness, 321
elastic transitions, 294-305
for pie charts, 119-121
frame-by-frame, 308-312
smooth state, 328-332
typing, 320-326
animation-direction, 316, 339
animation-playstate, 332
animation-timing-function, 296
APNG, 309
assumptions, xxiv
Atlas system, xxii

automatic table layout algorithm, 266

B

background(s)
(pseudo)random, 62-65
and inner-rounded borders, 37
and zebra-striped lines, 180
checkerboards, 55-60
complex patterns, 50-60
diagonal stripes, 43-47
flexible positioning, 32-35
fluid with fixed content, 276-279
grids, 52
polka dots, 53
striped, 40-48
vertical stripes, 43
background-attachment, 246
background-blend mode, 141
background-clip, 26, 70, 225
background-image, text underlining and, 196
background-origin, 33
background-position, 33, 310, 330
background-size
for (pseudo)random backgrounds, 62-65
for stripes, 43
beveled corners, 96, 157-159
Bézier curves, 298
blending modes
filters vs., 142
for color tinting, 141-143
for interactive image comparison, 259
blinking, 314-318
blinking caret, 323
block elements, 173
blur() filter, 149
blurring, for de-emphasis, 240-243
border-bottom, 195
border-box, 26
border-image
for curved cutout corners, 102-105

limitations of, 68
with gradients, 73
border-radius
for ellipses, 76-81
for pie charts, 116
borders, 24
continuous image, 68-74
inner rounding of, 36-38
multiple, 28-30
translucent, 24-26
Bos, Bert, 5
bouncing animations, 295-299
bouncing effect, 294
box-shadow
and extension of clickable area, 226
and inner-rounded borders, 37
for dimming, 237
for multiple borders, 29
for one-sided shadows, 130
with irregular drop shadows, 134
box-sizing, 30
brevity, maintainability vs., 12
brightness() filter, 242
browser support, Xxix-xxxiv
buttons, 10-12
parallelograms and, 84
regular v. toggle, 232
toggle buttons, 231

C

calc() (function)
and vertical centering, 282
for flexible background positioning, 35
for sticky footers, 290
callouts, elastic transitions for, 300-304
caret, blinking, 323
cell cursor, 219
Centering in the Unknown (Chris Coyier), 281
centering, vertical, 280-286
ch unit, 323

checkboxes
custom, 228-232
toggle buttons vs., 232
checked (pseudo-class), 229
checkerboards, 55-60
Cicada Principle, The, 63, 65
circular path, animations along, 334-345
circular text, 210-214
clickable area, extending, 224-227
clip-path
for cutout corners, 105-107
for diamond images, 93
clipped top border, 73
code duplication, minimizing, 9-12
coding tips, 9-22
and eyes behavior, 15
and Responsive Web Design, 15-17
currentColor, 13
inheritance, 13
maintainability vs. brevity, 12
minimize code duplication, 9-12
preprocessors, 19-22
shorthand use, 17-19
color, 11
and elastic transitions, 305
currentColor, 13
for pie charts, 115
with curved cutout corners, 104
with flexible subtle stripes, 48
color stops
and checkerboard patterns, 56
and striped backgrounds, 44
for grids, 52
color tinting, 138-143
blending modes for, 141-143
filters for, 139
column widths, table, 266-268
complex background patterns, 50-60
checkerboards, 55-60
grids, 52

polka dots, 53
continuous image borders, 68-74
contrast() filter, 242
control points, 298
corners, cutout, 96-107
Coyier, Chris, 281, 334
CSS
recent growth and transformation of, xvii
standards/specifications, 2-8
CSS 1,5
CSS2,5
CSS 3,6
CSS Working Group (CSS WG), 2-8
cubic-bezier () function, 298-299, 302
currentColor, 13
cursors
built-in, 218-221
hiding, 221
indicating disabled state, 220
curved cutout corners, 100
cutout corners, 96-107
clipping path method for, 105-107
curved, 100
gradients for, 97
inline SVG/border-image method, 102-105

D
de-emphasis
by blurring, 240-243
by dimming, 234-238
definition lists, line breaks for, 172
diagonal stripes, 43-47
diamond images, 90-94
dimming
backdrop method, 238
de-emphasis by, 234-238
pseudo-element method, 236
disabled state, cursor, 220
discretionary ligatures, 184
display: flex

and vertical centering, 285
for sticky footers, 291
drop shadows, irregular, 134-137
drop-shadow () filter, 135, 137
DRY programming, xviii

duplication of code, minimizing, 9-12

E

ease (keyword), 296
Eden, Dan, 300
elastic transitions, 294-305
bouncing animations, 295-299
for callouts, 300-304
ellipses
flexible, 76-81
half, 79-81
quarter, 81
extended background-position method, 33
extending the clickable area, 224-227
extruded text, 206
eye, human, 15

F
fill (keyword), 103
fill: none, 213
filter(s)
blending modes vs., 142
for color tinting, 139
for interactive image comparison, 259
with irregular drop shadows, 135
Fitts Law, 224
Fitts, Paul, 224

fixed content, fluid backgrounds with, 276-279

fixed table layout algorithm, 268

flex-flow, 291

Flexbox
for vertical centering, 285

flexible background positioning, 32-35
background-origin method for, 33
calc() method for, 35

extended backgrounds for, 33
flexible ellipses, 76-81
flexible subtle stripes, 48

fluid backgrounds, fixed content with, 276-279

folded corner effect, 156-165

for 45° angles, 157-159

for angles other than 45°, 159-165
font size, 10
font-family declarations, 189
font-variant-ligatures, 185
footers, sticky, 288-292
footnote border, 73
formats and conventions, xxvi
frame-by-frame animations, 308-312
frosted glass effect, 146-154

future sections, xxviii

G

Gallagher, Nicolas, 87, 156
Gaussian blur algorithm, 131
GIFs, animated, shortcomings of, 308
glowing text, 205

glyphs, ligatures as, 184

Google Reader, 244

Google+, 334

gradient-based patterns, 71
gradients, for cutout corners, 97
Greedy algorithm, 169

Gregor, Aryeh, 340

H

habrahabr.ru, 334
half ellipses, 79-81
Hattab, Hakim El, 243
hiding the cursor, 221
hue-rotate() filter, 140
hyphenation, 168-170

hyphens: auto, 169 least common multiple (LCM), for (pseudo)random back-

grounds, 64
I letterpress effect, 201
image comparison, interactive, 250-259 Lie, Hakon Wium, 5
CSS resize method for, 251-254 ligatures, 184-186
range input method for, 255-259 Lilley, Chris, 5
image, as border, 68 line breaks, inserting, 172-177
infinite (keyword), 324 linear gradient
inherit (keyword), 13 and grids, 52
inheritance, 13 and striped backgrounds, 41
inline SVG, 102-105, 211 for cutout corners, 97
inner border radius, 100 lines, text, zebra-striped, 178-181
inner rounding (borders), 36-38 local() function, 190
interactive image comparison, 250-259 longhands, 18
intrinsic sizing, 262-264
irreqgular drop shadows, 134-137 M
maintainability, brevity vs., 12
I marching ants border, 72
Jacobs, lan, 5 margin: auto, 277, 285
JavaScript max-width, 264
for frame-by-frame animation, 309 McClellan, Drew, 193
for typing animation, 324 media queries, 15-17
justification, text, 168 Meyer, Eric, 66
justify-content, 286 min-content (keyword), 263
mix-blend mode, 141
K modal dialog, 238
Knuth-Pass algorithm, 169 Montulli, Lou, 314

Komarov, Roman, 249 mouse pointer, 218

Mozilla, 309
multiple borders, 28-30
box-shadow for, 29

L

latency, 20

Law of Leaky Abstractions, 20

layout, 262-292
fluid backgrounds with fixed content, 276-279 N
intrinsic sizing, 262-264
sticky footers, 288-292
styling by sibling count, 270-275
table column widths, 266-268
vertical centering, 280-286

outlines for, 30

negative animation delays, 119-121
nested elements, for parallelograms, 85
nested transforms, 337

not-allowed cursor, 220

@)

one-sided shadows, 130-133
optical illusions, 15, 200
outline-offset, 30

outlines, for multiple borders, 30
overflow: hidden, 116, 152
overflow: visible, 213

P

parallelograms, 84-87
pattern, as border, 68
pie charts
SVG solution for, 122-128
transform-based solution for, 115
pie charts, simple, 114-128
PNG sprite animation, 309-312
polka dot backgrounds, 53
polygon(), for diamond images, 93
position: relative/absolute, 86
preprocessors, 19-22
for complex background patterns, 50
for folded-corner effect, 165
prerequisites, Xxxv
prime numbers, for (pseudo)random backgrounds, 65
pseudo-elements
for dimming, 236
for parallelograms, 86
for pie charts, 116, 117
for trapezoids, 110
mouse interaction capture by, 226
Pythagorean theorem, 160
and inner-rounded borders, 38
and striped backgrounds, 44

for curved cutout corners, 103

Q

quarter ellipses, 81

R

radial gradients
for curved cutout corners, 100
for polka dots, 53
random backgrounds, 62-65
readability, justification and, 168
repeating-linear-gradient(), 45-47
repeating-radial-gradient(), 45

resize, for interactive image comparison, 251-254
Responsive Web Design (RWD), 15-17

rotate() transform

for animation along circular path, 337-340

for diamond images, 91
for parallelograms, 87
for pie charts, 117
rounding, inner (borders), 36-38

S
Saly, Martijn, 105
saturate () filter, 139
scale() transform
for diamond images, 92
for elastic transitions, 302
scrolling, 244-249
Seddon, Ryan, 231
shadows
irregular drop, 134-137
on one side, 130-132
on two adjacent sides, 132
on two opposite sides, 133
one-sided, 130-133
shapes, 76-128
cutout corners, 96-107
diamond images, 90-94
flexible ellipses, 76-81

half ellipses, 79-81
parallelograms, 84-87
pie charts, 114-128
quarter ellipses, 81
trapezoid tabs, 108-113
shorthands, use of, 17-19
sibling count, styling by, 270-275
simple pie charts, 114-128
Simurai, 312
sizing, intrinsic, 262-264
skew() transform, 84
slider control, 256-259
smooth state animations, 328-332
soft hyphens (), 168
spread radius, 29, 131
sprite animation, 309-312
steps() timing function, 311, 317, 322
sticky footers, 288-292
Storey, Dudley, 66, 144, 259, 264
striped backgrounds, 40-48
diagonal stripes, 43-47
flexible subtle stripes, 48
vertical stripes, 43
striped text lines, 178-181
stroke-dasharray, 122-126
stroked text, 203

style elements, sibling count and, 270-275

SVG
for checkerboard patterns, 59
for pie charts, 122-128

T
tab width adjustments, 182
tab-size, 183
table-layout (property), 266
tables
column widths, 266-268
zebra-striped lines in, 178-181
text effects
circular text, 210-214

extruded text, 206
glowing text, 205
letterpress, 201
realistic, 200-208
stroked text, 203
typing animation, 320-326
text justification, 168
text lines, zebra-striped, 178-181
text underlines, custom, 194-197
text-decoration: blink, 315
text-shadow
and extruded text, 207
and glowing text, 205
and letterpress effect, 202
and stroked text, 203
and text underlining, 197
with irregular drop shadows, 137
three-dimensional (3D) rotation, for trapezoids, 109-113
timing function, 296-299
tinting, 138-143
toggle buttons, 231
transform(s)
and parallelograms, 86
for diamond images, 91
for pie charts, 115, 117
for trapezoids, 109-113
interdependence of transform functions, 341
transform-origin, 163
for trapezoids, 111
translate() vs., 340
transform-style, vertical centering and, 283
transition-duration, 304
transition-property, 305
transition-timing-function, 296
transitions and animations, 294-345
animations along a circular path, 334-345
blinking, 314-318
converting animation to transition, 301
elastic transitions, 294-305
frame-by-frame animations, 308-312

smooth state animations, 328-332
typing animation, 320-326
translate()
and vertical centering, 282
for animation along circular path, 343
transform-origin vs., 340
translucent borders, 24-26
transparency, gray checkerboard patterns for depicting,
55
trapezoid tabs, 108-113
triangles
and folded corner effect, 156-165
for checkerboard patterns, 55
typing animation, 320-326
typography, 168-214
circular text, 210-214
custom underlines, 194-197
extruded text effect, 206
fancy ampersands, 188-193
glowing text effect, 205
hyphenation, 168-170
inserting line breaks, 172-177
letterpress effect, 201
ligatures, 184-186
realistic text effects, 200-208
stroked text effect, 203
tab width adjustments, 182
zebra-striped text lines, 178-181

U

underlines, custom, 194-197
unicode-range descriptor, 191
user experience, 218-259
cursor selection, 218-221
custom checkboxes, 228-232
de-emphasis by blurring, 240-243
de-emphasis by dimming, 234-238
extending the clickable area, 224-227

interactive image comparison, 250-259
scrolling, 244-249
toggle buttons, 231

\%

vendor prefixes, 6-8

vertical centering, 280-286
absolute positioning for, 281
Flexbox for, 285
viewport unit for, 284

vertical stripes, 43

viewBox, 212

viewport units, 237

vintage envelope themed border, 71

visual effects, 130-165
color tinting, 138-143
folded corner effect, 156-165
frosted glass effect, 146-154
irregular drop shadows, 134-137
one-sided shadows, 130-133

W
W3C (World Wide Web Consortium), 2
Walker, Alex, 63, 65
web standards, 2-8
and CSS evolution, 5
and vendor prefixes, 6-8
creation process, 2-4
WET programming, xviii
white-space:, 174
Wichary, Marcin, 198
word wrapping, 169
wrapping, word, 169

Z
z-index, 235
zebra-striped text lines, 178-181

	Table of Contents
	Preface
	Words of thanks
	Making of
	About this book

	Introduction
	Web standards: friend or foe?
	CSS coding tips

	Backgrounds & Borders
	Translucent
borders
	Multiple
borders
	Flexible background positioning
	Inner
rounding
	Striped
backgrounds
	Complex background patterns
	(Pseudo)random backgrounds
	Continuous image borders

	Shapes
	Flexible
ellipses
	Parallelograms
	Diamond
images
	Cutout corners
	Trapezoid tabs
	Simple
 pie charts

	Visual
Effects
	One-sided shadows
	Irregular drop shadows
	Color tinting
	Frosted glass effect
	Folded corner effect

	Typography
	Hyphenation
	Inserting line breaks
	Zebra-striped
text lines
	Adjusting
tab width
	Ligatures
	Fancy ampersands
	Custom underlines
	Realistic
text effects
	Circular text

	User Experience
	Picking the
right cursor
	Extending the clickable area
	Custom checkboxes
	De-emphasize
by dimming
	De-emphasize
by blurring
	Scrolling
hints
	Interactive image comparison

	Structure
& Layout
	Intrinsic sizing
	Taming table column widths
	Styling by sibling count
	Fluid background, fixed content
	Vertical
centering
	Sticky footers

	Transitions & Animations
	Elastic transitions
	Frame-by-frame animations
	Blinking
	Typing animation
	Smooth state animations
	Animation along a circular path

