O'REILLY"

Transitions &
Animations

N CSS

Estelle Weyl

vww .allitebooks.cond

http://www.allitebooks.org

O'REILLY"

Transitions and Animations in CSS

Add life and depth to your web applications and improve user experience
through the discrete use of CSS transitions and animations. With this
concise guide, you'll learn how to make page elements move or change
in appearance, whether you want to realistically bounce a ball, gradually
expand a drop-down menu, or simply bring attention to an element when
users hover over it.

Short and deep, this book is an excerpt from the upcoming fourth edition
of CSS: The Definitive Guide. When you purchase either the print or the
ebook edition of Transitions and Animations in CSS, you'll receive a discount
on the entire Definitive Guide once it's released. Why wait? Learn how to
make your web pages come alive today.

m Understand and learn how to implement Disney's 12 principles
of cartoon animation

m Learn which CSS properties you can animate and use in
transitions

m Apply CSS's four transition properties and nine animation
properties to your CSS elements

m Use CSS keyframe animations to granularly control an
element’s property values

m Learn details that will save you hours of debugging and
megabytes of unnecessary JavaScript

Estelle Weyl is a frontend engineer who's been developing standards-based,
accessible websites since 1999. She writes technical books and blogs read by
millions of visitors, and speaks about performance, accessibility, CSS3, HTML5,
JavaScript, and mobile web development at @estellevw and standardista.com.

CSS/HTML/JAVASCRIPT

US $7.99 CAN $9.99
ISBN: 978-1-491-92988-9

JNVNTROCRONORY o

14911929889

vww allitebooks.conl

Twitter: @oreillymedia
facebook.com/oreilly

http://www.allitebooks.org

Transitions and Animations in CSS

Adding Motion with CSS

Estelle Weyl

Beijing + Boston + Farnham - Sebastopol + Tokyo KOA{={|HAE

vww allitebooks.cond

http://www.allitebooks.org

Transitions and Animations in (SS
by Estelle Weyl

Copyright © 2016 Estelle Weyl. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Meg Foley Interior Designer: David Futato
Production Editor: Colleen Lobner Cover Designer: Randy Comer
Copyeditor: Molly Ives Brower lllustrator: Rebecca Demarest

Proofreader: Amanda Kersey
May 2016: First Edition

Revision History for the First Edition
2016-04-12: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491929889 for release details.

The O'Reilly logo is a registered trademark of O’Reilly Media, Inc. Transitions and Animations in CSS, the
cover image of salmon, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-491-92988-9
[LST]

vww allitebooks.cond

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491929889
http://www.allitebooks.org

Preface.....oovvviiiii it

1.

(SS Transitions and Animations.

12 Basic Principles of Animation
Animation and Transition Considerations

CTransitions. ..o vv v e

CSS Transitions
Fallbacks: Transitions Are Enhancements
Transition Properties
The transition-property Property
The transition-duration Property
The transition-timing-function Property
The transition-delay Property
The transition Shorthand Property
In Reverse: Transitioning Back to Baseline
Animatable Properties and Values
How Property Values Are Interpolated
Animatable Properties
transition Events Revisited

Animation..................o L
Keyframes
Setting Up Your Keyframe Animation
Keyframe Selectors

Omitting from and to Values

Repeating Keyframe Properties

Animatable Properties

Table of Contents

10
14
21
24
30
38
40
42
44
47
53

.............................. 55

56
57
58
59
60
61

vww allitebooks.cond

http://www.allitebooks.org

Nonanimatable Properties That Aren’t Ignored
Dynamically Changing @keyframes Animations
Animated Elements
The animation-name Property
The animation-duration Property
The animation-iteration-count Property
The animation-direction Property
The animation-delay Property
Animation Events
The animation-timing-function Property
The animation-play-state property
The animation-fill-mode Property
The animation Shorthand Property
Animation, Specificity, and Precedence Order
Specificity and !important
Animation Order
Animation Iteration and display: none;
Animation and the UT Thread
Seizure Disorders
Animation Events and Prefixing
animationstart
animationend
animationiteration
Other Considerations
Printing Animations

62
63
64
64
66
68
69
71
73
83
95
95
99
102
103
103
104
104
104
105
105
105
106
106
106

iv

| Table of Contents

vww allitebooks.cond

http://www.allitebooks.org

Preface

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a general note.

Using Code Examples

Whenever you come across an icon that looks like ®, it means there is an associated
code example. Live examples are available at http://standardista.com/css3/transitions
and http://standardista.com/css3/animations. You can either click on the ® icon while
reading this book in electronic format to go directly to a live version of the code

vww allitebooks.cond

http://standardista.com/css3/transitions
http://standardista.com/css3/transitions
http://standardista.com/css3/animations
http://standardista.com/css3/animations
http://www.allitebooks.org

example referenced, or visit those links for a list of all of the code examples found in
the Transitions and Animations chapters.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless youre reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi-
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Transitions and Animations in CSS
by Estelle Weyl (O’Reilly). Copyright 2016 Estelle Weyl, 978-1-4919-2988-9”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Safari Books Online is an on-demand digital library that deliv-
‘ D ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf-
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

vi | Preface

vww allitebooks.cond

mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com
http://www.allitebooks.org

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata and any additional informa-
tion. You can access this page at http://bit.ly/transitions-and-animations-in-css.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

You can also find Estelle Weyl on Twitter at @estellevw, @standardista, and
@webdevtips.

Acknowledgments

Thank you to the technical reviewers:

Matt Rakow is a program manager at Microsoft, working on the Internet Explorer
and Edge browsers since 2010 and the W3C CSS Working Group since 2013. His cur-
rent focus is advancing the capability and performance of webpage composition and
rendering, but also is devoted to improving scrolling performance, touch interac-
tions, and high pixel density screen support.

David Baron is a distinguished engineer at Mozilla. He’s been involved in the CSS
community and the development of the Gecko layout engine since 1998. At Mozilla,
Baron implemented media queries, CSS transitions and animations, and the CSS
calc() function, and designed and implemented the reftest test format and fixes
for :visited privacy. As a participant at the W3C, he has edited the CSS Color Mod-
ule, CSS Conditional Rules, CSS Transitions, CSS Animations, and the CSS Overflow
Module. He can be found on Twitter at @davidbaron, and on the Web.

Preface | vii

vww allitebooks.cond

http://bit.ly/transitions-and-animations-in-css
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.twitter.com/estellevw
http://www.twitter.com/standardista
http://www.twitter.com/webdevtips
http://www.twitter.com/davidbaron
http://dbaron.org
http://www.allitebooks.org

Sarah Drasner is an award-winning Senior UX Engineer at Trulia (Zillow Group).
She is also a staff writer at CSS-Tricks. She has worked for 15 years as a web developer
and designer, and at points worked concurrently as a scientific illustrator and a col-
lege professor. Sarah loves SVG, informative animation, and welding together pieces
of the DOM. Follow her at @sarah_edo, on CodePen, or her website.

vii | Preface

vww allitebooks.cond

http://www.twitter.com/davidbaron
http://codepen.io/sdras
http://sarahdrasnerdesign.com
http://www.allitebooks.org

CHAPTER 1
(SS Transitions and Animations

CSS transforms, CSS transitions, and CSS animations are three separate CSS specifi-
cations. While the three terms sound like they may do the same thing—make some-
thing move—CSS transitions and animations make things move over time.
Transitions and animations let you define the transition between two or more states
of an element.

Transforms change an element’s appearance through translation, rotation, scaling,
and skewing, but do not have a time component. You can use the CSS transform
property to change the location of an element’s coordinate space of the CSS visual for-
matting model, but you need transitions or animation to make that change occur
over time. The transform property is covered in Transforms in CSS (O'Reilly).

While animation is possible with JavaScript, understanding CSS3 transitions and ani-
mations will save you a lot of time and effort if you need to animate anything on the
Web. Generally, it will also save your users’ CPU and battery compared to JavaScript.

Used correctly, CSS animations and transitions can give your web applications life
and depth. While this booklet focuses on how to transition and animate elements in
your documents, understanding when to use animation can improve your user expe-
rience (UX) as well. By adding the dimension of time, animating can help your UX
communicate on a different level.

12 Basic Principles of Animation

Well before the advent of the Web, animators at Disney came up with 12 principles
for cartoon animation. Some of these principles are very relevant to CSS animation
as well.

http://www.oreilly.com/free/transforms-in-css.csp

According to the “bible of animation”—The Illusion of Life: Disney Animation by
Frank Thomas and Ollie Johnston—there are 12 basic principles for animation,
including:

Squash and stretch

Depending on what something is made of, objects deform under motion. Squash-
ing and stretching gives the illusion of weight and volume to an object or charac-
ter as it bounces or otherwise moves. For example, when a ball bounces, its
squashed as it hits the ground and stretches as it heads upward.

Anticipation

Users may not understand an animation unless there is a sequence of actions that
leads clearly from one activity to the next. They must anticipate or expect a
change before it actually occurs. In cartoons, it's a movement preparing the
viewer for a major action the character is about to perform, like a knee bending
before a jump. On the Web, it could be a button depression before the start of the
more extensive animation that starts when the button is selected.

Guide your users mentally to where they should focus before initiating the main
effect, especially if the start of the animation is important.

Staging

In a cartoon, staging is the presentation of an idea so it is unmistakably clear. On
the Web, staging is directing the user’s attention to an action, such as a small jig-
gle of the call-to-action button. Staging helps guide users through the story or
idea being told: for example, through the steps of a check-out process.

Straight ahead action and pose to pose

There are two main approaches to animation on the big screen. In the straight
ahead action approach, the animator starts at the first drawing and works draw-
ing to drawing to the end of a scene. In pose to pose, the animator draws the main
points within an animation and creates (or has an assistant create) the points in
between later. While seemingly only applicable to storyboarding, this principle is
also related to drawing keyframes and how the animation fills in the space or
time between them.

With CSS animations, when we animate image sprites to create motion, we are
emulating the Straight Ahead approach. This is described when we cover the
steps values of the animation-timing-function property (see “The step timing
functions” on page 86). In most animation scenarios, we let the browser be our
assistant, defining specific points, or poses, within the animation and allowing
the browser to interpolate property values as it animates from pose to pose, or
keyframe definition to keyframe definition.

2

Chapter 1: (SS Transitions and Animations

Follow-through and overlapping action
Follow-through is the inclusion of additional motion when the main animation
concludes. For example, if a character is running and stops, her hair and clothes
were likely bouncing and fall back into place after her legs and body cease mov-
ing, catching up to the main mass of the character. Nothing stops all at once.

Overlapping action is when some components are slightly delayed after other
components change direction, like the way Wile E. Coyote’s legs keep moving
forward as he drops off a cliff. His ears take a moment to follow.

If your CSS animations ever become complex enough to require follow-through
and overlapping action, timing will be critical to making your effects work.

Slow in and slow out
Just like cars don’t start and end at full speed—rather, they accelerate from stop-
ped to full speed and decelerate back to zero—slow ins and slow outs make ani-
mation more lifelike and soften the action. Only mechanical animations will
proceed at a linear speed.

The slow in and slow out principle states that the beginning and end of an anima-
tion are more interesting than its middle; and therefore, unless it's mechanical,
the animation should proceed fastest in the middle of the animation, with a
slower start and slower end. With cartoon animation, the effect is created by
having more cells at the ends and fewer in the middle of the action. With CSS,
this effect is created by setting cubic Bézier timing functions to something other
than linear (see “The transition-timing-function Property” on page 24).

Arcs
The arcs principle states that almost all actions follow an arc or slightly circular
path. Think of your hand moving back and forth as you walk: your hand arcs
back and forth rather than always staying at an equal distance from the ground.

Linear animations can be very mechanical. Arcs can be achieved with granular
control within a keyframe animation. Because of this, CSS developers often use
CSS animations instead of transitions; animations offer more granularity in cre-
ating an arced path, while CSS transitions only allow for moving between two
states. However, with some cubic Bézier timing functions, creating an arc with
CSS transitions is actually not only possible, but fairly simple.

Secondary action
Secondary actions can enrich a main action by adding dimension, supplementing
or reinforcing the main action and giving the scene more life. If you include sec-
ondary actions, the animations should work together in support of one another.

For example, if your main animation drops a module onto a page, a secondary
action might be the main call-to-action button within the module dropping into

12 Basic Principles of Animation | 3

place, then finishing its action a little after the main module has finished animat-
ing in. A secondary action should reinforce the main action. It is OK to literally
“think outside the box” and animate a child element differently from its parent.
Timing

Timing is likely the most important of the principles in this list when it comes to
animation. While in traditional animation it’s based on the number of frames, in
CSS animation it has more to do with creating the appropriate amount of time to
read the motion, but not so long as to make the site appear slow. Timing includes
not just the duration of the animation (see “The animation-duration Property”
on page 66), but also the delay (“The animation-delay Property” on page 71)
and timing function (“The animation-timing-function Property” on page 83).

There are no right answers when it comes to timing. Expertise in timing comes
with experience and experimentation, if it comes at all. I recommend using trial
and error to refine the timing of your animation, then cut your times in half:
while you may want your animation to progress slowly enough to grok the differ-
ence in times and discover what is the best combination of duration, delay, and
progression, you don’t want your site to appear slow.

Exaggeration
Exaggeration is the highlighting of movements beyond their natural state to call
attention to what you want the user to focus on. A tiny bit of exaggeration can
give added life to an animation and actually make it look more realistic. Use good
taste and common sense: exaggeration is not extreme distortion, but rather a
slight distortion that gives emphasis without being so exaggerated as to be visibly
distorted for your visitors.

Solid drawing
The solid drawing principle includes the principles of drawing or coding forms
that convey the illusion of three dimensions, with weight and solid form. In CSS,
this includes using box shadows, gradients, and transforms, giving your content
the illusion of being three-dimensional. If you aren’t doing 3D animation or
spriting, this principle is only tangentially related to web animation, as on the
Web, we're drawing with CSS in a two-dimensional space.

Appeal
The appeal principle has to do with charisma, believability, and interest. Appeal
on the Web includes an easy-to-read design, clear drawing, and motion that will
capture and involve the visitors interest. The animation has to appeal to the
mind as well as to the eye.

There’s a nice video explaining the 12 principles of animation at https://vimeo.com/
93206523, and a nice display of all of the principles can be found at The Illusion of
Life.

4 | Chapter 1:(SS Transitions and Animations

https://vimeo.com/93206523
https://vimeo.com/93206523
http://the12principles.tumblr.com
http://the12principles.tumblr.com

Animation and Transition Considerations

Flash animation, animated banner ads, and Geocities animated GIFs from 1996 have
given animation a bad name. In reality, it isn’t that animation itself is bad; it’s the way
those animations were implemented that led to bad user experiences. With CSS, we
can create animations and transitions that improve and augment user experience.
Animation can give the appearance of life to two-dimensional, lifeless objects and
give understanding to objects that have no meaning. But with great power comes
great responsibility.

Animations can be used for good: a small animation can help inform the user that the
state of an object has changed, or can occupy the user’s attention so they don't notice
a slow loading time.

The most important principle is timing and it’s the most difficult to fine-tune. Unlike
cartoons, timing in CSS means milliseconds, not frames. There is no magic value of
milliseconds for the duration. Depending on the timing function, you may want to
add a few milliseconds for the effect to feel natural. A developer-defined cubic Bézier
timing function that creates a bounce might work better with a bit more time than a
simple ease-1in timing function. Just ensure the animation is short enough for your
site to feel responsive rather than slow.

If you have many animations in your site or application, think of timing as a choreog-
raphy of animations. There is no “right” number of animations. It’s not the number of
animations, it’s the design behind it.

All your animations should feel related. If there is a mix and match of delays, timings,
and timing functions, the animations may seem unrelated. Choreograph your anima-
tions to ensure a cohesive feel among all the moving parts. Make sure your anima-
tions are making your site more sophisticated, more modern, and more trustworthy.

It is up to your designers to design animations that have purpose and style. It's up to
this book to teach you how to implement those animations.

Animation and Transition Considerations | 5

CHAPTER 2
Transitions

CSS transitions allow us to animate CSS properties from an original value to a new
value over time when a property value changes.

Normally, when a CSS property value changes—when a “style change event” occurs—
the change is instantaneous. The new property value replaces the old property in the
milliseconds it takes to repaint (or reflow and repaint if necessary) the affected con-
tent. Most value changes seem instantaneous, taking less than 16 ms' to render. Even
if the changes takes longer, it is a single step from one value to the next. For example,
when changing a background color on hover, the background changes from one
color to the next, with no gradual transition. CSS transitions enable us to smoothly
animate CSS properties from an original value to a new value over time as the style
recomputation proceeds:

button {
color: magenta;
transition: color 200ms ease-in 50ms;

}
button {

color: rebeccapurple;

transition: color 200ms ease-out 50ms;
}

1 Changing a background image may take longer than 16 milliseconds to decode and repaint to the page. This
isn't a transition; it is just poor performance.

Transitions | 7

Transitions allow the values of CSS animatable properties to change over time, pro-
viding for simple animations.? For example, instead of instantaneously changing a
button’s color on hover, with CSS transitions the button can be set to gradually fade
from magenta to rebeccapurple over 200 milliseconds, even adding a 50-millisecond
delay before transitioning. Changing a color, no matter how long it takes, is a transi-
tion. But by adding the CSS transition property, the color change can be gradual.

You can use CSS transitions today, even if you still support IE9 or older browsers. If a
browser doesn't support CSS transition properties, the change will be immediate
instead of gradual, which is fine and accessible. If the property or property values
specified aren’t animatable, again, the change will be immediate instead of gradual.

Because transitions are simply progressive enhancements, there is no reason to not
use them today.

(SS Transitions

CSS transitions provide a way to control how a property changes from one value to
the next over time. We can make the property value change gradually, creating pleas-
ant and, hopefully, unobtrusive effects.

The CSS transition properties can be used to animate CSS property values smoothly,
following an acceleration curve, after an optional delay, from a previous value to a
new value over a specified length of time. CSS transitions let you decide which
properties to animate, how long to wait before the animation starts, how long the
transition should take, and how the transition will proceed. All these features are cus-
tomizable.

Sometimes you want instantaneous value changes. Though we used link colors as an
example in the preceding section, link colors should change instantly on hover,
informing sighted users an interaction is occurring and that the hovered content is a
link. Similarly, options in an autocomplete listbox shouldn’t fade in: you want the
options to appear instantly, rather than fade in more slowly than the user types.
Instantaneous value changes are often the best user experience.

At other times, you might want to make a property value change more gradually,
bringing attention to what is occurring.

2 There is a pending resolution in the CSS Working Group stating that nonanimatable properties should obey
transitions. This will likely not be web-compatible and will probably be reverted.

8 | Chapter2: Transitions

For example, you may want to make a card game more realistic by taking 200 milli-
seconds to animate the flipping of a card (®?, as the user may not realize what hap-
pened if there is no animation.

As another example, you may want your sites drop-down menus to expand
or become visible over 200 milliseconds (instead of instantly) which may be jarring.
With CSS transitions, you can make a drop-down menu appear slowly. In Figure 2-1,
we are transitioning the submenu’s height and opacity over 200 milliseconds. ® The
menu changes from hidden to fully opaque and expanded. This is a common use for
CSS transitions, which we will also explore later in this chapter.

default state: Oms

" hoou | poss | Toios | v

midtransition: 100ms

T T N T
| cssa |

JavaSecript

HTMLS

hover state, after 200ms

T N N T
CSS3

JavaScript

Figure 2-1. Transition initial, midtransition, and final state

In this chapter, we cover the four transition properties and the transition shorthand
that not only make our transition possible but very easy to implement.

Fallbacks: Transitions Are Enhancements

Transitions have excellent browser support. All browsers, including Safari, Chrome,
Opera, Firefox, Edge, and Internet Explorer (starting with IE10) support CSS transi-
tions.

Transitions are user-interface (UI) enhancements. Lack of full support should not
prevent you from including them. If a browser doesn’t support CSS transitions,
the changes you are attempting to transition will still be applied: they will just “transi-

3 All of the examples in this chapter can be found at http://standardista.com/transitions.

Fallbacks: Transitions Are Enhancements | 9

http://standardista.com/transitions
http://standardista.com/transitions/cards.html
http://standardista.com/transitions/dd_menu.html

tion” from the initial state to the end state instantaneously when the style recomputa-
tion occurs.

Your users may miss out on an interesting (or possibly annoying) effect, but will not
miss out on any content.

As transitions are generally progressive enhancements, there is no need to polyfill for
archaic IE browsers. While you could use a JavaScript polyfill for IE9 and earlier, and
prefix your transitions for Android 4.3 and earlier, there is likely little need to do so.

Transition Properties

In CSS, transitions are written using four transition properties: transition-
property, transition-duration, transition-timing-function, and transition-
delay, along with the transition property as a shorthand for the four longhand
properties.

To create the drop-down navigation from Figure 2-1, we used all four CSS transition
properties:

nav 1i ul {
transition-property: transform;
transition-duration: 200ms;
transition-timing-function: ease-in;
transition-delay: 50ms;
transform: scale(l, 0);
transform-origin: top center;

}

nav 1i ul {
transform: scale(l, 1);

}

This example defines the transition for our drop-down navigation example in
Figure 2-1. The style change in this scenario is caused by hovering over navigational
elements.

While we are using the :hover state for our style change event in
our transition examples, you can transition properties in other sce-
narios too. For example, you might add or remove a class, or other-
wise change the state—say, by changing an input from :invalid
to :valid or from :checked to :not(:checked). Or you might
append a table row at the end of a zebra-striped table or list item at
the end of a list with styles based on :nth-last-of - type selectors.

In the navigation pictured in Figure 2-1, the initial state of the nested lists is
transform: scale(1, 0) with a transform-origin: top center. The final state
is transform: scale(1, 1):the transform-origin remains the same.

10 | Chapter2:Transitions

vww allitebooks.cond

http://www.allitebooks.org

In this example, the transition properties define a transition on the transform prop-
erty: when the new transform value is set on hover, the nested unordered list
will scale to its original, default size, changing smoothly between the old value of
transform: scale(1, 0) and the new value of transform: scale(1, 1) over a
period of 200 milliseconds. This transition will start after a 50-millisecond delay, and
will ease in, proceeding slowly at first, then picking up speed as it progresses.

Transitions are declared along with the regular styles on an element. Whenever a tar-
get property changes, if a transition is set on that property, the browser will apply a
transition to make the change gradual. While the most common initiation of a transi-
tion is changing property values from a default state to a hovered state, transitions
also work if the property is changed by adding a class, manipulating the DOM, or
otherwise changing the state.

You can declare transition properties in the initial state, the changed state, or in both
the initial and changed states. If you only declare the transition on the initial state,
when the state changes, it will transition to the changed state as you indicate with CSS
transition properties. If and when it changes back to the initial state, the transition
timing is reversed. You can override this default reverse transition by declaring differ-
ent transitions in both the initial and changed states.

By initial state,] mean a state that matches the element on page load. This could be a
state that the element always has, such as properties set on an element selector versus
a :hover state for that element, or a content editable element that may get : focus: ®

/* selector that matches element all the time */
p[contenteditable] {

background-color: rgba(0, 0, 0, 0);
}

/* selector that matches element some of the time */
p[contenteditable] {
/* overriding declaration */
background-color: rgba(®, 0, 0, 0.1);
}
In this example, the fully transparent declaration is always the initial value, changing
when the user gives it focus. This is what I mean when I use initial or default value
throughout this chapter. The transition properties included in the selector that
matches the element all the time will impact that element whenever the state changes,
whether it is from the initial state to the focused state (as in the preceding example)
or any other altered state, such as a hover state; or when properties are changed with
the dynamic addition of a class.

Transition Properties | 11

http://standardista.com/transitions/contenteditable.html

An initial state could also be a temporary state that may change, such as a :checked
checkbox or a :valid form control, or even a class that gets toggled on and oft:

/* selector that matches element some of the time */
input {
border-color: green;

}

/* selector that matches element some of the time,
when the prior selector does NOT match. */
input {
border-color: red;

}

/* selector that matches element some of the time,
whether the input is valid or invalid */

input {
/* alternative declaration */
border-color: yellow;

}
In this example, either the :valid or :invalid selector matches, but never both.
The :focus selector, as shown in Figure 2-2, matches some of the time, when the
input has focus, whether the input is matching the :valid or :invalid selector
simultaneously. In this case, when we refer to the initial state, we are referring to the
original value, which could be either valid or invalid. In this scenario, the changed

state can be the opposite of the initial :valid or :invalid value. The :focus state is
another altered state. (®

[valid |
|n0t valid |
has focus

Figure 2-2. The input’s appearance in the valid, invalid, and focused states

Generally, you want to declare the transition properties at minimum on the selector
that applies to the element all the time. In the preceding contenteditable scenario, it
is the first rule. The second scenario is not as clear-cut: if the transition is only set on
the :invalid state, the color will transition from red to green as the state of the input
changes from invalid to valid, and it will transition from red to yellow when an inva-
lid input receives focus. However, it will not slowly transition from green to yellow, or
yellow back to green, when a valid input receives or loses focus. Similarly, the border

12 | Chapter2: Transitions

http://standardista.com/transitions/valid_invalid_focus.html

will transition as it changes from or to the invalid state with a red border; if the input
is valid, there will be no transition when the user gives or removes focus.

In this second scenario, we could put the transition on the :focus selector, as gener-
ally the value will change from valid to invalid or the reverse when the input has
focus. Preferably, however, you will want to put the transition on both the possible
initial states, or all three states.

In other words, if you always want the property to transition, you likely want to put
the transition on all the states. The transition properties that are used are the ones in
the destination state; the new values of the transition properties are used to transition
to the new value of the property:

nav 1i ul {
transition-property: transform;
transition-duration: 200ms;
transition-timing-function: ease-in;
transition-delay: 50ms;
transform: scale(l, 0);
transform-origin: top center;

}

nav 1i ul {
transition-property: transform;
transition-duration: 2s;
transition-timing-function: linear;
transition-delay: 1s;
transform: scale(l, 1);

}

This provides a horrible user experience, but I've included it to show a point. (®
When hovered over, the opening of the navigation takes a full two seconds. When
closing, it quickly closes over 0.2 seconds. The transition properties in the destination
or hover state are used when hovering over the list item. When no longer hovered
over, as it returns to the default scaled-down state, the transition properties of the
default properties it is returning to—the nav 11 ul condition—are used.

In our example, we don't want horrible UX. We will omit the slow transition, and
instead allow the browser to reverse the transition on mouse out:

nav 1i ul {
transition-property: transform;
transition-duration: 200ms;
transition-timing-function: ease-in;
transition-delay: 50ms;
transform: scale(l, 0);
transform-origin: top center;

}

nav 1i ul {
transform: scale(l, 1);

}

Transition Properties | 13

http://standardista.com/transitions/dd_menu_badUX.html
http://standardista.com/transitions/dd_menu.html

To create a simple CSS hover transition, such as the expansion of nested list items in
the preceding navigation example, we declare property values in two states: the
default or initial state of the element and the hovered state of the element. The initial
or original state of the element is declared in the default style declaration. The
changed properties, or final or destination state of the element, are declared within
a :hover style block. If no transition is set, the nested unordered list scales to its
default height instantly on hover.

To transition this expansion, we add the transition functions using the transition-*
properties of transition-property, transition-duration, transition-timing-
function, and transition-delay, or the transition shorthand. In our example, we
will be adding the transition properties only in the default style declaration. When
the transition is declared in the style block of the initial state of the element, the tran-
sition will be applied as the element changes from the initial state to the changed or
destination state and applied in reverse as it changes back to the initial state from the
changed state.

In our example, when the user stops hovering over the parent navigational element or
the child drop-down menu, the drop-down menu will wait 50 milliseconds before
closing over 200 milliseconds, using ease-out as the timing function, reversing the
transition declared in the default state. As we saw in our bad UX example, the reverse
transition timing function, duration, and delay in the reverting direction can be over-
ridden by providing different transition property values in the default and changed-
state style blocks.

While the four transition properties can be declared separately, you will probably
always use the shorthand. We'll take a look at the four properties individually first so
you have a good understanding of what each one does, and then we'll cover the
transition shorthand, which is what you will likely use in your code.

Let’s look at the four properties in greater detail.

The transition-property Property

The transition-property property specifies the names of the CSS properties you
want to transition. And, yes, it’s weird to say “the transition-property property.

transition-property

Values: none | <single-property>#

Initial value: all

14 | Chapter2: Transitions

Appliesto: All elements, :before and : after pseudo-elements

Inherited: No

The value for the transition-property is a comma-separated list of properties; the
keyword none if you want no properties transitioned; or the default all, which means
“transition all the transitionable properties” You can also include the keyterm all
within a comma-separated list of properties.

If you include all as the only keyterm—or default to all—all the transitionable
properties will transition in unison.

Let’s say you want to change a box’s appearance on hover:

div {
color: #ff0000;
border: 1px solid #00ff00;
border-radius: 0;
transform: scale(1) rotate(0deg);
opacity: 1;
box-shadow: 3px 3px rgba(0, 0, 0, 0.1);
width: 50px;
padding: 100px;

div {
color: #000000;
border: 5px dashed #000000;
border-radius: 50%;
transform: scale(2) rotate(-10deg);
opacity: 0.5;
box-shadow: -3px -3px rgba(255, 0, 0, 0.5);
width: 100px;
padding: 20px;
}
When the user hovers over the div, every property that has a different value in the
default state versus the hovered state will change to the hover-state values. We use the
transition-property property to define which of those properties we want to ani-
mate over time (versus instantly). All the properties will change from the default
value to the hovered value on hover, but only the animatable properties included in
the transition-property will transition over time. Nonanimatable properties like
border-style will change from one value to the next instantly. See “Transitionable
properties” on page 18.

Transition Properties | 15

all

If you want to define all the properties to transition at the same time, speed, and pace,
use all. If all is the only value or the last value in the comma-separated value for
transition-property, all the animatable properties will transition in unison.

If we want to transition all the properties, the following statements are almost equiva-
lent:

div {
color: #ff00OO0;
border: 1px solid #00ff00;
border-radius: 0;
transform: scale(1) rotate(0deg);
opacity: 1;
box-shadow: 3px 3px rgba(0, 0, 0, 0.1);
width: 50px;
padding: 100px;
transition-property: color, border, border-radius, transform, opacity,

box-shadow, width, padding;

transition-duration: 1s;

}
and

div {
color: #ff00O00;
border: 1px solid #00ff00;
border-radius: 0;
transform: scale(1) rotate(0deg);
opacity: 1;
box-shadow: 3px 3px rgba(0, 0, 0, 0.1);
width: 50px;
padding: 100px;
transition-property: all;
transition-duration: 1s;

}

Both transition-property property declarations will transition all the properties
listed—but the former will transition only the eight properties that may change, based
on property declarations that may be included in other rule blocks. Those eight prop-
erty values are included in the same rule block, but they don’t have to be.

The all in the latter example ensures that all animatable property values that would
change based on any style change event—no matter which CSS rule block includes
the changed property value—transitions over one second. The transition applies to all
animatable properties of all elements matched by the selector, not just the properties
declared in the same style block as the all.

Declaring individual properties means only the properties specifically defined in the
value of the transition-property transition when the value gets changed—whether

16 | Chapter2: Transitions

those property values are inherited, declared in the same rule block, or applied to the
element via a different CSS rule block.

In this case, the first version limits the transition to only the eight properties listed,
but enables us to provide more control over how each property will transition.
Declaring the properties individually lets us provide different speeds, delays, and/or
durations to each property’s transition if we declared those transition properties sepa-
rately:

<div class="foo">Hello</div>

div {
color: #ff0000;
border: 1px solid #0f0;
border-radius: 0;
transform: scale(1) rotate(0deg);
opacity: 1;
box-shadow: 3px 3px rgba(0, 0, 0, 0.1);
width: 50px;
padding: 100px;

}
.foo {
color: #00ff00;
transition-property: color, border, border-radius, transform, opacity,
box-shadow, width, padding;
transition-duration: 1s;
}

The transition-property property does not need to be in the same rule block as the
properties that make up its value.

If you want to define the transitions for each property separately, write them all out,
separating each of the properties with a comma. If you want to animate almost all the
properties at the same time, delay, and pace, with a few exceptions, you can use a
combination of all and the individual properties you want to transition at different
times, speeds, or pace. Make sure to use all as the first value:

div {
color: #f00;
border: 1px solid #00ff00;
border-radius: 0;
transform:
scale(1l) rotate(0deg);
opacity: 1;
box-shadow: 3px 3px rgba(0, 0, 0, 0.1);
width: 50px;
padding: 100px;
transition-property: all, border-radius,
opacity; transition-duration: 1s, 2s, 3s;

Transition Properties | 17

The all part of the comma-separated value includes all the properties listed in the
example, as well as all the inherited CSS properties, and all the properties defined in
any other CSS rule block matching or inherited by the element. In the preceding
example, all the properties getting new values will transition at the same duration,
delay, and timing function, with the exception of border-radius and opacity, which
we've explicitly included separately. Because we included them as part of a comma-
separated list after the all, we can transition them at the the same time, delay, and
timing function as all the other properties, or we can provide different times, delays,
and timing functions for these two properties. In this case, we transition all the
properties over one second, except for border-radius and opacity, which we transi-
tion over two seconds and three seconds, respectively. We cover transition-
duration next.

Make sure to use all as the first value in your comma-separated
value list, as the properties declared before the all will be included
in the all, overriding any other transition property values you
intended to apply to those now overridden properties.

none

While transitioning over time doesn’t happen by default, if you do include a CSS
transition and want to override that transition in a particular scenario, you can set
transition-property: none to override the entire transition and ensure no proper-
ties are transitioned. The none; keyword can only be used as a unique value of the
property—you can't include it as part of a comma-separated list of properties. If you
want to override the animation of fewer than all the properties, you will have to list all
of the properties you still want to transition. You can’t use the transition-property
property to exclude properties; rather, you can only use that property to include
them. Another trick would be to set the delay and duration of the property to 0s.
That way it will appear instantaneously: no CSS transition is being applied to it.

Transitionable properties

Not all properties are transitionable, and not all values of some normally transitiona-
ble properties can be transitioned. There is a finite list of CSS 2.1 properties that are
animatable, which is summarized in “Animatable Properties” on page 47. Realize that
as CSS is evolving, new properties are being added. While the animatable properties
list is not worth memorizing, the general rule is that if there is a logical midpoint
between the initial value and the final value of a property, that property and value
type is probably animatable.

By “property and value type,” I mean that some properties are animatable, but not all
values of those properties are animatable. Numeric values tend to be animatable; key-

18 | Chapter2: Transitions

word values that can’t be converted to numeric values generally aren’t. Keywords that
represent computed values, like red (which is converted to an RGB value) are animat-
able. Keyterms that aren’t computed values, like auto in top: auto, are not. CSS
functions that take numeric values as parameters generally are animatable. For exam-
ple, you can transition from height: 0 to height: 200px as both values are numeric.
But even though height is an animatable property, height: auto is nof an animata-
ble value, as auto in this case is not a computed value.

You can transition from color: red to color: slategray, as the browser converts
the colors from named colors to hexadecimal values, which are numeric; the browser
can determine the midpoint between two numeric values.

If you accidentally included a property that can’t be transitioned, fear not. The
browser will simply not transition the property that is not animatable. The entire
declaration will not fail. The nonanimatable property or nonexistent CSS property is
not exactly ignored. The browser passes over unrecognized or nonanimatable proper-
ties, keeping their place in the property list order to ensure that the other comma-
separated transition properties described next are not applied on the wrong
properties.*

Transitions can only occur on properties that are not currently
being impacted by a CSS animation. If the element is being anima-
ted, properties may still transition, as long as they are not proper-
ties that are currently controlled by the animation. CSS animations
are covered in Chapter 3.

The behavior of transitions seemingly not adhering to the basics of CSS cascades
when an animation on the same element and property is running does not affect
whether the transition has started or ended. The cascade is actually being adhered to.
Transition events will still fire, confirming the transition occurred.

The length of the transition-property list determines the number of items in the
transition-duration, transition-timing-function, and transition-delay lists.
If the number of values in any or all of these three properties does not match the
number of values listed in the transition-property value, the browser will ignore
any excess values, or repeat values when these other properties have fewer values in
their comma-separated list than the transition-property property. For this reason,
the order of the values in the transition-property value may be important, just as it
is important for other transition properties.

4 This might change. The CSS Working Group is considering making all property values animatable, switching
from one value to the next at the midpoint of the timing function if there is no midpoint between the pre and
post values.

Transition Properties | 19

If you include a property that is not animatable (like a border-style value change)
or a nonexistent property (such as a property name with a typo in it), the
transition-property will still work. Unrecognized words or properties that are not
animatable are not ignored. Rather, they are kept in the list of properties to ensure
that values from other comma-separated transition properties, such as transition-
duration, are applied in the right order.

However, if you have a syntax error, like a missing comma between two property
names or a space within a property name, that transition-property property decla-
ration will be ignored. Similarly, if you include the terms none, inherit, or initial,
as per the specification, the entire property exists, but fails, so should be ignored. This
is not the case in some browsers, however. Safari 8 and IE Edge 12 treat none,
inherit, and initial in a list of comma-separated properties as unrecognized or
nonanimatable properties.

Transition event: transitionend

A transitionend event occurs at the end of every transition, in each direction, for
every property that is transitioned over any amount of time or after any delay,
whether the property is declared individually or is part of the all declaration. For
some seemingly single property declarations, there will be several transitionend
events, as every animatable property within a shorthand property gets its own
transitionend event.

In the preceding example, when the transition concludes, there will be well over eight
transitionend events. For example, the border-radius transition alone produces
four transitionend events, one each for:

border-bottom-left-radius
border-bottom-right-radius
border-top-right-radius
border-top-left-radius

The padding property is also a shorthand for four longhand properties:

padding-top
padding-right
padding-bottom
padding-left

The border shorthand property produces eight transitionend events: four values

for border-width and four for border-color, both of which are shorthand declara-
tion themselves:

border-left-width
border-right-width
border-top-width
border-bottom-width

20 | Chapter2: Transitions

vww allitebooks.cond

http://www.allitebooks.org

border-top-color
border-left-color
border-right-color
border-bottom-color

There are no transitionend events for border-style properties, as border-style is
not an animatable property.

How do we know it’s not animatable? We can assume it isn't, since there is no logical
midpoint between the two values of solid and dashed. We can confirm by looking up
the list of animatable properties or the specifications for the individual properties.

There will be 21 transitionend events in our scenario in which 8 specific properties
are listed, as those 8 include several shorthand properties that have different values in
the pre and post states. In the case of all, there will be at least 21 transitionend
events: one for each of the longhand values making up the 8 properties we know are
included in the pre and post states, and possibly from others that are inherited or
declared in other style blocks impacting the element: (®

document.querySelector('div').addEventListener('transitionend’,
function (e) {
console.log(e.propertyName);

b
The transitionend event includes three event specific attributes: 1) propertyName,
which is the name of the CSS property that just finished transitioning;
2) pseudoElement, which is the pseudoelement upon which the transition occurred,
preceded by two semicolons, or an empty string if the transition was on a regular
DOM node; and 3) elapsedTime, which is the amount of time the transition took
to run, in seconds, which is generally the time listed in the transition-duration

property.

The transitionend event only occurs if the property successfully transitions to the
new value. The transitioned event doesn't fire if the transition was interrupted by
another change to the same property on the same element.

When the properties return to their initial value, another transitionend event
occurs. This event occurs as long as the transition started, even if it didn’t finish tran-
sitioning in the original direction.

The transition-duration Property

The transition-duration property takes as its value a comma-separated list of
lengths of time, in seconds (s) or milliseconds (ms), it should take to transition from
the original property values to the final property values.

Transition Properties | 21

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_animated_properties
http://standardista.com/transitions/transitionend.html

transition-duration

Values: <time>#
Initial value: 0s
Appliesto: All elements, :before and : after pseudo-elements

Inherited: No

The transition-duration property dictates how long it should take for each prop-
erty to transition from the original value to the new value. If reverting between two
states, and the duration is only declared in one of those states, the transition will take
the amount of time declared to revert to the previous state:

input {

transition-duration: 1s;
background-color: red;

}

input {
transition-duration: 0.2s;
background-color: green;

}

If different values for the transition-duration are declared, the duration of the
transition will be the transition-duration value declared in the rule block it is tran-
sitioning to. In the preceding example, it will take 1 second for the input to change to
a red background when it becomes invalid, and only 200 milliseconds to transition to
a green background when it becomes valid. (®

The value of the transition-duration property should be declared as a positive
value in either seconds (s) or milliseconds (ms). The time unit of ms or s is required
by the specification, even if the duration is set to @s. By default, properties simply
change from one value to the next instantly. In line with this, the default value for
the duration of a transition is ©s, meaning the transition is immediate, showing
no animation.

Unless there is a positive value for transition-delay set on a property, if
transition-duration is omitted, it is as if no transition-property declaration had
been applied—with no transitionend event occuring. As long as the total time set
for a transition to occur is greater than Os—which can happen with a duration of 0s

22 | Chapter2: Transitions

http://standardista.com/transitions/transition_duration.html

or when the transition-duration is omitted and defaults to 0s, if there is a positive
transition-delay value—the transition will still be applied and a transitionend
event will occur if the transition finishes.

Negative values for transition-duration are invalid, and, if included, will invalidate
the entire property value.

Using the same super-long transition-property declaration, we can declare a single
duration for all the properties or individual durations for each property, or we can
make alternate properties animate for the same length of time. We can declare a
single duration that applies to all properties during the transition by including a sin-
gle transition-duration value:

div {
color: #ff00O00;

transition-property: color, border, border-radius, transform, opacity,
box-shadow, width, padding;
transition-duration: 200ms;

}
We could have instead declared the same number of comma-separated time values
for the transition-duration property value as the CSS properties we enumerated in
the transition-property property value. If we want each property to transition over
a different length of time, we have to include a different comma-separated value for
each property name declared:

div {
color: #ff0000;

transition-property: color, border, border-radius, transform, opacity,
box-shadow, width, padding;
transition-duration: 200ms, 180ms, 160ms, 140ms, 120ms, 100ms, 1s, 2s;
}

If the number of properties declared does not match the number of durations
declared, the browser has specific rules on how to handle the mismatch. If there are
more durations than properties, the extra durations are ignored. If there are more
properties than durations, the durations are repeated. In this example, color,
border-radius, opacity, and width have a duration of 100 ms; border, transform,
box-shadow, and padding will be set to 200 ms:

div {

transition-property: color, border, border-radius, transform, opacity,
box-shadow, width, padding;
transition-duration: 100ms, 200ms;

Transition Properties | 23

If we declare exactly two comma-separated durations, every odd property will transi-
tion over the first time declared, and every even property will transition over the sec-
ond time value declared.

If a transition is too slow, the website will appear slow or unresponsive, drawing
unwanted focus to what should be a subtle effect. If a transition is too fast, it may be
too subtle to be noticed. While you can declare any positive length of time you want
for your transitions, your goal is likely to provide an enhanced rather than annoying
user experience. Effects should last long enough to be seen, but not so long as to be
noticeable. Generally, the best effects range between 100 and 200 milliseconds, creat-
ing a visible, yet not distracting, transition.

We want a good user experience for our drop-down menu, so we set both properties
to transition over 200 milliseconds:

nav 1i ul {
transition-property: transform, opacity;
transition-duration: 200ms;

}

The transition-timing-function Property

Do you want your transition to start off slow and get faster, start off fast and end
slower, advance at an even keel, jump through various steps, or even bounce? The
transition-timing-function provides a way to control the pace of the transition.
The transition-timing-function property describes how the transition proceeds as
it is being executed.

transition-timing-function

Values: <timing-function>#
Initial value: ease
Appliesto: All elements, :before and : after pseudo-elements

Inherited: No

The transition-timing-function values include ease, linear, ease-1in, ease-out,
ease-in-out, step-start, step-end, steps(n, start)—where n is the number of
steps—steps(n, end), and cubic-bezier(x1, y1, x2, y2). These values are also

24 | Chapter2: Transitions

the valid values for the animation-timing-function and are described in great detail
in Chapter 3.

The non-step keyword are easing timing functions employing cubic Bézier mathe-
matical functions to provide smooth curves. The specification provides for five pre-
defined easing functions, but you can describe your own precise timing function by
defining your own cubic-bezier() function, as shown in Table 2-1.

Table 2-1. Supported keyterms for cubic Bézier timing functions

Timing function Definition cubic-bezier value
ease Starts slow, then speeds up, then ends very cubic-bezier(0.25, 0.1, 0.25, 1)
slowly
linear Proceeds at the same speed throughout cubic-bezier(0, 0, 1, 1)
transition
ease-in Starts slow, then speeds up cubic-bezier(0.42, 0, 1, 1)
ease-out Starts fast, then slows down cubic-bezier(0, 0, 0.58, 1)
ease-in-out Similar to ease; faster in the middle, witha cubic-bezier(0.42, 0, 0.58, 1)

slow start but not as slow at the end

cubic-bezier() Specifies a cubic-bezier curve cubic-bezier(x1, y1, x2, y2)

Cubic Bézier curves, including the underlying curves defining the five named easing
functions defined in Table 2-1 and displayed in Figure 2-3, take four numeric param-
eters. For example, linear is the same as cubic-bezier(0, 0, 1, 1). The first and
third cubic Bézier function parameter values need to be between 0 and +1.

AV avaavs

ease linear ease-in ease-out ease-in-out

Figure 2-3. Supported cubic Bézier named functions incude ease, linear, ease-1in,
ease-out, and ease-1in-out

If you've taken six years of calculus, the method of writing a cubic Bézier function
might make sense; otherwise, it’s likely youll want to stick to one of the five basic
timing functions. There are online tools that let you play with different values, such as
cubic-bezier.com, which lets you compare the common keywords against each other,
or against your own cubic Bézier function.

The predefined key terms are fairly limited. To better follow the principles of anima-
tion (refer back to “12 Basic Principles of Animation” on page 1), you may want to
use a cubic Bézier function with four float values instead of the predefined key words.

Transition Properties | 25

http://cubic-bezier.com/

As shown in Figure 2-4, the website easings.net provides many additional cubic Béz-
ier function values you can use to provide for a more realistic, delightful animation.

easelnSine easeQutSine easelnOutSine

\
A
\

easelnQuad easeQutQuad easelnOutQuad

\
A
\

easelnCubic easeQutCubic easelnOutCubic

\
A
N

easelnQuart easeQutQuart easelnOutQuart

\
3
S

easelnQuint easeQutQuint easelnOutQuint

N
S
N

easelnExpo easeQutExpo easelnOutExpo

N
y
H

easelnCirc easeQutCirc easelnOutCirc

easelnBack easelnQutBack__

\
A
\

N
.

Fal
easelnElastic easeQutElastic easelnOutElastic
[V

L
N

easelnBounce easeQutBounce easelnOutBounce

X
?
\

Figure 2-4. Useful author-defined cubic Bézier functions

26 | Chapter2: Transitions

http://easings.net

While the authors of the site named their animations, the preceding names are not

part of the CSS specifications, and must be written as follows:

Unofficial name

Cubic Bézier function value

easelnSine

easeOutSine

easelInOutSine

easelInQuad

easeOutQuad

easelInOutQuad

easelnCubic

easeOQutCubic

easeInOutCubic

easelnQuart

easeOutQuart

easeInOutQuart

easeInQuint

easeOutQuint

easeInOutQuint

easeInExpo

easeOutExpo

easeInOutExpo

easeInCirc

easeQutCirc

easeInOutCirc

cubic-bezier(0.47, 0, 0.745, 0.715)

cubic-bezier (0

cubic-bezier(0

cubic-bezier (0

cubic-bezier (0

cubic-bezier (0

cubic-bezier (0

cubic-bezier(0.

cubic-bezier(0.

cubic-bezier(0.

cubic-bezier (0.

cubic-bezier(0.

cubic-bezier(0

cubic-bezier (0.

cubic-bezier(0.

cubic-bezier (0

cubic-bezier (0

.39, 0.575, 0.565, 1)

.445, 0.

05, 0.55, 0.95)

.55, 0.085, 0.68, 0.53)

.25, 0.46, 0.45, 0.94)

.455, 0.

03, 0.515, 0.955)

.55, 0.055, 0.675, 0.19)

215, 0.

645, 0.

895, 0.

165, 0.

77, 0,

.755, 0.

23, 1,

86, 0,

61, 0.355, 1)

045, 0.355, 1)

03, 0.685, 0.22)

84, 0.44, 1)

0.175, 1)

05, 0.855, 0.06)

0.32, 1)

0.07, 1)

.95, 0.05, 0.795, 0.035)

.19, 1,

0.22, 1)

cubic-bezier(1, 0, 0, 1)

cubic-bezier(0.6, 0.04, 0.98, 0.335)

cubic-bezier(0.075, 0.82, 0.165, 1)

cubic-bezier(0.785, 0.135, 0.15, 0.86)

Transition Properties

27

Unofficial name Cubic Bézier function value

easelnBack cubic-bezier(0.6, -0.28, 0.735, 0.045)

easeOutBack cubic-bezier(0.175, 0.885, 0.32, 1.275)

easeInOutBack cubic-bezier(0.68, -0.55, 0.265, 1.55)

There are also step timing functions available, with two predefined step values:
step-start Stays on the final keyframe throughout transition. Equal to steps(1, start).
step-end Stays on the initial keyframe throughout transition. Equal to steps(1, end).
steps(n, start) Displays n stillshots, where the first stillshot is n/100 percent of the way through the transition.

steps(n, end) Displays n stillshots, staying on the initial values for the first n/100 percent of the time.

As Figure 2-5 shows, the stepping functions show the progression of the transition
from the initial value to the final value in steps, rather than as a smooth curve.

| .
| | |
[B

step-end step-start steps(5, end) steps(5, start)

Figure 2-5. Step timing functions

The step functions allow you to divide the transition over equidistant steps. The func-
tions define the number and direction of steps. There are two direction options:
start and end. With start, the first step happens at the animation start. With end,
the last step happens at the animation end. For example, steps(5, end) would jump
through the equidistant steps at 0%, 20%, 40%, 60%, and 80%; and steps(5, start)
would jump through the equidistant steps at 20%, 40%, 60%, 80%, and 100%.

The step-start function is the same as steps(1, start). When you use it, the
property value stays on the final value from the beginning until the end of the transi-
tion. The step-end function, which is the same as steps(1, end), sits on the initial
value of the property, staying there through the transition’s duration.

28 | Chapter2: Transitions

Continuing on with the same super-long transition-property declaration, we can
declare a single timing function for all the properties or individual timing functions
for each property, or we can make every even property have one timing function,
while every odd property proceeds at a separate pace:

div {

transition-property: color, border-width, border-color, border-radius,
transform, opacity, box-shadow, width, padding;
transition-duration: 200ms;
transition-timing-function: ease-in;
}
In the preceding example, we made all the properties transition at the same tempo by

including a single time as the timing-function value:
div {

transition-property: color, border-width, border-color, border-radius,
transform, opacity, box-shadow, width, padding;
transition-duration: 200ms, 180ms, 160ms, 140ms, 120ms, 100ms, 1s, 2s, 3s;
transition-timing-function: ease, ease-in, ease-out, ease-in-out, linear,
step-end, step-start, steps(5, start), steps(3, end);
}
We can also create a horrible user experience by making every property transition at a
different rhythm. The transition-timing-function does not change the time it
takes to transition properties: that is set with the transition-duration property; but
it does change how the transition progresses during that set time:

div {

transition-property: color, border-width, border-color, border-radius,
transform, opacity, box-shadow, width, padding;
transition-duration: 200ms;
transition-timing-function: ease, ease-in, ease-out, ease-in-out, linear,
step-end, step-start, steps(5, start), steps(3, end);
}
If we include these nine different timing functions for the nine different properties, as
long as they have the same transition duration and delay, all the properties start and
finish transitioning at the same time. The timing function controls how the transition
progresses, but does not alter the time it takes for the transition to finish.

These timing functions are described in great detail in “animation-timing-function”
on page 83. The best way to familiarize yourself with the timing functions is to play
with them and see which one works best for the effect youre looking for. While

Transition Properties | 29

testing, set a relatively long transition-duration to better visualize the difference’
between the various functions. At higher speeds, you may not be able to tell the dif-
ference with the easing function; just don’t forget to set it back to under 200 millisec-
onds before launching your website:

nav 1i ul {
transition-property: transform, opacity;
transition-duration: 200ms;
transition-timing-function: ease-in;

}

Our navigation example has transitions occurring in two directions: one transition
occurs when changing from the default or initial value to the final hovered value. The
second transition occurs when the user mouses off the list item and the nested unor-
dered list returns to its previous or initial state. When the user hovers over the drop-
down navigation, it transitions open; it transitions closed when the user mouses off.

We want our menu to open and become opaque fairly quickly, while appearing grad-
ual. The ease-in value is the best for this. The timing function is reversed in the
reverse direction; by default, when returning to the initial values, the transition will
run in reverse order, inverting the timing function. It therefore eases in as it opens
and eases out as it closes. In this example, ease-in was used, so the return trip will
appear as if it was set to ease-out as it proceeds in the opposite direction, going from
open to closed. This is the default behavior, but it can be controlled. Controlling the
reverse transition direction is discussed in “In Reverse: Transitioning Back to Base-
line” on page 40.

The transition-delay Property

The transition-delay property enables you to introduce a time delay between when
the change that initiates the transition is applied to an element and when the transi-
tion begins.

If you hover over an element that has a color change on hover without a transition,
the color will change immediately. Similarly, a transition-delay of 0s (the default)
means the transition will begin immediately—it will start executing as soon as the
state of the element is altered. Otherwise, the time value of the transition-delay
defines the time offset from the moment the property values would have changed
(had no transition or transition-property been applied) until the property values

5 You can test the various transition-timing-function examples at http://www.standardista.com/css3/transi-
tions.

30 | Chapter2: Transitions

http://www.standardista.com/css3/transitions
http://www.standardista.com/css3/transitions

declared in the transition or transition-property value begins animating to the
next value.

transition-delay

Values: <time>#
Initial value: 0s
Appliesto: All elements, :before and : after pseudo-elements

Inherited: No

Including a transition-delay with a positive number of milliseconds (ms) or sec-
onds (s) to delay the transition will delay the onset of the transition effect. The time
unit, as s or ms, is required. Negative values of time are valid. The effects you can cre-
ate with negative transition-delays are described in “Negative values” on page 33.

Unlike transition-duration, negative time values are allowed for
the transition-delay property.

Continuing with the 8- (or 21-) property transition-property declaration, we
can make all the properties start transitioning right away by omitting the
transition-delay property or including it with a value of @s—but that’s not a very
interesting example. For the sake of examples, we could delay the start of all the even-
numbered properties, while all the odd-numbered properties start right away, by
including two comma-separated values, starting with s or @ms:

div {

transition-property: color, border, border-radius, transform, opacity,
box-shadow, width, padding;

transition-duration: 200ms;

transition-timing-function: linear;

transition-delay: 0s, 200ms;

Transition Properties | 31

By including transition-delay: 0s, 200ms on a series of properties, each taking
200 milliseconds to transition, we make every odd-numbered property begin its tran-
sition immediately; all the even-numbered transitions begin their transitions as soon
as the odd transitions have completed.

As with transition-duration and transition-timing-function, when the number
of comma-separated transition-delay values outnumbers the number of comma-
separated transition-property values, the extra delay values are ignored. When the
number of comma-separated transition-property values outnumbers the number
of comma-separated transition-delay values, the delay values are repeated. In this
case, with only two values, the first value (0s) is applied to each odd property, provid-
ing no delay, and the second value is applied to every even property, providing a 200-
millisecond delay. Because we declared the transition-duration as 200ms in this
scenario, every evenly numbered property will begin transitioning after 200 millisec-
onds, which is after every oddly numbered property has finished transitioning:

div {

transition-property: color, border-width, border-color, border-radius,
transform, opacity, box-shadow, width, padding;

transition-duration: 200ms;

transition-timing-function: linear;

transition-delay: 0s, 0.2s, 0.4s, 0.6s, 0.8s, 1s, 1.2s, 1.4s, 1.6s;

}

We can even declare nine different transition-delay values so that each property
begins transitioning after the previous property has transitioned. In this example, we
declared each transition to last 200 milliseconds with the transition-duration
property. We then declare a transition-delay that provides comma-separated delay
values for each property that increment by 200 milliseconds, or 0.2 seconds—the
same time as the duration of each property’s transition. That means we can make
each property start transitioning as soon as the previous property has finished.

We can use math to give every transitioning property different durations and delays,
ensuring they all complete transitioning at the same time:

div {

transition-property: color, border-width, border-color, border-radius,
transform, opacity, box-shadow, width, padding;

transition-duration: 1.8s, 1.6s, 1.4s, 1.2s, 1s, 0.8s, 0.6s, 0.4s, 0.2s;

transition-timing-function: linear;

transition-delay: 0s, 0.2s, 0.4s, 0.6s, 0.8s, 1s, 1.2s, 1.4s, 1.6s;

32 | Chapter2: Transitions

In this example, each property completes transitioning at the 1.8-second mark, but
each with a different duration and delay. For each property, the transition-
duration value plus the transition-delay value will add up to 1.8 seconds:

div {

transition-property: color, border-width, border-color, border-radius,
transform, opacity, box-shadow, width, padding;

transition-duration: 200ms;

transition-timing-function: linear;

transition-delay: 50ms;

}

Generally, you want all the transitions to begin at the same time. You can make that
happen by including a single transition-delay value, which gets applied to all the
properties. In our drop-down menu in Figure 2-1, we include a delay of 50 millisec-
onds. This delay is not long enough for the user to notice and will not cause the appli-
cation to appear slow. Rather, a 50-millisecond delay can help prevent the navigation
from shooting open unintentionally as the user accidentally passes over, or hovers
over, the menu items while moving the cursor from one part of the page or app
to another.

Negative values

A negative time value for transition-delay will make the transition begin immedi-
ately, partially through the transition. A negative transition-delay that is smaller
than the transition-duration will cause the transition to start immediately, partway
through the transition: (®
div {

transform: translateX(0);

transition-property: transform;

transition-duration: 200ms;

transition-delay: -150ms;
transition-timing-function: linear;

}
div {

transform: translateX(200px);
}

For example, if you have a transition-delay of -150ms on a 20@ms transition, the
transition will start three-quarters of the way through the transition and will last 50
milliseconds. In that scenario, with a linear timing function, it will jump to being
translated 150px along the x-axis immediately on hover and then animate the transla-
tion from 150 pixels to 200 pixels over 50 milliseconds.

Transition Properties | 33

http://www.standardista.com/transitions/negative_delay.html

If the absolute value of the negative transition-delay is greater than or equal to the
transition-duration, the change of property values is immediate, as if no transt
tion had been applied, and no transitionend event occurs.

When transitioning back from the hovered state to the original state, by default, the
same value for the transition-delay is applied. In the preceding scenario, with the
transition-delay not being overridden in the hover state, it will jump 75% of the
way back (or 25% of the way through the original transition) and then transition back
to the initial state. On mouseout, it will jump to being translated 50 pixels along the
x-axis and then take 50 milliseconds to return to its initial position of being translated
0 pixels along the x-axis.

Improving user experience

If you hover over the navigation item from Figure 2-1, you would expect the drop-
down menu to appear immediately. But that isn’t the user experience we want. The
user may unintentionally hover over the navigation while mousing from one section
of the document to another. Waiting for the user to hover over the navigation element
for 50 milliseconds before opening the drop-down menu isn’t enough of a delay to
make the site appear slow but is enough of a delay to ensure menus don’t seem to be
unintentionally flying open:
nav 1i ul {

transition-property: transform, opacity;

transition-duration: 200ms;

transition-timing-function: ease-in;

transition-delay: 50ms;

transform: scale(1, 0);

transform-origin: top center;

opacity: 0;

}

nav 1i ul {
transform: scale(l, 1);
opacity: 1;

}

In our navigation example, we add a 50-millisecond transition delay. This way, our
drop-down menu won'’t transition immediately if the user accidentally mouses over a
link on the way from one part of the document to another. By adding transition-
delay: 50ms, we can be more confident the user is intentionally hovering over the
parent navigation item before opening the drop-down menu.

The browser will also wait 50 milliseconds after the user mouses off the navigational
element before transitioning back to the pretransitioned state. When the
transition-delay is specified somewhere that applies to the element all the time, the
transition-delay occurs in both transition directions; that means the browser will

34 | Chapter2: Transitions

wait 50 milliseconds after the parent 11 or its descendant loses hover before closing
the drop-down menu.

This 50-millisecond delay before closing occurs whether or not the menu is com-
pletely open or even if the user mouses out of the menu before the menu finishes
transitioning open. The browser will wait 50 milliseconds before opening the drop-
down menu and will also wait 50 milliseconds before closing it—whether or not it
was ever fully visible—as long as it had started to open.

This may seem odd, but it improves user experience. Often users accidentally mouse
out of a navigational element as they mouse toward an item in the newly opened sub-
menu. This 50-millisecond delay in the reverse direction gives the user a 50-
millisecond window to get back onto the drop-down menu before it closes. This isn't
enough time to completely hover off and back on, but if there are submenus, an acci-
dental mousing over nonnavigation space as the user moves the pointer to a subnavi-
gation may be short enough to not close the navigation completely. If the user doesn’t
hover over the open menu of the parent tab, the menu will transition back to a closed
state. This is a good user experience.

If a mouse user leaves the area after the 50-millisecond delay but before the 200-
millisecond duration, the menu will not open fully. Rather, there will be a 50-
millisecond delay, and then the menu will revert to its fully closed state. Some
browsers will take the full 200 milliseconds to revert; others will spend the same
amount of time in the reverse direction as they did in the normal direction. A revers-
ing shortening factor, which shortens the reverse transition time of incomplete transi-
tions, is defined in the CSS Transitions specifications and is beginning to be
implemented in browsers.

Reverse direction

When a transitioned property reverts from the final state to the initial state and tran-
sition properties are only set on the start or initial state, the delay is repeated and the
timing is reversed. If the transition is interrupted and doesn’t complete, the duration
and delay are not ignored as the properties revert.

When a transition is interrupted before it is able to finish (such as mousing off of our
drop-down menu example before it finishes opening), property values are reset to the
values they had before the transition began, and the properties will transition back to
those values. Because repeating the duration and timing functions on a reverting par-
tial transition can lead to an odd or even bad user experience, the CSS transitions
specification provides for making the reverting transition shorter.

In our menu example, we have a transition-delay of 50ms set on the default state
and no transition properties declared on the hover state; thus, browsers will wait 50
milliseconds before beginning the reverse or closing transition.

Transition Properties | 35

When the forward animation finishes transitioning to the final values and the
transitionend event is fired, all browsers will duplicate the transition-delay in the
reverse states.

As Table 2-2 shows, if the transition didn't finish—say, if the user moved off the navi-
gation before the transition finished—all browsers except Microsoft Edge will repeat
the delay in the reverse direction. Some browsers replicate the transition-duration
as well, but Edge and Firefox have implemented the specifications reversing shorten-
ing factor.

Table 2-2. Unfinished transition reverse behavior by browser

Browser Reverse delay Transition time Elapsed time

Chrome 37 Yes 200 ms 0.200s
Chrome 42 Yes 200 ms 0.250s
Safari8 Yes 200 ms 0.200s
Firefox 41 Yes 38 ms 0.038s
Opera32 Yes 200 ms 0.250s
Edge12 No 38 ms 0.038s

Let’s say the user moves off that menu 75 milliseconds after it started transitioning.
This means the drop-down menu will animate closed without ever being fully opened
and fully opaque. The browser should have a 50-millisecond delay before closing the
menu, just like it waited 50 milliseconds before starting to open it. This is actually a
good user experience, as it provides a few milliseconds of delay before closing, pre-
venting jerky behavior if the user accidentally navigates off the menu. As shown in
Table 2-2, all browsers do this, except Microsoft Edge. In cases where the original
transition has completed, all browsers, including Edge, will repeat the 50-millisecond
delay before reverting the transition and closing the menu—but if the original transi-
tion did not have time to conclude, Microsoft Edge currently does not wait before
reversing the transition. This is true for positive transition-delay values.

Even though we only gave the browser 75 milliseconds to partially open the drop-
down menu before closing the menu, some browsers will take 200 milliseconds—the
full value of the transition-duration property—to revert. Other browsers, includ-
ing Firefox and Edge, have implemented the CSS specification’s reversing shortening
factor and the reversing-adjusted start value. When implemented, the time to com-
plete the partial transition in the reverse direction will be similar to the original value,
though not necessarily exact. For step timing functions, it will be the time it took to

36 | Chapter2: Transitions

complete the last completed step. For linear timing functions, the partial durations
will be the same in both directions. In the case of our ease-in 75-millisecond partial
transition duration, the reverse duration is 38.4 milliseconds:
div {
width: 100px;
transition: width 10s steps(10, start);

}
div {
width: 200px;

}
In the case of a steps timing function, Firefox and Edge will take the time, rounded
down to the number of steps the function has completed. For example, if the transi-
tion was 10 seconds with 10 steps, and the properties reverted after 3.25 seconds,
ending a quarter of the way between the third and fourth steps (completing 3 steps,
or 30% of the transition) it will take 3 seconds to revert to the previous values. In the
preceding example, the width of our div will grow to 130 pixels wide before it begins
reverting back to 100 pixels wide on mouseout.

While the reverse duration will be rounded down to the time it took to the last step,
the reverse direction will be split into the originally declared number of steps, not the
number of steps that completed. In our 3.25-second case, it will take 3 seconds to
revert through 10 steps. These reverse transition steps will be shorter in duration at
300 milliseconds each, each step shrinking the width by 3 pixels, instead of 10 pixels.

If we were animating a sprite by transitioning the background-position (®, this
would look really bad. The specification and implementation may change to make the
reverse direction take the same number of steps as the partial transition. Other
browsers currently take 10 seconds, reverting the progression of the 3 steps over 10
seconds across 10 steps—taking a full second to grow the width in 3-pixel steps.

Browsers that haven't implemented shortened reversed timing, including Chrome,
Safari, and Opera, will take the full 10 seconds, instead of only 3, splitting the transi-
tion into 10 steps, to reverse the 30% change. Whether the initial transition comple-
ted or not, these browsers will take the full value of the initial transition duration, less
the absolute value of any negative transition-delay, to reverse the transition, no
matter the timing function. In the steps case just shown, the reverse direction will
take 10 seconds. In our navigation example, it will reverse over 200 milliseconds,
whether the navigation has fully scaled up or not.

For browsers that have implemented the reversing timing adjustments, if the timing
function is linear, the duration will be the same in both directions. If the timing func-
tion is a step function, the reverse duration will be equal to the time it took to
complete the last completed step. All other cubic-bezier functions will have a
duration that is proportional to progress the initial transition made before being

Transition Properties | 37

http://www.standardista.com/transitions/file_steps.html
https://drafts.csswg.org/css-transitions/transition-reversing-demo

interrupted. Negative transition-delay values are also proportionally shortened.
Positive delays remain unchanged in both directions.

No browser will have a transitionend for the hover state, as the transition did not
end; but all browsers will have a transitionend event in the reverse state when the
menu finishes collapsing. The elapsedTime for that reverse transition depends on
whether the browser took the full 200 milliseconds to close the menu, or if the
browser takes as long to close the menu as it did to partially open the menu. Chrome
and Opera include the delay in their elapsedTime value. As of early 2016, this is a
bug, and should be fixed soon. All other browsers include only the time the browser
spent transitioning back—75 milliseconds for Firefox and Edge, 200 milliseconds for
Safari and older versions of Chrome and Android.

To override these values, include transition properties in both CSS rule blocks. While
this does not impact the reverse shortening, it does provide more control.

We'll first cover the transition shorthand property, then we'll use that property to
set different transitions in the reverse direction.

The transition Shorthand Property

The transition shorthand property combines the four properties just described—
transition-property, transition-duration, transition-timing-function, and
transition-delay—into a single property.

transition

Values: <single-transition>#
Initial value: all 0s ease 0s
Appliesto: All elements, :before and : after pseudo-elements

Inherited: No

The transition property accepts the value of none or any number of comma-
separated list of single tramsitions. A single transition contains a single property to
transition, or the keyword all to transition all the properties—preferably the dura-
tion for the transition, and optionally, the timing function and delay.

38 | (Chapter2: Transitions

https://drafts.csswg.org/css-transitions/transition-reversing-demo

If a single transition within the transition shorthand omits the property to transi-
tion (or the keyword all), the single transition will default to all. If the transition-
timing-function value is omitted, it will default to ease. If only one time value is
included, that will be the duration, and there will be no delay, as if transition-delay
were set to 0s. If two time values are included, the first is the transition-duration
and the second is the transition-delay.

Within each single transition, the order of the duration versus the delay is important:
the first value that can be parsed as a time will be set as a duration. If an additional
time value is found before the comma or the end of the statement, that will be set as
the delay:

nav 1i ul {

transition: transform 200ms ease-in 50ms,
opacity 200ms ease-in 50ms;

}

nav 1i ul {
transition: all 200ms ease-in 50ms;

}

nav 1i ul {
transition: 200ms ease-in 50ms;

}

The shorthand for our drop-down menu can be written three different ways. In the
first example, we included shorthand for each of the two properties. Because we are
transitioning all the properties that change on hover, we could use the keyword all,
as shown in the second example. And, as all is the default value, we could write the
shorthand with just the duration, timing-function and delay. Had we used ease

instead of ease-in, we could have omitted the timing function, since ease is the
default.

We had to include the duration, or no transition would be visible. In other words, the
only portion of the transition property that can be considered required is
transition-duration.

If we simply wanted to delay the change from closed menu to open menu without a
gradual transition, we would still need to include a duration of 6s. Remember, the
first value parsable as time will be set as the duration, and the second one will be set
as the delay:

nav 1i ul {
transition: 0Os 200ms; ...

Transition Properties | 39

This navigation will wait 200 milliseconds, then show the drop-
down fully open and opaque with no gradual transition. This is
| horrible user experience. Though if you switch the selector from
\ nav 11 ul to ¥, it might make for an April Fools’ joke.

If there is a comma-separated list of transitions (versus just a single declaration) and
the word none is included, the entire transition declaration is invalid and will
be ignored:

div {

transition-property: color, border-width, border-color, border-radius,
transform, opacity, box-shadow, width, padding;
transition-duration: 200ms, 180ms, 160ms, 140ms, 120ms, 100ms, 1s, 2s, 3s;
transition-timing-function: ease, ease-in, ease-out, ease-in-out, linear,
step-end, step-start, steps(5, start), steps(3, end);
transition-delay: 0s, 0.2s, 0.4s, 0.6s, 0.8s, 1s, 1.2s, 1.4s, 1.6s;
}

div {

transition:

color 200ms,

border-width 180ms ease-in 200ms,

border-color 160ms ease-out 400ms,

border-radius 140ms ease-in-out 600ms,

transform 120ms linear 800ms,

opacity 100ms step-end 1s,

box-shadow 1s step-start 1.2s,

width 2s steps(5, start) 1.4s,

padding 3s steps(3, end) 1.6s;

}

The two preceding CSS rule blocks are functionally equivalent: you can declare
comma-separated values for the four longhand transition properties, or you can
include a comma-separated list of single transitions. You can’t, however, mix the two:
transition: transform, opacity 200ms ease-in 56ms will ease in the opacity over
200 milliseconds after a 50-millisecond delay, but the transform change will be

instantaneous, with no transitionend event.

Note the duration comes before the delay in all the single transitions. Also note the
first single transition omits the delay and timing-function, as the values they’re map-
ped to in the longhand syntax version are the properties’ default values.

In Reverse: Transitioning Back to Baseline

In the preceding examples, we've declared a single transition. All our transitions have
been applied in the default state and initiated with a hover. With these declarations,

40 | Chapter2: Transitions

vww allitebooks.cond

http://www.allitebooks.org

the properties return back to the default state via the same transition on mouseout,
with a reversing of the timing function and a duplication of the delay.

With transition declarations only in the global state, both the hover and mouseout
states use the same transition declaration: the selector matches both states. We can
override this duplication of the entire transition or just some of the transition proper-
ties by including different values for transition properties in the global (versus the
hover-only) state.

When declaring transitions in multiple states, the transition included is to that state:

a{
background: yellow;
transition: 200ms background-color linear 0s;
}
a {
background-color: orange;
/* delay when going to the :hover state */
transition-delay: 50ms;

}

In this scenario, when the user hovers over a link, the background color waits 50 mil-
liseconds before transitioning to orange. When the user mouses off the link, the back-
ground starts transitioning back to yellow immediately. In both directions, the
transition takes 200 milliseconds to complete, and the gradual change proceeds in a
linear manner. The 50 milliseconds is included in the :hover (orange) state. The
delay happens, therefore, as the background changes to orange. ®

In our drop-down menu example, on :hover, the menu appears and grows over 200
milliseconds, easing in after a delay of 50 milliseconds. The transition is set with the
transition property in the default (nonhovered) state. When the user mouses out,
the properties revert over 200 milliseconds, easing out after a delay of 50 millisec-
onds. This reverse effect is responding to the transition value from the non-
hovered state. This is the default behavior, but it's something we can control. The best
user experience is this default behavior, so you likely don’t want to alter it—but it’s
important to know that you can.

If we want the closing of the menu to be jumpy and slow (we don’t want to do that; it’s
bad user experience. But for the sake of this example, let’s pretend we do), we can
declare two different transitions:

nav ul ul {
transform: scale(1, 0);
opacity: 0;

transition: all 4s steps(8, start) 1s;
}
nav 1i ul {

transform: scale(1, 1);

In Reverse: Transitioning Back to Baseline | 41

http://standardista.com/transitions/reverse.html

opacity: 1;
transition: all 200ms linear 50ms;

}

Transitions are to the fo state: when there’s a style change, the transition properties
used to make the transition are the new values of the transition properties, not the
old ones. We put the smooth, linear animation in the :hover state. The transition that
applies is the one we are going toward. In the preceding example, when the user hov-
ers over the drop-down menu’s parent 11, the opening of the drop-down menu will
be gradual but quick, lasting 200 milliseconds after a delay of 50 milliseconds. When
the user mouses off the drop-down menu or its parent 11, the transition will wait one
second and take four seconds to complete, showing eight steps along the way.

When we only have one transition, we put it in the global from state, as you want the
transition to occur toward any state, be that a hovering or a class change. Because we
want the transition to occur with any change, we generally put the only transition
declaration in the initial, default (least specific) block. If you do want to exert more
control and provide for different effects depending on the direction of the transition,
make sure to include a transition declaration in all of the possible class and UI states.

Beware of having transitions on both ancestors and descendants.
Transitioning properties soon after making a change that transition
ancestral or descendant nodes can have unexpected outcomes. If
the transition on the descendant completes before the transition on
the ancestor, the descendant will then resume inheriting the (still
transitioning) value from its parent. This effect may not be what
you expected.

Animatable Properties and Values

Before implementing transitions and animations, it is important to understand what
properties are transitionable and animatable. You can transition (or animate) any ani-
matable CSS properties; but which properties are animatable?

While we've included a list of these properties in “Animatable Properties” on page 47,
CSS is evolving, and the animatable properties list will likely get new additions.®

Interpolation is the construction of data points between the values of known data
points. The key guideline to determining if a property value is animatable is whether
the computed value can be interpolated. If a property’s keywords are computed values,
they can't be interpolated; if its keywords compute to a number, they can be. The

6 A proposed change to the specifications would make all properties transitionable, even if they aren’t in fact
animatable. This has yet to be added to the specification, and I don’t foresee it being implemented.

42 | Chapter2: Transitions

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_animated_properties

quick rule of thought is that if you can determine a midpoint between two property
values, those property values are probably animatable. Values that are interpolatable
are animatable. Those that aren’t, aren't.

For example, the display values are nonnumeric keywords. Values like block and
inline-block aren’t numeric and therefore don't have a midpoint; they aren’t animat-
able. The transform property values of rotate(10deg) and rotate(20deg) have a
midpoint of rotate(15deg); they are animatable.

The border property is shorthand for border-style, border-width, and border-
color (which, in turn, are themselves shorthand properties for the four side values).
While there is no midpoint between any of the border-style values, the border-
width property length units are numeric, so they can be animated. The keyword val-
ues of medium, thick, and thin have numeric equivalents and are interpolatable: the
computed value of the border-width property computes those keywords to lengths.

In the border-color value, colors are numeric—the named colors all represent hexa-
decimal color values—so colors are animatable as well. If you transition from
border: red solid 3pxto border: blue dashed 10px, the border width and border
colors will transition at the defined speed, but border -style will jump from solid to
dashed as soon as the new value is applied.

transitionend events will occur for all the animatable properties. In this case, there
will be eight transitionend events, for border-top-width, border-right-width,
border-bottom-width, border-left-width, border-top-color, border-right-
color, border-bottom-color, and border-left-color.

As noted (see Table 2-3), numeric values tend to be animatable. Keyword values that
aren’t translatable to numeric values generally aren’t. CSS functions that take numeric
values as parameters generally are animatable. One exception to this rule of thought
is visibility: while there is no midpoint between the values of visible and hidden,
visibility values are interpolatable between visible and not-visible. When it comes
to the visibility property, either the initial value or the destination value must be
visible or no interpolation can happen. The value will change at the end of the tran-
sition from visible to hidden. For a transition from hidden to visible, it changes at
the start of the transition.

auto should generally be considered a nonanimatable value and should be avoided
for animations and transitions. According to the specification, it is not an animatable
value, but some browsers interpolate the current numeric value of auto (such as
height: auto) to be Opx. auto is nonanimatable because it is a computed value for
properties like height, width, top, bottom, left, right, and margin.

Animatable Properties and Values | 43

Often an alternative property or value may work. For example, instead of changing
height: 0 to height: auto, use max-height: 0 to max-height: 100vh, which will
generally create the expected effect. The auto value is animatable for min-height and
min-width, since min-height: auto actually computes to 0.

How Property Values Are Interpolated

Interpolation can happen when values falling between two or more known values can
be determined. Interpolatable values can be transitioned and animated.

Numbers are interpolated as floating-point numbers. Integers are interpolated as
whole numbers, incrementing or decrementing as whole numbers.

In CSS, length and percentage units are translated into real numbers. When transi-
tioning or animating calc(), or from one type of length to or from a percentage, the
values will be converted into a calc() function and interpolated as real numbers.

Colors, whether they are HSLA, RGB, or named colors, are interpolated into their
RGBA equivalent values for transitioning.

When animating font weights, if you use keyterms like bold, they’ll be converted to
numeric values and animated in steps of multiples of 100. You may be used to writing
bold and normal, but the values of 100 through 900 have been around as long as
CSS—since CSS Level 1 in 1996.

When including animatable property values that have more than one component,
each component is interpolated appropriately for that component. For example,
text-shadow has up to four components: the color, x, y, and blur. The color is inter-
polated as color: the x, y, and blur components are interpolated as lengths. Box
shadows have two additional optional properties: inset (or lack thereof) and spread.
spread, being a length, is interpolated as such. The inset keyterm cannot be con-
verted to a numeric equivalent: you can transition from one inset shadow to another
inset shadow, or from one drop shadow to another drop shadow multi-component
value, but there is no way to gradually transition between inset and drop shadows.

Similar to values with more than one component, gradients can be transitioned only
if you are transitioning gradients of the same type (linear or radial) with equal num-
bers of color stops. The colors of each color stop are then interpolated as colors, and
the position of each color stop is interpolated as length and percentage units.

44 | Chapter 2: Transitions

Repeating values

When you have simple lists of other types of properties, each item in the list is inter-
polated appropriately for that type—as long as the lists have the same number of
items or repeatable items, and each pair of values can be interpolated:
.img {
background-image:
url(l.gif), url(2.gif), url(3.qif), url(4.gif),
url(5.gif), url(6.gif), url(7.gif), url(8.gif),
url(9.gif), url(10.gif), url(11.gif), url(12.gif);
background-size: 10px 10px, 20px 20px, 30px 30px, 40px 40px;
transition: background-size 1s ease-in 0s;

}
.img {

background-size: 25px 25px, 50px 50px, 75px 75px, 100px 100px;
}

For example, in transitioning four background-sizes, with all the sizes in both lists lis-
ted in pixels, the third background-size from the pretransitioned state can gradually
transition to the third background-size of the transitioned list. In the preceding
example, background images 1, 6, and 10 will transition from 10px to 25px in height
and width when hovered. Similarly, images 3, 7, and 11 will transition from 30px to
75px, and so forth.

Remember, when there aren’t enough declarations to match the number of back-
ground layers, the values are repeated. If there are too many values, the excess values
are ignored. In this case, the background-size values are repeated three times, as if
the CSS had been written as:

.img {
background-size: 10px 10px, 20px 20px, 30px 30px, 40px 40px,

10px 10px, 20px 20px, 30px 30px, 40px 40px,
10px 10px, 20px 20px, 30px 30px, 40px 40px;

}
.img {
background-size: 25px 25px, 50px 50px, 75px 75px, 100px 100px,
25px 25px, 50px 50px, 75px 75px, 100px 100px,
25px 25px, 50px 50px, 75px 75px, 100px 100px;
}

If a property doesn't have enough comma-separated values to match the number of
background images, the list of values is repeated until there are enough, even when
the list in the :hover state doesn’t match the initial state:

.img {
background-size: 33px 33px, 66px 66px, 99px 99px;

Animatable Properties and Values | 45

If we transitioned from four background-size declarations in the initial state to three
background-size declarations in the :hover state, all in pixels, still with 12 back-
ground images, the hover and initial state values are repeated (three and four times
respectively) until we have the 12 necessary values, as if the following had been
declared:

.img {

background-size: 10px 10px, 20px 20px, 30px 30px,
40px 40px, 10px 10px, 20px 20px,
30px 30px, 40px 40px, 10px 10px,
20px 20px, 30px 30px, 40px 40px;

}
.img {
background-size: 33px 33px, 66px 66px, 99px 99px,
33px 33px, 66px 66px, 99px 99px,
33px 33px, 66px 66px, 99px 99px,
33px 33px, 66px 66px, 99px 99px;
}

If a pair of values cannot be interpolated—for example, if the background-size
changes from contain in the default state to cover when hovered—then, according
to the specification, the lists are not interpolatable. However, some browsers ignore
that particular pair of values for the purposes of the transition, but still animate the
interpolatable values.

There are some property values that can animate if the browser can infer implicit
values. For example, shadows. For shadows, the browser will infer an implicit shadow
box-shadow: transparent © 0 0 or box-shadow: 1inset transparent 0 0 0,
replacing any values not explicitly included in the pre- or post-transition state. These
examples are in the chapter files for this book.

Only the interpolatable values lead to transitionend events.

As noted previously, visibility animates differently than other properties: if ani-
mating or transitioning to or from visible, it is interpolated as a discrete step. It is
always visible during the transition or animation as long as the timing function out-
put is between 0 and 1. It will switch at the beginning if the transition is from hidden
to visible. It will switch at the end if the transition is from visible to hidden. Note
that this can be controlled with the step timing functions.

46 | Chapter2: Transitions

http://www.standardista.com/css3/transitions

Animatable Properties

There is a list of animatable properties in the CSS Transitions specification. This list
only lists the CSS 2.1 properties that are transitionable, so it is not wholly accurate.

Table 2-3 shows a list of animatable properties and how their values are interpolated.

Table 2-3. Animatable properties

Property name Interpolation

COLOR
color as color
opacity as number

COLUMNS
column-width as length
column-count as integer
column-gap as length
column-rule (see longhands)
column-rule-color: as color
column-rule-style: no
column-rule-width: as length
break-before no
break-after no
break-inside no
column-span no
column-fill no

TEXT
hyphens no
letter-spacing as length
word-wrap no
overflow-wrap no
text-transform no
tab-size as length
text-align no
text-align-last no

Animatable Properties and Values

47

http://dev.w3.org/csswg/css-transitions/#animatable-properties

Property name Interpolation

text-indent as length, percentage, or calc();
direction no
white-space no
word-break no
word-spacing as length
line-break no

TEXT DECORATIONS
text-decoration-color: as color
text-decoration-style: no
text-decoration-line: no
text-decoration-skip no
text-shadow as shadow list
text-underline-position no

FLEXIBLE BOXES
align-content no
align-items no
align-self no
flex-basis as length, percentage, or calc();
flex-direction no
flex-flow no
flex (see longhand)
flex-grow as number
flex-shrink as number
flex-basis: as length, percentage, or calc();
flex-wrap no
justify-content no
order as integer

BACKGROUND AND BORDERS
background
background-color: as color
background-1image: no
background-clip: no

48 | Chapter2: Transitions

Property name Interpolation

background-position: as list of length, percentage, or calc
background-size: as list of length, percentage, or calc
background-repeat: no
background-attachment no
abackground-origin no

BORDERS
border (see longhand)
border-color as color
border-style no
border-width as length
border-radius as length, percentage, or calc();
border-image no (see longhand)
border-image-outset no
border-image-repeat no
border-image-slice no
border-image-source no
border-image-width no
BOX MODEL
box-decoration-break no
box-shadow as shadow list
margin as length
padding as length
box-sizing no
max-height as length, percentage, or calc();
min-height as length, percentage, or calc();
height as length, percentage, or calc();
max-width as length, percentage, or calc();
min-width as length, percentage, or calc();
width as length, percentage, or calc();
overflow no
visibility as visibility (see “How Property Values Are
Interpolated” on page 44)
TABLE

Animatable Properties and Values | 49

Property name Interpolation

border-collapse
border-spacing
caption-side
empty-cells
table-layout

vertical-align

no
no
no
no
no

as length

POSITIONING
bottom as length, percentage, or calc();
left as length, percentage, or calc();
right as length, percentage, or calc();
top as length, percentage, or calc();
float no
clear no
position no
z-index as integer

FONTS
font (see longhand)
font-style no
font-variant no
font-weight as font weight
font-stretch as font stretch
font-size as length

line-height
font-family
font-variant-ligatures
font-feature-settings
font-language-override
font-size-adjust
font-synthesis
font-kerning
font-variant-position
font-variant-caps

font-variant-numeric

as number, length
no

no

no

no

as number

no

no

no

no

no

50

| Chapter 2: Transitions

Property name Interpolation

font-variant-east-asian no

font-variant-alternates no
IMAGES

object-fit no

object-position

as length, percentage, or calc();

image-rendering no
image-orientation no
COUNTERS, LISTS, AND GENERATED CONTENT
content no
quotes no
counter-increment no
counter-reset no
list-style no
list-style-image no
list-style-position no
list-style-type no
PAGE
orphans no
page-break-after no
page-break-before no
page-break-inside no
widows no
USER INTERFACE
outline (see longhand)
outline-color as color
outline-width as length
outline-style no
outline-offset as length
cursor no
resize no
text-overflow no

Animatable Properties and Values

51

Property name Interpolation

ANIMATIONS
animation no (see longhands)
animation-delay no
animation-direction no
animation-duration no
animation-fill-mode no
animation-iteration-count no
animation-name no
animation-play-state no
animation-timing-function no, though animation-timing-function
can be included in keyframes
TRANSITIONS
transition no (see longhands)
transition-delay no
transition-duration no
transition-property no
transition-timing-function no
TRANSFORM PROPERTIES
transform as transform (see Transforms in S [0'Reilly])
transform-origin as length, percentage or calc();
transform-style no
perspective as length
perspective-origin as simple list of a length, percentage or calc();
backface-visibility no
COMPOSITING AND BLENDING
background-blend-mode no
mix-blend-mode no
isolation no

52 | Chapter2: Transitions

http://www.oreilly.com/free/transforms-in-css.csp

Property name Interpolation

SHAPES
shape-outside yes, as basic-shape
shape-margin as length, percentage, or calc();
shape-image-threshold as number
MISCELLANEOUS
clip (deprecated) as rectangle
display no
unicode-bidi no
text-orientation no
ime-mode no
all as each of the properties of the shorthand (all
properties but unicode-bidi and direction)
will-change no
box-decoration-break no
touch-action no
initial-letter no
initial-letter-align no

transition Events Revisited
The transitionend event fires when a transition completes.

The transitionend event has three properties. propertyName is the name of the CSS
property whose transition completed, and elapsedTime is the number of seconds the
transition had been running at the time the event fired, not including the transition
delay. The third property is the pseudoElement property, which returns the name of
the pseudo-element on which the transition occurred, either ::before or ::after
(with two colons), or the empty string if the transition occurred on an element and
not a pseudo-element.

Currently, the transitionend event will only occur if there is a positive, nonzero
transition-delay or a nonzero transition-duration. The transitionend event
only occurs if the sum of transition-delay (which can be negative) and
transition-duration (which can't) is greater than zero. If there is no delay or no
duration, there is no gradual transition, and no transitionend is fired, even if a
property value has changed state.

Animatable Properties and Values | 53

You can use the addEventListener() method for the transitionend event to listen
for this event.

If a keyframe animation, explained in the next chapter, is applied to a transitioning
element, and it animates the same properties that are being transitioned, the anima-
tion takes precedence over the transition. Oddly, the transitionend event will still
occur, but it will occur at the end of the animation.

Printing transitions

When web pages or web applications are printed, the stylesheet for print media is
used. If your style element’s media attribute matches only screen, the CSS will not
impact the printed page at all.

Often, no media attribute is included; it is as if media="all" were set, which is the
default. Depending on the browser, when a transitioned element is printed, either
the interpolating values are ignored, or the property values in their current state
are printed.

You can't see the element transitioning on a piece of paper, but in some browsers, like
Chrome, if an element transitioned from one state to another, the current state at the
time the print function is called will be the value on the printed page, if that property
is printable. For example, if a background color changed, neither the pre-transition or
the post-transition background color will be printed, as background colors are gener-
ally not printed. However, if the text color mutated from one value to another, the
current value of color will be what gets printed on a color printer or PDF.

In other browsers, like Firefox, whether the pre-transition or post-transition value is
printed depends on how the transition was initiated. If it initiated with a hover, the
non-hovered value will be printed, as you are no longer hovering over the element
while you interact with the print dialog. If it transitioned with a class addition, the
post-transition value will be printed, even if the transition hasnt completed. The
printing acts as if the transition properties are ignored.

Given that there are separate printstyle sheets or @media rules for print, browsers
compute style separately. In the print style, styles don’t change, so there just aren’t any
transitions. The printing acts as if the property values changed instantly, instead of
transitioning over time.

54 | Chapter2: Transitions

CHAPTER 3
Animation

CSS transitions, covered in the previous chapter, enabled simple animations. With
transitions, an element’s properties change from the values set in one style block to
the values set in a different style block as the element changes state over time instead
of instantly. With CSS transitions, the start and end states of property values are con-
trolled by existing property values and provide little control over how the property
value interpolation progresses over time.

CSS animations are similar to transitions in that values of CSS properties change over
time. But transitions only let us animate from an initial value to a destination value
and back again. CSS keyframe animations let us decide if and how an animation
repeats and give us granular control over what happens throughout the animation.

CSS animation lets us animate the values of CSS properties over time using key-
frames. Similar to transitions, animation provides us with control over the delay and
duration. With CSS animations, we can control the number of iterations, the iteration
behavior, what happens before the first animation commences, and the state of ani-
mated properties after the last animation iteration concludes. CSS animation proper-
ties allow us to control timing and even pause an animation mid-stream.

While transitions trigger implicit property values changes, animations are explicitly
executed when animation keyframe properties are applied.

With CSS animations, you can change property values that are not part of the set pre
or post state of the element. The property values set on the animated element don’t
necessarily have to be part of the animation progression. For example, with transi-
tions, going from black to white will only display varying shades of gray. With anima-
tion, that same element doesn’t have to be black or white or even in-between shades
of gray during the animation. While you can transition through shades of gray, you
could instead turn the element yellow, then animate from yellow to orange.

55

Alternatively, you could animate through various colors, starting with black and end-
ing with white, but progressing through the entire rainbow ®' if you so choose.
With animations, you can use as many keyframes as needed to granularly control an
element’s property values to create your desired effect.

The first step in implementing CSS animations is to create a keyframe animation—a
reusable @keyframes at-rule defining which properties will be animated and how. The
second step is to apply that keyframe animation to one or more elements in your
document or application, using various animation properties to define how it will
progress through the keyframes.

Keyframes

To animate an element, we need to set the name of a keyframe animation; to do that,
we need a named keyframe animation. Our first step is to define this reusable CSS
keyframe animation using the @keyframes at-rule.

To define a CSS animation, we declare a reusable keyframe animation using the
@keyframes rule, giving our animation a name. The name we create will then be used
within a CSS selector’s code block to attach this particular animation to the ele-
ment(s) and/or pseudo-element(s) defined by the selector(s).

The @keyframes at-rule includes the animation identifier, or name, and one or more
keyframe blocks. Each keyframe block includes one or more keyframe selectors with
declaration blocks of zero or more property/value pairs. The entire @keyframes at-
rule specifies the behavior of one full iteration of the animation. The animation may
iterate zero or more times, depending mainly on the animation-iteration-count
property value, which we’ll discuss in “The animation-iteration-count Property”
on page 68.

The @keyframes at-rule keyterm is followed by the animation_identifier (the name
you give your animation for future reference), followed by curly braces that encom-
pass the series of keyframe blocks.

Each keyframe block includes one or more keyframe selectors. The keyframe selec-
tors are percentage-of-time positions along the duration of the animation; they are
declared either as percentages or with the keyterms from or to:

@keyframes animation_identifier {
keyframe_selectorA {
propertyl: valuela;
property2: value2b;
}

1 All of the examples in this chapter can be found at http://standardista.com/css3/animations.

56 | Chapter3: Animation

http://standardista.com/css3/animations
http://www.standardista.com/animations/01_rainbowhover.html

keyframe_selectorB {
propertyl: valuelb;
property2: value2b;
}
}

Setting Up Your Keyframe Animation

To create our keyframe animation, we start with the @keyframes at-rule keyterm, an
animation name, and curly brackets to encompass the animation directives. Within
the opening and closing curly brackets, we include a series of keyframe selectors with
blocks of CSS in which we declare the properties we want to animate. The keyframes
we declare don't in themselves animate anything. Rather, we must attach the keyframe
animations we created via the animation-name property, whose value is the name or
animation identifier we provided within our at-rule. We discuss that property in “The
animation-name Property” on page 64.

Start with the at-rule declaration, followed by the animation name and brackets:

@keyframes nameOfAnimation {

The name, which you create, is an identifier, not a string. Identifiers have specific
rules. First, they can't be quoted. You can use any characters [a-zA-Z0-9], the hyphen
(), underscore (_), and any ISO 10646 character U+00A0 and higher. ISO 10646 is
the universal character set; this means you can use any character in the Unicode stan-
dard that matches the regular expression [-_a-zA-Z0-9\u@0A®- \u10FFFF].

There are some limitations on the name. As mentioned, do not quote the animation
identifier (or animation name). ® The name can’t start with a digit [0-9] or two
hyphens. One hyphen is fine, as long as it is not followed by a digit—unless you
escape the digit or hyphen with a backslash.

If you include any escape characters within your animation name, make sure to
escape them with a backslash (\). For example, Q&A! must be written as Q\&A\!. deZ
can be left as 4®Z (no, that's not a typo), and ® is a valid name as well. But if you are
going to use any keyboard characters that aren't letters or digits, like !, @, #, $, %, *, &,
*»Gheu=s~\\ve s L LLL L L\, or /, escape them with a backslash.

Also, don't use any of the keyterms covered in this chapter as the name of your ani-
mation. For example, possible values for the various animation properties we'll be
covering later in the chapter include none, paused, running, infinite, backwards,
and forwards, among others. Using an animation property keyterm, while not pro-
hibited by the spec, will likely break your animation ® when using the animation
shorthand property discussed in “The animation Shorthand Property” on page 99.

Setting Up Your Keyframe Animation | 57

http://standardista.com/animations/name.html
http://standardista.com/animations/badnames.html

So, while you can legally name your animation paused (or another keyterm,) I
strongly recommend against it:

@keyframes bouncing {

}

After declaring the name of our @keyframe animation, in this case bouncing, we
enclose all the rules of our at-rule in curly braces, as shown in the last code snippet.
This is where we will put all our keyframes.

Keyframe Selectors

Keyframe selectors provide points during our animation where we set the values of
the properties we want to animate. In defining animations, we dictate the values we
want properties to have at a specific percentage of the way through the animations. If
you want a value at the start of the animation, you declare it at the 0% mark. If you
want a different value at the end of the animation, you declare the property value at
the 100% mark. If you want a value a third of the way through the animation, you
declare it at the 33% mark. These marks are defined with keyframe selectors.

Keyframe selectors consist of a comma-separated list of one or more percentage val-
ues or the keywords from or to. The keyword from is equal to 0%. The keyword to
equals 100%. The keyframe selectors are used to specify the percentage along the
duration of the animation the keyframe represents. The keyframe itself is specified by
the block of property values declared on the selector. The % unit must be used on per-
centage values: in other words, 0 is invalid as a keyframe selector:

@keyframes W {
from {
left: 0;
top: 0;
}
25%, 75% {
top: 100%;
}
50% {
top: 50%;
}
to {
left: 100%;
top: 0;
}
}

This @keyframes animation, named W, when attached to a non-statically positioned
element, would move that element along a W-shaped path. W has five keyframes, at

58 | Chapter3: Animation

the 0%, 25%, 50%, 75%, and 100% marks. The from is the 0% mark. The to is the
100% mark. (®

As the property values we set for the 25% and 75% mark are the same, we put two key-
frame selectors together as a comma-separated list. Just as with regular CSS selectors,
we can put multiple comma-separated keyframe selectors together in front of a single
CSS block. Whether you keep those selectors on one line (as in the example) or put
each selector on its own line is up to your own CSS style guidelines:

25%,

75% {

top: 100%;

}
Note that selectors do not need to be listed in ascending order. In the preceding
example, we've placed the 25% and 75% on the same line, with the 50% mark coming
after that declaration. For legibility, it is highly encouraged to progress from the 0% to
the 100% mark. However, as demonstrated by the 75% keyframe in this example,
which is “out of order;” it is not required.

Omitting from and to Values

If a 0% or from keyframe is not specified, then the user agent (browser) constructs a
0% keyframe using the original values of the properties being animated, as if the 0%
keyframe were declared with the same property values that impact the element when
no animation was applied. Similarly, if the 100% or to keyframe is not defined, the
browser creates a faux 100% keyframe using the value the element would have had if
no animation had been set on it.

Assuming we have a background-color change animation:

@keyframes change_bgcolor {
45% { background-color: green; }
55% { background-color: blue; }
}

And the element originally had background-color: red set on it, it would be as if
the animation were written as: (®

@keyframes change_bgcolor {
0% { background-color: red; }
45% { background-color: green; }
55% { background-color: blue; }
100% { background-color: red; }

Keyframe Selectors | 59

http://standardista.com/animations/02_W.html
http://standardista.com/animations/no0or100.html

Or, remembering that we can include multiple identical keyframes as a comma-
separated list, this faux animation could have also been written as:

@keyframes change_bgcolor {
0%,
100% { background-color: red; }
45% { background-color: green; }
55% { background-color: blue; }
}

Note the background-color: red; declarations are not actually part of the keyframe
animation. If the background color were set to yellow in the element’s default state,
the 0% and 100% marks would display a yellow background, animating into green,
then blue, then back to yellow as the animation progressed:

@keyframes change_bgcolor {
0%, 100% { background-color: yellow; }
45% { background-color: green; }
55% { background-color: blue; }

}

We can include this change_bgcolor animation on many elements, and the perceived
animation will differ based on the element’s value for the background-color property
in the nonanimated state.

Negative percentages, values greater than 100%, and values that aren’t otherwise per-
centages or the keyterms to or from are not valid and will be ignored. Noninteger
percentage values, such as 33.33%, are valid.

Repeating Keyframe Properties

In the original -webkit- implementation of animation, each keyframe could only be
declared once: if declared more than once, only the last declaration would be applied,
and the previous keyframe selector block was ignored. This has been updated. Now,
similar to the rest of CSS, the values in the keyframe declaration blocks with identical
keyframe values cascade. In the standard (nonprefixed) syntax, the preceding W ani-
mation can be written with the to, or 100%, declared twice, overriding the value of the
left property:

@keyframes W {

from, to {
top: 0O;
left: 0;

}

25%, 75% {
top: 100%;

}

50% {
top: 50%;

}

60 | Chapter3: Animation

to {
left: 100%;
}
}

Note that in the preceding code block, to is declared along with from as keyframe
selectors for the first code block. The left value is overridden for the to in the last
keyframe block.

Animatable Properties

Not all properties are animatable. Similar to the rest of CSS, the browser ignores
properties and values in a keyframe declaration block that are not understood. Prop-
erties that are not animatable, with the exception of animation-timing-function,
are also ignored. There is a fairly exhaustive list of animatable properties maintained
by the community on the Mozilla Developer Network site.

The animation-timing-function, described in greater detail in
“The animation-timing-function Property” on page 83, while
not an animatable property, is not ignored. If you include the
animation-timing-function as a keyframe style rule within a key-
frame selector block, the timing function of the properties within
that block will change to the declared timing function when the
animation moves to the next keyframe.

You should not try to animate between nonnumeric values, with a few exceptions.
For example, you can animate between nonnumeric values as long as they can be
extrapolated into a numeric value, like named colors, which are extrapolated to hexa-
decimal color values.

If the animation is set between two property values that don’t have a midpoint, the
results may not be what you expect: the property will not animate correctly—or at all.
For example, you shouldn’t declare an element’s height to animate between height:
auto and height: 300px. There is no midpoint between auto and 300px. The ele-
ment may still animate, but different browsers handle this differently: Firefox does
not animate the element; Safari may animate as if auto is equal to 0; and both Opera
and Chrome currently jump from the preanimated state to the postanimated state
halfway through the animation, which may or may not be at the 50% keyframe selec-
tor, depending on the value of the animation-timing-function. In other words, dif-
ferent browsers behave differently for different properties when there is no midpoint,
so you can’t be sure you will get your expected outcome.

The behavior of your animation will be most predictable if you declare both a 0% and
a 100% value for every property you animate.

Keyframe Selectors | 61

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_animated_properties
http://standardista.com/animations/nomidpoint.html

@keyframes round {
100% {
border-radius: 50%;

}
}
For example, if you declare border-radius: 50%; in your animation, you may want
to declare border-radius: 0; as well, because there is no midpoint between none
and anything: the default value of border-radius is none, not 6:

@keyframes square_to_round {
0% {
border-radius: 0%;

}
100% {

border-radius: 50%;
}

}

The round animation will animate an element using the original border-radius value
of that element to a border-radius of 50% over the duration of the animation cycle.
The round animation may work as expected if you are turning rounded corner but-
tons into ovals (but it isn’t likely to look good).

While including a 8% keyframe will ensure that your animation runs smoothly, the
element may have had rounded corners to begin with. By adding border-radius:
0%; in the from keyframe, if the element was originally rounded, it will jump to
rectangular corners before it starts animating. This might not be what you want.
The best way to resolve this issue is to use the round animation instead of
square_to_round, making sure any element that gets animated with the round key-
frame animation has its border - radius explicitly set. ®

As long as an animatable property is included in at least one block with a value that is
different then the nonanimated attribute value, and there is a possible midpoint
between those two values, that property will animate.

Nonanimatable Properties That Aren’t Ignored

Exceptions to the midpoint “rule’ include visibility and animation-timing-
function.

Visibility is an animatable property, even though there is no midpoint between
visibility: hidden and visibility: visible. When you animate from hidden to
visible, the visibility value jumps from one value to the next at the keyframe upon
which it is declared.

While the animation-timing-function is not, in fact, an animatable property, when
included in a keyframe block, the animation timing will switch to the newly declared

62 | Chapter3: Animation

http://standardista.com/animations/round2.html

value at that point in the animation for the properties within that keyframe selector
block. The change in animation timing is not animated; it simply switches to the
new value.

Dynamically Changing @keyframes Animations

There is an API that enables finding, appending, and deleting keyframe rules. You
can change the content of a keyframe block within an @keyframes animation declara-
tion with appendRule(n) or deleteRule(n), where n is the full selector of that key-
frame. You can return the contents of a keyframe with findRule(n):

@keyframes W {
from, to {
top: 0;
left: 0;
}
25%, 75% {
top: 100%;
}
50% {
top: 50%;
}
to {
left: 100%;
}
}
The appendRule(), deleteRule(), and findRule() methods takes the full keyframe
selector as an argument. Revisiting the W animation, to return the 25% / 75% key-

frame, the argument is 25%, 75%:

// Get the selector and content block for a keyframe
var aRule = myAnimation.findRule('25%, 75%').cssText;

// Delete the 50% keyframe rule
myAnimation.deleteRule('50%");

// Add a 53% keyframe rules to the end of the animation
myAnimation.appendRule('53% {top: 50%;}');
The statement myAnimation.findRule('25%, 75%').cssText; where myAnimation
is pointing to a keyframe animation, returns the keyframe that matches 25%, 75%. It
would not match anything if we had used either 25% or 75% only. If pointing to the W
animation, this statement returns 25%, 75% { top: 100%; }.

Similarly, myAnimation.deleteRule('50%') will delete the last 50% keyframe.
deleteRule(n) deletes the last keyframe rule that has a keyframe selector n. To add a
keyframe, myAnimation.appendRule('53% {top: 50%;}') will append a 53% key-
frame after the last keyframe of the @keyframes block. ®

Keyframe Selectors | 63

http://www.standardista.com/animations/appendRule.html

Animated Elements

Once you have created a keyframe animation, you need to apply that animation to
elements and/or pseudo-elements for anything to actually animate. CSS animation
provides us with numerous animation properties to attach a keyframe animation to
an element and control its progression. At a minimum, we need to include the name
of the animation for the element to animate, and a duration if we want the animation
to actually be visible.

There are three animation events—animationstart, animationend, and
animationiteration—that occur at the start and end of an animation, and between
the end of an iteration and the start of a subsequent iteration. Any animation for
which a valid keyframe rule is defined will generate the start and end events, even
animations with empty keyframe rules. The animationiteration event only occurs
when an animation has more than one iteration, as the animationiteration event
does not fire if the animationend event would fire at the same time.

There are two ways of attaching animation properties to an element: you can include
all the animation properties separately, or you can declare all the properties in one
line using the animation shorthand property (or a combination of shorthand and
longhand properties). We are going to first learn all the longhand properties. Later in
this chapter, we'll condense all the declarations into one line with the animation
shorthand property.

Let’s start with the individual properties:

The animation-name Property

The animation-name property takes as its value the name or comma-separated list of
names of the keyframe animation you want to apply to an element or group of ele-
ments. The names are the unquoted identifiers you created in your @keyframes rule.

animation-name

Values: <@keyframes_identifier>|none|inherit|initial
Initial value: none
Appliesto: Al elements, : :before and : : after pseudo-elements

Inherited: No

64 | Chapter3: Animation

The default value is none, which means there is no animation. The none value can be
used to override any animation applied elsewhere in the CSS cascade. (This is also the
reason you don’t want to name your animation none, unless youre a masochist.)
To apply an animation, include the @keyframe identifier, which is the animation
name. ®

Using the change_bgcolor keyframe animation defined in “Omitting from and to
Values” on page 59:

div {

animation-name: change_bgcolor;

}
To apply more than one animation, include more than one comma-separated @key-
frame identifier:

div {

animation-name: change_bgcolor, round, W;

}
If one of the included keyframe identifiers does not exist, the series of animations will
not fail: rather, the failed animation will be ignored, and the valid animations will be
applied. While ignored initially, the failed animation will be applied if and when that
identifier comes into existence as a valid animation:

div {

animation-name: change_bgcolor, spin, round, W;

}
In this example, there is no spin keyframe animation defined. The spin animation
will be ignored, while the change_bgcolor, round, and W animations are applied.
Should a spin keyframe animation come into existence, it will be applied to the ele-
ment at that time.

In order to include more than one animation, we've included each @keyframe anima-
tion identifier in our list of comma-separated values on the animation-name prop-
erty. If more than one animation is applied to an element and those animations have
repeated properties, the latter animations override the property values in the preced-
ing animations. For example, if more than two background color changes are applied
concurrently in two different keyframe animations, the latter animation will override
the background property declarations of the preceding one, but only if the back-
ground colors were set to change at the same time. For more on this, see “Animation,
Specificity, and Precedence Order” on page 102. (®

While not required, if you include three animation names, consider including three
values for all the animation longhand property values, such as animation-duration
and animation-iteration-count, so there are corresponding values for each
attached animation. If there are too many values, the extra values are ignored. If there

Animated Elements | 65

http://standardista.com/animations/badnames.html
http://standardista.com/animations/no0or100.html

are too few comma-separated values, the provided values will be repeated. In other
words, while it often makes sense to include the same number of values for each ani-
mation property as you do for the animation-name property, including fewer or more
valid values will not invalidate the animations.

If an included keyframe identifier doesn’t exist, the animation
doesn’t fail. Any other animations attached via the animation-name
property will proceed normally. If that nonexistent animation
comes into existence, the animation will be attached to the element
when the identifier becomes valid, and will start iterating immedi-
ately or after the expiration of any animation-delay. See “Setting
Up Your Keyframe Animation” on page 57. ®

This is true as long as the keyframe identifier for the nonexistent animation is a valid
identifier. change_bgcolor, spin, round, W will work in spite of there being no
spin animation, but change_bgcolor, Q&A!, round, W would fail, even if a Q&A!
animation is declared, as Q&A! is not a valid identifier.

Simply applying an animation to an element is not enough for the element to visibly
animate, but it will make the animation occur. The keyframe properties will be
interpolated, and the animationstart and animationend events will fire. A single
animationstart event occurs when the animation starts, and a single animationend
event occurs when the animation ends, because the property-value interpolation
occurs even if there was no perceptible animation.

For an element to visibly animate, the animation must last at least some amount of
time. For that we have the animation-duration property.

The animation-duration Property

The animation-duration property defines how long a single animation iteration
should take in seconds (s) or milliseconds (ms).

The animation-duration property takes as its value the length of time, in seconds (s)
or milliseconds (ms), it should take to complete one cycle through all the keyframes.
If omitted, the animation will still be applied with a duration of 0s, with animation
start and animationend still being fired even though the animation, taking 0s, is
imperceptible. Negative values are invalid.

When including a duration, you must include the second (s) or millisecond (ms) unit:

div {
animation-name: change_bgcolor;
animation-duration: 200ms;

}

66 | Chapter3: Animation

http://standardista.com/animations/nameaddedlater.html

animation-duration

Values: <time>
Initial value: 0s
Appliesto: All elements, : :before and : : after pseudo-elements

Inherited: No

If you have more than one animation, you can include a different animation-
duration for each animation by including more than one comma-separated time
duration:
div {
animation-name: change_bgcolor, round, W;
animation-duration: 200ms, 100ms, 0.5s;
}
If you have an invalid value within your comma-separated list of durations, like
animation-duration: 200ms, 0, 0.5s, the entire declaration will fail, and it
will behave as if animation-duration: @s had been declared. @ is not a valid time

value. (®

Generally, you will want to include an animation-duration value for each
animation-name provided. If you have only one duration, all the animations will last
the same amount of time. Having fewer animation-duration values than animation-
name values in your comma-separated property value list will not fail: rather, the val-
ues that are included will be repeated. If you have a greater number of animation-
duration values than animation-name values, the extra values will be ignored. If one
of the included animations does not exist, the series of animations and animation
durations will not fail: the failed animation, along with its duration, are ignored:
div {
animation-name: change_bgcolor, spin, round, W;
animation-duration: 200ms, 5s, 100ms, 0.5s;

Animated Elements | 67

http://standardista.com/animations/duration_broken_value.html

In this example, the 5s, or 5 seconds, is associated with spin. As there is no spin
@keyframes declaration, spin doesn’t exist, and the 5s and spin are ignored. Should a
spin animation come into existence, it will be applied to the div and last 5 seconds.

The animation-iteration-count Property

Simply including the required animation-name will lead to the animation playing
once. Include the animation-iteration-count property if you want to iterate
through the animation more or less than the default one time.

animation-iteration-count

Values: <number> | infinite|initial
Initial value: 1
Appliesto: Al elements, : :before and : : after pseudo-elements

Inherited: No

By default, the animation will occur once. If animation-iteration-count is
included, and there isn't a negative value for the animation-delay property, the ani-
mation will repeat the number of times specified by the value if the property, which
can be any number or the keyterm infintite.

If the numeric value is not an integer, the animation will end partway through its last
cycle. The animation will still run, but will cut off mid-iteration on the final iteration.
For example, animation-iteration-count: 1.25 will iterate through the animation
1.25 times, cutting off 25% through the second iteration. If the value is ©.25 on an 8-
second animation, the animation will play about 25% of the way through, ending
after 2 seconds.

Negative numbers are not valid. Like any invalid value, a negative value will lead to a
default single iteration. ®

Interestingly, 0 is a valid value for the animation-iteration-count property. When
set to 0, the animation still occurs, but zero times. It is similar to setting animation-
duration: 0s: it will throw both an animationstart and an animationend event.

68 | Chapter3: Animation

http://www.standardista.com/animations/odditeration.html

If you are attaching more than one animation to an element or pseudo-element,
include a comma-separated list of values for animation-name, animation-duration,
and animation-iteration-count:

.flag {
animation-name: red, white, blue;
animation-duration: 2s, 4s, 6s;
animation-iteration-count: 3, 5;
}
The iteration-count values (and all other animation property values) will be
assigned in the order of the comma-separated animation-name property value. Extra
values will be ignored. Missing values will cause the existing values to be repeated.
Invalid values will invalidate the entire declaration.

In the preceding example, there are more name values than count values, so the count
values will repeat: red and blue will iterate three times, and white will iterate five
times. There are the same number of name values as duration values; therefore, the
duration values will not repeat. The red animation lasts two seconds, iterating three
times, and therefore will run for six seconds. The white animation lasts four seconds,
iterating five times, for a total of 20 seconds. The blue animation is six seconds per
iteration with the repeated three iterations value, animating for a total of 18 seconds.

If we wanted all three animations to end at the same time, even though their dura-
tions differ, we can control that with animation-1iteration-count:

.flag {
animation-name: red, white, blue;
animation-duration: 2s, 4s, 6s;
animation-iteration-count: 6, 3, 2;
}
In that example, the red, white, and blue animations will last for a total of 12 seconds
each: red animates over 2 seconds, iterating 6 times, for a total of 12 seconds; white
lasts 4 seconds, iterating 3 times, for a total of 12 seconds; and blue lasts 6 seconds,
iterating 2 times, for a total of 12 seconds. With simple arithmetic, you can figure out
how many iterations you need to make one effect last as long as another, remember-
ing that the animation-iteration-count value doesn't need to be an integer.

The animation-direction Property

With the animation-direction property, you can control whether the animation
progresses from the 0% keyframe to the 100% keyframe, or from the 100% keyframe
to the 0% keyframe. You can control whether all the iterations progress in the same
direction, or set every other animation cycle to progress in the opposite direction.

Animated Elements | 69

animation-direction

Values: normal|reverse|alternate |alternate-reverse
Initial value: normal
Appliesto: Al elements, : :before and : : after pseudo-elements

Inherited: No

The animation-direction property defines the direction of the animation’s progres-
sion through the keyframes. There are four possible values:

animation-direction: normal
When set to normal (or omitted, which defaults to normal), each iteration of the
animation progresses from the 0% keyframe to the 100% keyframe.

animation-direction: reverse
The reverse value sets each iteration to play in reverse keyframe order, always
progressing from the 100% keyframe to the 0% keyframe. Reversing the anima-
tion direction also reverses the animation-timing-function. This property is
described in “The animation-timing-function Property” on page 83.

animation-direction: alternate
The alternate value means the first iteration (and each subsequent odd-
numbered iteration) should proceed from 0% to 100%, and the second iteration
(and each subsequent even-numbered cycle) should reverse direction, proceed-
ing from 100% to 0%.

animation-direction: alternate-reverse

The alternate-reverse value is similar to the alternate value, except the odd-
numbered iterations are in the reverse direction, and the even-numbered anima-
tion iterations are in the normal direction. alternate-reverse alternates the
direction of each iteration, beginning with reverse. The first iteration (and each
subsequent odd numbered iteration) proceeds from 100% to 0%; the second iter-
ation (and each subsequent even-numbered cycle) reverses direction, going from
100% to 0%:

70 | Chapter3: Animation

.ball {
animation-name: bouncing;
animation-duration: 400ms;
animation-iteration-count: infinite;
animation-direction: alternate-reverse;

}
@keyframes bouncing {
from {
transforms: translateY(500px);
}
to {
transforms: translateY(0);
}
}

In this example, we are bouncing our ball, but we want to start by dropping it, not by
throwing it up in the air: we want it to alternate between going down and up, rather
than up and down, so animation-direction: alternate-reverse is the most
appropriate value for our needs. ®

This is a very rudimentary way of making a ball bounce. When balls are bouncing,
they are moving slowest when they reach their apex and fastest when they reach their
nadir. We included this example here to illustrate the alternate-reverse animation
directions. We'll revisit the bouncing animation again later to make it more realistic
with the addition of timing (see “The animation-timing-function Property” on
page 83). There we will also discuss how, when the animation is iterating in the
reverse direction, the animation-timing-function is reversed.

The animation-delay Property

The animation-delay property defines how long the browser waits after the anima-
tion is attached to the element before beginning the first animation iteration. The
default value is 0s, meaning the animation will commence immediately when it is
applied. A positive value will delay the start of the animation until the prescribed
time, listed as the value of the animation-delay property has elapsed. A negative
value will cause the animation to begin immediately—but it will start partway
through the animation.

The animation-delay property sets the time, defined in seconds (s) or milliseconds
(ms), that the animation will wait between when the animation is attached to the ele-
ment and when the animation begins executing. By default, the animation begins
iterating as soon as it is applied to the element, with a 0-second delay.

Animated Elements | 71

http://www.standardista.com/animations/balls6.html

animation-delay

Values: <time>
Initial value: 0s
Appliesto: Al elements, : :before and : : after pseudo-elements

Inherited: No

Unlike animation-duration, a negative value for the animation-delay property is
valid. Negative values for animation-delay can create interesting effects. A negative
delay will execute the animation immediately but will begin animating the element
part way through the attached animation. For example, if animation-delay: -4s and
animation-duration: 10s are set on an element, the animation will begin immedi-
ately but will start approximately 40% of the way through the first animation.

I say “approximately” because it will not necessarily start at the 40% keyframe block:
when the 40% mark of an animation occurs depends on the value of the animation-
timing-function. If animation-timing-function: linear is set, then it will be 40%
through the animation, at the 40% keyframe, if there is one:

div {
animation-name: move;
animation-duration: 10s;
animation-delay: -4s;
animation-timing-function: linear;

}

@keyframes move {
from {
transform: translatex(0);

}
to {
transform: translateX(1000px);

}
}
In this linear animation example, we have a 10-second animation with a 4-second
delay. In this case, the animation will start immediately 40% of the way through the
animation, with the div translated 400 pixels to the right of its original position. ®

72 | Chapter3: Animation

http://www.standardista.com/animations/fourtypercent.html

If an animation is set to occur 10 times, with a delay of -800 milliseconds and an ani-
mation duration of 200 milliseconds, the element will start animating right away, at
the beginning of the fifth iteration:

.ball {
animation-name: bounce;
animation-duration: 200ms;
animation-delay: -600ms;
animation-iteration-count: 10;
animation-timing-function: ease-in;
animation-direction: alternate;

}

@keyframes bounce {
from {
transform: translateY(0);

}
to {
transform: translateY(500px);
}
}

Instead of animating for 2,000 milliseconds (200 ms x 10 = 2,000 ms), or 2 seconds,
starting in the normal direction, the ball will animate for 1,400 milliseconds with the
animation starting immediately—but at the start of the fourth iteration, and in the
reverse direction. The animation-direction is set to alternate, meaning every even
iteration iterates in the reverse direction from the 100% keyframe to the 0%
keyframe. The fourth iteration, which is an even-numbered iteration, is the first visi-
ble iteration. (®

The animation will throw the animationstart event immediately. The animationend
event will occur at the 1,400-millisecond mark. The ball will be tossed up, rather
than bounced, throwing 6 animationiteration events, after 200, 400, 600, 800,
1,000, and 1,200 milliseconds. While the iteration count was set to 10, we only get 6
animationiteration events because we are only getting 7 iterations; 3 iterations
didn’t occur because of the negative animation-delay, and the last iteration
concluded at the same time as the animationend event. Remember, when an
animationiteration event would occur at the same time as an animationend event,
the animationiteration event does not occur.

Let’s take a deeper look at animation events before continuing.

Animation Events

There are three different types of animation events: animationstart, animation
iteration, and animationend. For browsers still prefixing animations, these events
are supported when written as webkitAnimationStart, webkitAnimationIteration,

Animated Elements | 73

http://www.standardista.com/animations/ball_animation_delay_negative.html

and webkitAnimationEnd. Each event has three read-only properties of animation
Name, elapsedTime, and pseudoElement, unprefixed in all browsers.

The animationstart event occurs at the start of the animation: after the animation-
delay (if present) has expired, or immediately if there is no delay set. If a negative
animation-delay value is present, the animationstart will fire immediately, with an
elapsedTime equal to the absolute value of the delay in supporting browsers. In
browsers where prefixing is still necessary, the elapsedTime is 0:

.noAnimationEnd {
animation-name: myAnimation;
animation-duration: 1s;
animation-iteration-count: infinite;

}

.startAndEndSimultaneously {
animation-name: myAnimation;
animation-duration: 0s;
animation-iteration-count: infinite;
}
The animationend event occurs when the animation finishes. If the animation-
iteration-count is set to infinite as long as the animation-duration is set to a
time greater than 0, the event will never fire. If the animation-duration is set or
defaults to 0 seconds, even when the iteration count is infinite animationstart and
animationend will occur virtually simultaneously, in that order.

The animationiteration event fires between iterations. The animationend event (®
fires at the conclusion of iterations that do not occur at the same time as the conclu-
sion of the animation itself; the animationiteration and animationend events do
not fire simultaneously:

.noAnimationIteration {
animation-name: myAnimation;
animation-duration: 1s;
animation-iteration-count: 1;

}
In the .noAnimationIteration example, with the animation-iteration-count set
to a single occurrence, the animation ends at the conclusion of the first and only iter-
ation. When the animationiteration event would occur at the same time as an
animationend, the animationend event occurs, but the animationiteration event

does not. The animationiteration does not fire unless an animation cycle ends and
another begins.

When the animation-iteration-count property is omitted, or when its value is 1 or
less, no animationiteration event will be fired. As long as an iteration finishes (even

74 | Chapter3: Animation

http://www.standardista.com/animations/events.html

if it’s a partial iteration) and the next iteration begins, if the duration is greater than
0s, an animationiteration event will occur.

If the animation-iteration-count is omitted, or has an invalid value, it defaults to
animation-iteration-count: 1. Because the animationiteration event does not
fire if it would occur at the same time as the animationend, the animationiteration
event will not occur when animation-iteration-count is omitted, even though a
full cycle of the animation may occur:

.noAnimationIteration {
animation-name: myAnimation;
animation-duration: 1s;
animation-iteration-count: 4;
animation-delay: -3s;
}
When an animation iterates through fewer cycles than listed in the animation-
iteration-count because of a negative animation-delay, there are no animationit
eration events for the non-occurring cycles. In the preceding example code, there
are no animationiteration events, as the first three cycles do not occur (due to the
-3s animation-delay), and the last cycle finishes at the same time the animation

ends. ®

In that example, the elapsedTime on the animationstart event is 3, as it is equal to
the absolute value of the delay. This is supported in browsers that can handle unpre-
fixed animations.

Animation chaining

You can use animation-delay to chain animations together so the next animation
starts immediately after the conclusion of the preceding animation:

.rainbow {
animation-name: red, orange, yellow, blue, green;
animation-duration: 1s, 3s, 5s, 7s, 1is;
animation-delay: 3s, 4s, 7s, 12s, 19s;
}
In this example, the red animation starts after a three-second delay and lasts one sec-
ond, meaning the animationend event occurs at the four-second mark. This example
starts each subsequent animation at the conclusion of the previous animation. This is
known as animation chaining. (®

By including a four-second delay on the second animation, the orange animation will
begin interpolating the @keyframe property values at the four-second mark, starting
the orange animation immediately at the conclusion of the red animation. The
orange animation concludes at the seven-second mark—it lasts 3 seconds, starting

Animated Elements | 75

http://www.standardista.com/animations/events2.html
http://www.standardista.com/animations/animationchain.html

after a four-second delay—which is the delay set on the third, or yellow, animation,
making the yellow animation begin immediately after the orange animation ends.

This is an example of chaining animations on a single element. You can also use the
animation-delay property to chain the animations for different elements:
1 {
animation-name: red;

animation-duration: 1s;
animation-delay: 3s;

}

1 (2) {
animation-name: orange;
animation-duration: 3s;
animation-delay: 4s;

}

11 3) {
animation-name: yellow;
animation-duration: 5s;
animation-delay: 7s;

}

1 @ {
animation-name: green;
animation-duration: 7s;
animation-delay: 12s;

}

11 (5) {
animation-name: blue;
animation-duration: 11s;
animation-delay: 19s;

}

If you want a group of list items to animate in order, (® appearing as if the anima-
tions were chained in sequence, the animation-delay of each list item should be the
combined time of the animation-duration and animation-delay of the previous
animation.

The animation-delay property is an appropriate method of using CSS animation
properties to chain animations. There is one caveat: animations are the lowest prior-
ity on the UI thread. Therefore, if you have a script running that is occupying the
user interface (or UI) thread, depending on the browser and which properties
are being animated and what property values are set on the element, the browser may
let the delays expire while waiting until the UT thread is available before starting the
animations.

76 | Chapter3: Animation

http://www.standardista.com/animations/animationchain2a.html

Some, but not all, animations in all browsers take place on the UI
thread. In most browsers, when opacity or transforms are being
animated, the animation takes place on the GPU, instead of the
CPU, and doesn't rely on the UI thread’s availability. If those prop-
erties are not part of the animation, the unavailability of the UI
thread can lead to jank. Changing the opacity, transforming, or
putting an element in 3D space puts the element in its own inde-
pendent layer to be drawn by the graphics processor, using GPU
instead of CPU and the potentially blocked UI thread.

/* Don't do this */
*{

transform: translatez(0);
}

On devices and browsers that support 3D animation, putting an
element into 3D space moves that element into its own layer, allow-
ing for jank-free animations. For this reason, the translatez
hack—the thing I just told you not to do—became overused. While
putting a few elements onto their own layers with this hack is OK,
some devices have limited video memory. Each independent layer
you create uses video memory and takes time to move from the Ul
thread to the composited layer on the GPU. The more layers you
create, the higher the performance cost.

Edge, Chrome, Opera, and Safari can all be optimized this way.
Firefox currently cant. It’s likely that additional animatable proper-
ties will be animated on the GPU on composite layers off-thread in
the near future.

For improved performance, whenever possible, include transform
and opacity in your animations over top, left, bottom, right,
and visibility. Not only does it improve performance by using
the GPU over the CPU, but when you change box-model proper-
ties, the browser needs to reflow and repaint, which is bad for per-
formance. Just don’t put everything on the GPU, or you'll find
different performance issues.

In the preceding scenario in a nonperformant browser, if it took 11 seconds for the
browser to download, parse, and execute the document’s JavaScript, the animation
delay for the first 3 list items will expire before the UI thread is able to animate the
properties. In this case, the first three animations—red, orange, and yellow—will
begin simultaneously when the JavaScript finishes executing, with the fourth anima-
tion—green—starting a second later, before the orange and yellow animations have
finished animating. In this scenario, only the last animation—blue—would start as
designed: when the previous animation ended.

Animated Elements | 77

For this reason, you may want to attach animations to elements based on an ancestor
class that gets added when the document is ready, with JavaScript.

If you are able to rely on JavaScript, another way of chaining animations is listening
for animationend events to start subsequent animations: (®

document.querySelectorAll('1i')[0].addEventListener('animationend',
function(e) {
document.querySelectorAll('1i')[1].style.animationName = 'orange';

1.
false);

document.querySelectorAll('1i')[1].addEventListener('animationend',
function(e) {
document.querySelectorAll('1i')[2].style.animationName = 'yellow';

1.
false);

document.querySelectorAll('1i')[2].addEventListener('animationend',
function(e) {
document.querySelectorAll('1i')[3].style.animationName = 'green';

1.
false);

document.querySelectorAll('1i')[3].addEventListener('animationend',
function(e) {
document.querySelectorAll('1i')[4].style.animationName = 'blue';

1.
false);

" {
animation-name: red;
animation-duration: 1s;

}

11 (2) {
animation-duration: 3s;

}

" 3) {
animation-duration: 5s;

}

11 (4) {
animation-duration: 7s;

}

" (5) {
animation-duration: 11s;

}

In this example, there is an event handler on each of the first four list items listening
for that list item’s animationend event. When the animationend event occurs, the
event listeners add an animation-name to the subsequent list item.

78

| Chapter 3: Animation

http://www.standardista.com/animations/animationchain2.html

This animation chaining method doesn’t employ animation-delay. Instead of using
this CSS property, it employs JavaScript event listeners to attach animations to the
element by setting the animation-name property when the animationend event
is thrown.

In our CSS snippet, you'll note that the animation-name was only included for the
first list item. The other list items only have an animation-duration—with no
animation-name, and therefore no attached animations. Adding animation-name is
what attaches and starts the animation. To start or restart an animation, the anima-
tion name or identifier must be removed and then added back—at which point all the
animation properties take effect, including animation-delay.

Instead of writing:

document.querySelectorAll('li')[2].addEventListener('animationend',
function(e) {
document.querySelectorAll('1i')[3].style.animationName = 'green';

}!
false);

document.querySelectorAll('1li')[3].addEventListener('animationend',
function(e) {
document.querySelectorAll('1i')[4].style.animationName = 'blue';

}!
false);

1 4 {
animation-duration: 7s;
}
i 5) {
animation-duration: 11s;

}

we could have also written:

document.querySelectorAll('1i')[2].addEventListener('animationend',
function(e) {
document.querySelectorAll('1i')[3].style.animationName = 'green';
document.querySelectorAll('1i')[4].style.animationName = 'blue';

}!
false);
1 (4) {
animation-duration: 7s;
}
11 (5) {

animation-delay: 7s;
animation-duration: 11s;

}

Animated Elements | 79

When we added the blue animation name to the fifth list item with JavaScript at the
same time we added green, the delay on the fifth element took effect at that point in
time and started expiring.

While changing the values of animation properties (other than
name) on the element during an animation has no effect on the
animation, removing or adding an animation-name does have an
impact. You can’t change the animation duration from 100ms to
400ms in the middle of an animation. You can’t switch the delay
from -200ms to 5s once the delay has already been applied. You
can, however, stop and start the animation by removing it and
reapplying it. In this JavaScript example, we started the animations
by applying them to the elements.

In addition, setting display: none on an element terminates
the animation. Updating the display back to a visible value restarts
the animation from the beginning. If there is a positive value for
animation-delay, the delay will have to expire before the
animationstart event happens and any animations occur. If the
delay is negative, the animation will start midway through an itera-
tion, exactly as it would have if the animation had been applied any
other way.

Animation iteration delay

While there is no such property as an animation-iteration-delay, you can employ
the animation-delay property, incorporate delays within your keyframe declaration,
or use JavaScript to fake it. The best method for faking it depends on the number of
iterations, performance, and whether the delays are all equal in length.

What is an animation iteration delay? Sometimes you want an animation to occur
multiple times, but want to wait a specific amount of time between each iteration.

Lets say you want your element to grow three times, but want to wait four seconds
between each one-second iteration. You can include the delay within your keyframe
definition and iterate through it three times:

.animate3times {
background-color: red;
animation: color_and_scale_after_delay;
animation-iteration-count: 3;
animation-duration: 5s;

}

@keyframes color_and_scale_after_delay {
80% {
transform: scale(1);
background-color: red;

80 | Chapter3: Animation

vww allitebooks.cond

http://www.allitebooks.org

}

80.1% {
background-color: green;
transform: scale(0.5);

}

100% {
background-color: yellow;
transform: scale(1.5);

}

}

Note the first keyframe selector is at the 80% mark and matches the default state. (®
This will animate your element three times: it stays in the default state for 80% of the
five-second animation (or four seconds) and then moves from green to yellow and
small to big over the last one second of the animation before iterating again, stopping
after three iterations.

This method works for any number of iterations of the animation. Unfortunately, it is
only a good solution if the delay between each iteration is identical and you don’t
want to reuse the animation with any other timing, such as a delay of six seconds. (®
If you want to change the delay between each iteration while not changing the dura-
tion of the change in size and color, you have to write a new @keyframes definition.

To enable different iteration delays between animations, we could create a single ani-
mation and bake in the effect of three different delays:

.animate3times {
background-color: red;
animation: color_and_scale_3_times;
animation-iteration-count: 1;
animation-duration: 15s;

}

@keyframes color_and_scale_3_times {

0%, 13.32%, 20.01%, 40%, 46.67%, 93.32% {
transform: scale(1);
background-color: red;

}

13.33%, 40.01%, 93.33% {
background-color: green;
transform: scale(0.5);

}

20%, 46.66%, 100% {
background-color: yellow;
transform: scale(1.5);

}

}

This method may be more difficult to code and maintain. ® It works for a single
cycle of the animation. To change the number of animations or the iteration delay
durations, another @keyframes declaration would be required. This example is even

Animated Elements | 81

http://standardista.com/animations/animation-iteration-delay1.html
http://standardista.com/animations/animation-iteration-delay.html
http://standardista.com/animations/animation-iteration-delay2.html

less robust than the previous one, but it does allow for different between-iteration
delays.

Theres a solution that currently works in most browsers that is not specifically
allowed in the animation specification, but it isn’t disallowed—it’s not currently sup-
ported in Edge, but hopefully it will be. The solution is to declare an animation multi-
ple times, each with a different animation-delay value: ®

.animate3times {
animation: color_and_scale, color_and_scale, color_and_scale;
animation-delay: 0, 4s, 10s;
animation-duration: 1s;

}

@keyframes color_and_scale {
0% {
background-color: green;
transform: scale(0.5);

}

100% {
background-color: yellow;
transform: scale(1.5);

}

}

We've attached the animation three times, each with a different delay. In this case,
each animation iteration concludes before the next one proceeds.

If animations overlap while theyre concurrently animating, the values will be the val-
ues from the last declared animation. As is true whenever there are multiple anima-
tions changing an element’s property at the same time, the animation that occurs last
in the sequence of animation names will override any animations occurring before it
in the list of names. In declaring three color_and_scale animations but at different
intervals, the value of the property of the last iteration of the color_and_scale ani-
mation will override the values of the previous ones that haven't yet concluded. ®

The safest, most robust and most cross-browser-friendly method of faking an
animation-iteration-delay property is to use animation events. On animationend,
detach the animation from the element, then reattach it after the iteration delay. If
all the iteration delays are the same, you can use setInterval; if they vary, use
setTimeout:

var iteration = 0;
var el = document.getElementById('myElement');

el.addEventListener('animationend', function(e) {
var time = ++iteration * 1000;

el.classList.remove('animationClass');

82 | Chapter3: Animation

http://standardista.com/animations/animation-iteration-delay3.html
http://standardista.com/animations/animation-iteration-delay4.html

setTimeout(function() {
el.classList.add('animationClass"');
}, time);

s

This example animates myElement infinitely, adding an additional second between
each iteration of the animation. (®

The animation-timing-function Property

Similar to the transition-timing-function property, the animation-timing-
function property describes how the animation will progress over one cycle of its
duration, or iteration.

animation-timing-function

Values: ease | linear | ease-in|ease-out |ease-in-out|step-start|
step-end | steps(<integer>, start)|steps(<integer>, end) |
cubic-bezier(<number>, <number>, <number>, <numbers)

Initial value: ease

Appliesto: All elements, : :before and : : after pseudo-elements

Inherited: No

Other than the step timing functions, described in “The step timing functions” on
page 86, the timing functions are all Bézier curves. Just like the transition-timing-
function, the CSS specification provides for five predefined Bézier curve keyterms,
as shown in Figure 3-1 and Table 3-1.

;LSS S

ease linear ease-in ease-out ease-in-out

Figure 3-1. Cubic Bézier named functions

Animated Elements | 83

http://www.standardista.com/animations/animation-iteration-delay.html

Table 3-1. Bézier curve keyterms

Timing function Cubic Bézier value

ease cubic-bezier(0.25, 0.1, 0.25, 1)
linear cubic-bezier(0, 0, 1, 1)
ease-in cubic-bezier(0.42, 0, 1, 1)
ease-out cubic-bezier(0, 0, 0.58, 1)

ease-in-out cubic-bezier(0.42, 0, 0.58, 1)

A handy tool to visualize Bézier curves and to create your own is Lea Verou’s cubic
Bézier visualizer.

The default ease is equal to cubic-bezier(0.25, 0.1, 0.25, 1), which has a slow
start, then speeds up, and ends slowly. This function is similar to ease-in-out at
cubic-bezier(0.42, 0, 0.58, 1), which has a greater acceleration at the begin-
ning. linear is equal to cubic-bezier(0, 0, 1, 1), and, as the name describes, cre-
ates an animation that animates at a constant speed.

ease-in is equal to cubic-bezier(0.42, 0, 1, 1), which creates an animation that
is slow to start, gains speed, then stops abruptly. The opposite ease-out timing func-
tion is equal to cubic-bezier(0, 0, 0.58, 1), starting at full speed, then slowing
progressively as it reaches the conclusion of the animation iteration.

If none of these work for you, you can create your own Bézier curve timing function
by passing four values, such as:

animation-timing-function: cubic-bezier(0.2, 0.4, 0.6, 0.8);

Bézier curves are mathematically defined parametric curves used in two-dimensional
graphic applications. See Table 2-3 for examples of curves you can define yourself
in CSS.

The Bézier curve takes four values, defining the originating position of the two han-
dles. In CSS, the anchors are at 0, 0 and 1, 1. The first two values define the x and y of
the first point or handle of the curve, and the last two are the x and y of the second
handle of the curve. The x values must be between 0 and 1, or the Bézier curve is
invalid. When creating your own Bézier curve, remember: the steeper the curve, the
faster the motion. The flatter the curve, the slower the motion.

While the x values must be between 0 and 1, by using values for y that are greater
than 1 or less than 0, you can create a bouncing effect, making the animation bounce
up and down between values, rather than going consistently in a single direction:

84 | Chapter3: Animation

http://cubic-bezier.com
http://cubic-bezier.com

.snake {
animation-name: shrink;
animation-duration: 10s;
animation-timing-function: cubic-bezier(0, 4, 1, -4);
animation-fill-mode: both;

}

@keyframes shrink {
0% {
width: 500px;

-

100% {
width: 100px;

(]

}

This animation-timing-function value makes the property values go outside the
boundaries of the values set in the 0% and 100% keyframes. In this example, we are
shrinking an element from 500px to 100px. However, because of the cubic-bezier
values, the element were shrinking will actually grow to be wider than the 500px
width defined in the 0% keyframe and narrower than the 100px width defined in the
100% keyframe, as shown in Figure 3-2.

o

100 200 300 400 500 600 700 800
1 1 1 1 1 1

=
ES

wu
=]
xR

100% o—

Figure 3-2. Effect of outlandish Bézier curve

In this scenario, with animation-timing-function: cubic-bezier(0, 4, 1, -4);
set on an animation that is shrinking an element from from 500px to 100px wide, the
snake starts with a width of 500px, defined in the 0% keyframe. It then quickly shrinks
down to a width of about 40px, which is narrower than width: 100px; (which was
declared in the 100% keyframe) before slowly expanding to about 750px wide, which
is larger than the original width of width: 500px declared as the original (and
widest) declared width. It then quickly shrinks back down to width: 100px, which is
the value defined in the 100% keyframe. You can test this and your own cubic Bézier
values. ®

Animated Elements | 85

http://standardista.com/animations/cubicbezierprint.html

You may have realized that the curve created by our animation is the same curve as
our Bézier curve. Just like our s-curve goes below and above our bounding box, the
width of our animation goes narrower than the smaller width we set of 100px and
wider than the larger width we set of 500px.

The Bézier curve has the appearance of a snake, going up and down and up again,
because one y coordinate is positive and the other negative. If both are positive values
greater than 1 or both are negative values less than -1, the Bézier curve is arc-shaped,
going above or below one of the values set, but not bouncing out of bounds on both
ends like the s-curve above.

The timing function declared for the animation-timing-function is the timing for
the normal animation direction, when the animation is progressing from the 0% mark
to the 100% mark. When the animation is running in the reverse direction, from the
100% mark to the 0% mark, the animation timing function is reversed:

.ball {
animation-name: bounce;
animation-duration: 1s;
animation-iteration-count: infinite;
animation-timing-function: ease-1in;
animation-direction: alternate;

}

@keyframes bounce {
0% {
transform: translateY(0);

}
100% {
transform: translateY(500px);

3
}
If we remember the bouncing ball example (), when the ball is dropping it gets faster
as it nears its nadir at the 100% keyframe, with the animation-timing-function set to
ease-in. When it is bouncing up, it is animating in the reverse direction, from 100%
to 0%, so the animating-timing-function is reversed as well, to ease-out, slowing
down as it reaches its apex. Our original defaulted to ease. This timing function
makes the bouncing ball look a bit more realistic.

The step timing functions

The step timing functions, step-start, step-end, and steps(), aren’t Bézier curves.
Rather, they're tweening definitions.

The steps() timing function divides the animation into a series of equal-length
steps. steps() takes two parameters: the number of steps and the direction.

86 | Chapter3: Animation

http://www.standardista.com/animations/ball1.html

The steps() function is most useful when it comes to character or sprite animation.
If you want to animate complex shapes that subtly change, like the drawings or pic-
tures in a flip book, the steps() timing function is the solution.

The number of steps is the first parameter; its value must be a positive integer. The
animation will be divided equally into the number of steps provided. For example, if
the animation duration is 1 second and the number of steps is 5, the animation will
be divided into five 200-millisecond steps, with the element being redrawn to the
page 5 times, at 200-millisecond intervals, moving 20% through the animation at
each interval.

If an animation were to pass through 5 steps, that means it either draws the anima-
tion at the 0%, 20%, 40%, 60%, and 80% keyframes or at the 20%, 40%, 60%, 80%, and
100% keyframes. It will either skip drawing the 100% or the 0% keyframe. That is
where the direction parameter comes in.

The direction parameter takes one of two values: either start or end. The direction
determines if the function is left- or right-continuous: basically, if the 0% or the 100%
keyframe is going to be skipped. Including start as the second parameter will create
a left-continuous function, meaning the first step happens when the animation
begins, skipping the 0%, but including the 100%. Including end or omitting the sec-
ond parameter (end is the default direction) will create a right-continuous function.
This mean the first step will be at the 0% mark, and the last step will be before the
100% mark. With end, the 100% keyframe will not be seen unless animation-fill-
mode of either forwards or both is set. See “The animation-fill-mode Property” on
page 95.

The direction parameter can be hard to remember. I like to think of it this way: the
start value skips the start value of 0%, and the end value skips the ending value of the
100% keyframe.

The step-start value is equal to steps(1, start), with only a single step displaying
the 100% keyframe. The step-end value is equal to steps(1, end), which displays
only the 0% keyframe.

Consider the flip book. A flip book is a book with a series of pictures. Each page con-
tains a single drawing or picture that changes slightly from one page to the next, like
one frame from a movie reel or cartoon stamped onto each page. When the pages of a
flip book are flipped through rapidly (hence the name), the pictures appear as an ani-
mated motion. You can create similar animations with CSS using an image sprite, the
background-position property, and the steps() timing function.

Figure 3-3 shows an image sprite containing several images that change just slightly,
like the drawings on the individual pages of our flip book.

Animated Elements | 87

RRRAARRARARARARARAARAA

Figure 3-3. Sprite of dancing

We put all of our slightly differing images into a single image called a sprite. Each
image in our sprite is a frame in the single animated image were creating.

We create a container element that is the size of a single image of our sprite and
attach the sprite as the container elements background image. We then animate the
background-position, using the steps() timing function so we only see a single
instance of the changing image of our sprite at a time. The number of steps in our
steps() timing function is the number of occurrences of the image in our sprite. The
number of steps defines how many stops our background image makes to complete a
single animation.

The sprite in Figure 3-3 has 22 images, each 56 x 100 pixels. The total size of our
sprite is 1232 x 100 pixels. We set our container to the individual image size: 56 x 100
pixels. We set our sprite as our background image: the initial or default value of
background-position is top left, which is the same as @ 0. Our image will appear
at 0 0, which is a good default: older browsers that don't support CSS animation will
simply display the first image from our sprite:

.dancer {
height: 100px;
width: 56px;
background-image: url(../images/dancer.png);

}....

The trick is to use steps() to change the background-position value so that each
frame is a view of a separate image within the sprite. Instead of sliding in the back-
ground image from the left, the steps() timing function will pop in the background
image in the number of steps we declared.

We declare our animation to simply be a change in the left-right value of the
background-position. The image is 1,232 pixels wide, so we move the background
image from 0 0, which is the left top, to ® -1232px, putting the sprite fully outside of
our 56 x 100 pixel <div> viewport.

The values of -1232px 0 will move the image completely to the left, outside of our
containing block viewport. It will no longer show up as a background image in our
100 x 56 pixel div at the 100% mark unless background-repeat is set to repeat along
the x-axis. We don’t want that to happen!

88 | Chapter3: Animation

With the steps(n, end) syntax, the 100% keyframe never gets shown as the anima-
tion runs. Had we used start instead of end, the 0% keyframe wouldn't show. With
end, the 100% keyframe is skipped instead. Because we used end, the 100% keyframe—
when the background image is outside of the border box of our element—doesn't
show. This is what we want:

@keyframes dance_in_place {
from {
background-position: 0 0;
}
to {
background-position: -1232px 0;
}
}

.dancer {

background-image: url(../images/dancer.png);
animation-name: dance_in_place;
animation-duration: 4s;
animation-timing-function: steps(22, end);
animation-iteration-count: infinite;

}

We used steps(22, end). We use the end direction to show the 0% keyframe, but not
the 100% keyframe. What may have seemed like a complex animation is very simple:
just like a flip book, we see one frame of the sprite at a time. Our keyframe animation
simply moves the background. ®

Adding a second animation

Our dancer is dancing in place. Most dancers move around when they dance. We can
add a little left-and-right and back-and-forth motion by adding a second animation:

@keyframes move_around {
0%, 100% {
transform: translate(0, -40px) scale(0.9);
}
25% {
transform: translate(40px, 0) scale(1);
}
50% {
transform: translate(0, 40px) scale(1.1);
}
75% {
transform: translate(-40px, 0) scale(l);
}
}

Animated Elements | 89

http://www.standardista.com/animations/sprite.html

We create a second keyframe animation called move_around and attach it to our
dancer element as a second animation with comma-separated animation property
declarations: ®

.dancer {

background-image: url(../images/dancer.png);

animation-name: dance_in_place, move_around;

animation-duration: 4s, 16s;

animation-timing-function: steps(22, end), steps(5, end);

animation-iteration-count: infinite;

}

Note that each animation property has two comma-separated values except
animation-1iteration-count. If you recall, if an animation property doesn't have
enough comma-separated values to match the number of animations declared by the
animation-name property, the values present will be repeated until there are enough.
We want both animations to continue indefinitely. As the value of infinite is for all
the attached animations, we only need a single value for that property. The browser
will repeat the list of animation-iteration-count values—in this case, just the single
value of infinite—until it has matched an animation-iteration-count value for
each animation declared.

Animating the animation-timing-function

The animation-timing-function is not an animatable property, but it can be
included in a keyframe to alter the current timing of the animation.

When included within a keyframe, the animation-timing-function doesn’t transi-
tion from one value to another over time. Rather, the timing function applies between
keyframes, updating the timing function when it reaches a keyframe that has a timing
function defined.

While none of the animation properties are animatable, animation-timing-
function is the only CSS animation property that has an effect when specified on
individual keyframes. Unlike animatable properties, the animation-timing-
function values aren’t interpolated over time. When included in a keyframe within
the @keyframes definition, the timing function for the properties declared within that
same keyframe will change to the new animation-timing-function value when that
keyframe is reached, as shown in Figure 3-4:

@keyframes width {
0% {
width: 200px;
animation-timing-function: linear;
}
50% {
width: 350px;

90 | Chapter3: Animation

http://www.standardista.com/animations/sprite2.html

animation-timing-function: ease-1in;
}
100% {

width: 500px;
}

Figure 3-4. Animation timing function can be changed midanimation

In other words, the rate at which the animation proceeds can be altered mid anima-
tion. In the preceding example, as shown in Figure 3-4, halfway through the anima-
tion, we switch from a linear animation progression for the width property to one
that eases in. ®

We can include the animation-timing-function within our keyframe animation
definitions to override this default inverting behavior or to control the timing in any
other way we please. The animation-timing-function property isn't animated in the
sense of changing from one value to another over time. Rather, it changes from
one value to the next when it reaches a keyframe selector that declares a change to
that value.

Specifying the animation-timing-function within the to or 100% keyframe will have
no effect on the animation. When included in the from or 0% keyframe, the animation
will follow the animation-timing-function specified in the keyframe definition,
overriding the element’s default or declared animation-timing-function.

The specification states explicitly the timing function should only
impact the progression of an animation if it is declared in any key-
frame other than the to or 100% keyframe values. An animation-
timing-function declaration in the 100% or to keyframe has no
effect, as per current implementations and the specification.

Animated Elements | 91

http://www.standardista.com/animations/cubicbezierprint2.html

If the animation-timing-function property is included in a keyframe, only the
properties also included in that keyframe block will have their timing function
impacted. This is not currently specified in the CSS specification, but it is imple-
mented as such and is expected to be included in the final specification. If we take our
W animation as an example:

@keyframes W {
from {
left: 0;
top: 0;
}
25%, 75% {
top: 100%;
}
50% {
top: 50%;
}
to {
left: 100%;
top: 0;
}
}

This follows the idea that conceptually, when an animation is set on an element or
pseudo-element, it is as if a set of keyframes is created for each property that is
present in any of the keyframes, as if an animation is run independently for each
property that is being animated. It’s as if the W animation were made up of two anima-
tions that run simultaneously: W_part1 and W_part2.

@keyframes W_partl {
from, to {
top: 0;
}
25%, 75% {
top: 100%;
}
50% {
top: 50%;
}
}

@keyframes W_part2 {
from {
left: 0;
}
to {
left: 100%;
}

92 | Chapter3: Animation

The animation-timing-function that is set on any of the keyframes is added to the
progression of only the properties that are defined at that keyframe:

@keyframes W {
from {
left: 0;
top: 0;
}
25%, 75% {
top: 100%;
}
50% {
animation-timing-function: ease-in;
top: 50%;
}
to {
left: 100%;
top: 0;
}
}

You can have multiple occurrences of a keyframe value, such as 50%, as the current
implementation stands, but the animation-timing-function and property have to
be in the same selector block for the animation-timing-function change to have an
impact. The preceding code will change the animation-timing-function to ease-in
for the top property only, not the left property, impacting only the W_part1 section
of our W animation.

However, with the following animation, the animation-timing-function (in a key-
frame block that has no property/value declarations) will have no effect:

@keyframes W {

from {
left: 0;
top: 0;

}

25%, 75% {
top: 100%;

}

50% {
animation-timing-function: ease-in;

}

50% {
top: 50%;

}

to {
left: 100%;
top: 0;

}

Animated Elements | 93

How is it useful to change the timing function midanimation? In the bounce anima-
tion, we had a frictionless environment: the ball bounced forever, never losing
momentum. We had a very simple animation that iterated forever. The ease-1in tim-
ing function made it speed up as it dropped, when it was in the normal animation
direction. We took advantage of timing functions being inverted in the reverse ani-
mation direction: in this case, as if it was set to ease-out in the reverse direction.
With our infinite animation, the ball sped up as it dropped and slowed as it rose
because the timing function was inverted from ease-1in to ease-out by default as the
animation proceeded from the normal to reverse direction every other iteration.

In reality, friction exists; momentum is lost. Balls will not continue to bounce indefi-
nitely. If we want our bouncing ball to look natural, we have to make it bounce less
high as it loses energy with each impact. To do this, we need a single animation that
bounces multiple times, losing momentum on each bounce, while switching between
ease-1in and ease-out at each apex and nadir:

@keyframes bounce {
0% {
transform: translateY(0);
animation-timing-function: ease-in;
}
30% {
transform: translateY(100px);
animation-timing-function: ease-in;
}
58% {
transform: translateY(200px);
animation-timing-function: ease-in;
}
80% {
transform: translateY(300px);
animation-timing-function: ease-in;
}
95% {
transform: translateY(360px);
animation-timing-function: ease-in;
}
15%, 45%, 71%, 89%, 100% {
transform: translateY(380px);
animation-timing-function: ease-out;
}
}

This animation loses height after a few bounces, eventually stopping. ® This more
realistic animation has a single iteration, with the granular control provided via the
keyframe blocks.

In the case of a single iteration, we can’t rely on the animation-direction to change
our timing function. We need to ensure that while each bounce causes the ball to lose

94 | Chapter3: Animation

http://www.standardista.com/animations/ball3.html

momentum, it still speeds up with gravity and slows down as it reaches its apex.
Because we will have only a single iteration, we control the timing by including
animation-timing-function within our keyframes. At every apex, we switch to
ease-1in, and at every nadir, or bounce, we switch to ease-out.

The animation-play-state property

The animation-play-state property defines whether the animation is running or
paused.

animation-play-state

Values: running | paused
Initial value: running
Appliesto: All elements, : :before and : : after pseudo-elements

Inherited: No

When set to the default running, the animation proceeds as normal. If set to paused,
the animation will be paused. When paused, the animation is still applied to the ele-
ment, halted at the progress it had made before being paused. When set back to
running or returned to the default of running, it restarts from where it left off, as if
the “clock” that controls the animation had stopped and started again.

If the property is set to animation-play-state: paused during the delay phase of
the animation, the delay clock is also paused and resumes expiring as soon as
animation-play-state is set back to running. ®

The animation-fill-mode Property

The animation-fill-mode property defines what values are applied by the animation
before and after the animation iterations are executed. The animation-fill-mode
property enables us to define whether or not an element’s property values are applied
by the animation outside of the animation execution. The duration of the animation
execution is set by the number of iterations multiplied by the duration, less the abso-
lute value of any negative delay.

With animation-fill-mode, we can define how the animation impacts the element
on which it is set before the animationstart and after the animationend events are

Animated Elements | 95

http://www.standardista.com/animations/ball4.html

fired. We can define whether the property values set in the 0% keyframe are applied
to the element during the expiration of any animation delay, and if the property val-
ues that exist when the animationend event is fired continue to be applied to the ani-
mated element after the animation’s conclusion, or if the properties revert to the
values they had in their initial state prior to the attachment of the animation.

By default, an animation will not affect the property values of the element immedi-
ately if there is a positive animation-delay applied. Rather, animation property
values are applied when the animation-delay expires, when the animationstart
event is fired. By default, the animation property values are applied until the last iter-
ation has completed: at the completion of the animation, when the animationend
event is fired. At that time, the element’s property values revert back to its nonanima-
ted values.

The animation-fill-mode property lets us apply the property values of any from or
0% keyframes to an element from the time the animation is applied to that element
until the expiration of the animation delay. It also enables us to maintain the property
values of the 100% or to keyframe after the last animation cycle is complete, from the
time the animationend event has fired until forever—or until the animation is
removed from the element.

animation-fill-mode

Values: none | forwards | backwards | both
Initial value: none
Appliesto: Al elements, : :before and : : after pseudo-elements

Inherited: No

The default value is none, which means the animation has no effect when it is not exe-
cuting: the animation’s 0% keyframe block property values are not applied to the ani-
mated element until the animation-delay has expired, when the animationstart
event is fired.

When the value is set to backwards, the property values from the 8% or from keyframe
(if there is one) will be applied to the element as soon as the animation is applied to
the element. The 0% keyframe property values are applied immediately (or 100% key-
frame, if the value of the animation-direction property is reversed or reversed-

96 | Chapter3: Animation

alternate), without waiting for the animation-delay time to expire, before the
animationstart event fires.

The value of forwards means when the animation is done executing—has concluded
the last part of the last iteration as defined by the animation-iteration-count value
—it continues to apply the values of the properties at the values as they were when the
animationend event occurred. If the iteration-count has an integer value, this will
be either the 100% keyframe, or, if the last iteration was in the reverse direction, the
0% keyframe.

The value of both applies both the backwards effect of applying the property values
when the animation is attached to the element and the forwards value of persisting
the property values from when the animationend event occurred.

If the animation-1iteration-count is a float value, and not an integer, the last itera-
tion will not end on the 0% or 100% keyframe: the animation will end its execution
partway through an animation cycle. If the animation-fill-mode was set forwards
or both, the element will maintain the property values it had when the animationend
event occurred. For example, if the animation-iteration-count is 6.5, and the
animation-timing-function is linear, the animationend event fires and the values of
the properties at the 50% mark (whether or not a 50% keyframe is explicitly declared)
will stick, as if the animation-play-state had been set to pause at that point.

For example, if we take the following code:

@keyframes move_me {
0% {
transform: translateX(0);

}
100% {
transform: translateX(1000px);
}
}

.moved {
animation-name: move_me;
animation-duration: 10s;
animation-timing-function: linear;
animation-iteration-count: 0.6;
animation-fill-mode: forwards;

}
The animation will only go through 0.6 iterations. Being a linear 10-second anima-
tion, it will stop at the 60% mark 6 seconds into the animation, when the element is
translated 600 pixels to the right. With animation-fill-mode set to forwards or
both, the animation will stop animating when it is translated 600 pixels to the right,
holding the moved element 600 pixels to the right of its original position, keeping it
translated indefinitely, or until the animation is detached from the element.

Animated Elements | 97

In Safari 9 and earlier, forwards and both will set the values from the 100% keyframe
onto the element, no matter the direction of the last iteration or whether the anima-
tion otherwise ended on the 100% keyframe or elsewhere in the animation. ® In the
preceding example, in Safari 9, the .moved element will jump from being translated
by 400 pixels to the right to be 1,000 pixels to the right of where it normally would
have been and stay there indefinitely or until the animation is detached from the
moved element. In Safari 9 and earlier, it doesn’t matter whether the last iteration was
normal or reverse, or whether the animation ended 25% or 75% of the way through
an animation cycle; animation-fill-mode: forwards; causes the animation to jump
to the 100% frame and stay there. This follows an older version of the specification,
but we expect it will be updated to match the updated specification and all other ever-
green browsers.

The backwards value controls what happens to the element from the time the anima-
tion is attached to the element until the time the animation delay expires, the anima-
tion starts executing, and the animationstart event is fired. Before the animation
starts executing (during the period specified by a positive animation-delay value),
the animation applies the values it will have when the animation starts executing. If
the animation-direction is normal or alternate, the values specified in the anima-
tion’s 0% keyframe are applied immediately when the animation is attached. If the
animation-direction is reverse or alternate-reverse, the property values of the
100% keyframe are used.

The value of both simply means that both the forwards and backwards fill modes
will be applied. Most times when you set an animation, you will set the animation-
fill-mode property to both. This ensures that the animated elements properties
don’t jump from the element’s default state to the animated state at the start of execu-
tion, and that the element’s properties don’t jump back to its original property values
at the animation’s end. Having properties jump from one value to another before or
after a smooth animation is generally the opposite of what you're trying to do.

With both, as soon as the animation is attached to an element, that element will
assume the properties provided in the 0% keyframe (or 100% keyframe if animation-
direction is set to reverse or alternate-reverse). When the last iteration con-
cludes, it will be as if the animation-fill-mode were set to forwards: if it was a full
iteration in the normal direction, the property values of the 100% keyframe will be
applied. If the last cycle was in the reverse direction, the property values of the 0%
keyframe will be applied. With forwards and both, whether or not the last iteration
was a full iteration, the values that were present when the animationend event occur-
red will stay in effect. ®

If the animation-duration is set to 0s and backward or both is set, the animation will
stay on the 0% keyframe (or 100% keyframe if animation-direction is set to

98 | Chapter3: Animation

http://www.standardista.com/animations/moveme.html
http://www.standardista.com/animations/halfiterationforwards.html

reverse or reverse-alternate) until the animation delay has expired. With no
duration, it will immediately jump to the 100% keyframe (or the 0% keyframe (® if
animation-direction is set to reverse or reverse-alternate). If both or forwards
is set, it will stay on that final keyframe in perpetuity or until the animation is
removed from the element or generated content. This happens no matter the value of
the animation-iteration-count, even if the count is 0. In that case, the animation
start and animationend events will occur in succession at the expiration of the delay,
and there will be no animationiteration event.

If the 0% or 100% keyframes are not explicitly defined, the browser uses the implied
values for those keyframes: the values set forth on the element itself. If an keyframe
animation has neither a 0% or 100% keyframe set, setting animation-fill-mode:
backwards will have no impact. Similarly, in the case where the animation-
iteration-count is an integer and no 0% or 100% keyframe is set, setting
animation-fill-mode to forwards or both has no impact. If the iteration count is a
float, even if there are no to or from keyframes, if there is an intermediary keyframe
block with property values set, forwards, backwards, and both should have an
impact, other than in Safari <9.

The animation Shorthand Property

The animation shorthand property enables us to use one line instead of eight to
define all the animation properties on an element. The animation property value is a
list of space-separated values for the various longhand animation properties. If you
are setting multiple animations on an element or pseudo-element, include the multi-
ple space-separated animation shorthands as a comma-separated list of animations.

animation

Values: none | <series of individual animation properties>
<animation-duration> || <animation-timing-function> ||
<animation-delay> || <animation-iteration-count>|| <animation-
direction>|| <animation-fill-mode> || <animation-play-state>||
<animation-name>

Initial value: 0s ease 0s 1 normal none running none
Appliesto: Al elements, : :before and : : after pseudo-elements

Inherited: No

Animated Elements | 99

http://www.standardista.com/animations/nointerations2.html

The animation shorthand takes as its value all the other preceding animation proper-
ties, including animation-duration, animation-timing-function, animation-
delay, animation-iteration-count, animation-direction, animation-fill-mode,
animation-play-state, and animation-name:

#animated {
animation: 200ms ease-in 50ms 1 normal running forwards slidedown;

}

is the equivalent of:

#animated {
animation-name: slidedown;
animation-duration: 200ms;
animation-timing-function: ease-in;
animation-delay: 50ms;
animation-iteration-count: 1;
animation-fill-mode: forwards;
animation-direction: normal;
animation-play-state: running;

or:

#animated {
animation: 200ms ease-in 50ms forwards slidedown;

}

We didn’t have to declare all of the values in the animation shorthand; any values that
aren’t declared are set to the default or initial values. The first shorthand line was long
and three of the properties were set to default, so were not necessary.

It's important to remember that if you don’t declare all eight values in your shorthand
declaration, the ones you don’t declare will get the initial value for that property. The
initial or default values are:

animation-name: none;
animation-duration: 0s;
animation-timing-function: ease;
animation-delay: 0;
animation-iteration-count: 1;
animation-fill-mode: none;
animation-direction: normal;
animation-play-state: running;

The order of the shorthand is partially important. For example, there are two time

properties: the first is always the duration. The second, if present, is interpreted as
the delay.

While the order of all properties that make up a shorthand are important, the order
of numeric values with the same unit type are always important, no matter the prop-
erty. For example, in the flex shorthand, the first unitless number is the flex-grow

100 | Chapter3: Animation

value; the second is the flex-shrink factor. Similarly, for the animation shorthand,
the first time value is always the animation-duration. The second, if present, is
always the animation-delay.

The placement of the animation-name can also be important. If you use an animation
property value as your animation identifier (which you shouldn’t), the animation-
name should be placed as the last property value in the animation shorthand. The first
occurrence of a keyword that is a valid value for any of the other animation proper-
ties, such as ease or running, will be assumed to be part of the shorthand of the ani-
mation property the keyword is associated with rather than the animation-name.
Note that none is basically the only word that is not a valid animation name:

#failedAnimation {
animation: paused 2s;

}

This is the equivalent to:

#failedAnimation {
animation-name: none;
animation-duration: 2s;
animation-delay: 0;
animation-timing-function: ease;
animation-iteration-count: 1;
animation-fill-mode: none;
animation-direction: normal;
animation-play-state: paused;

}

paused is a valid animation name. While it may seem that the animation named
paused with a duration of 2s is being attached to the element, that is not what is hap-
pening. Because words within the shorthand animation are first checked against pos-
sible valid values of all animation properties other than animation-name first, paused
is being set as the value of the animation-play-state property.

#anotherFailedAnimation {
animation: running 2s ease-in-out forwards;

}

The preceding code snippet is the equivalent to:

#anotherFailedAnimation {
animation-name: none;
animation-duration: 2s;
animation-delay: 0s;
animation-timing-function: ease-in-out;
animation-iteration-count: 1;
animation-fill-mode: forwards;
animation-direction: normal;
animation-play-state: running;

Animated Elements | 101

The developer probably has a keyframe animation called running. The browser, how-
ever, sees the term and assigns it to the animation-play-state property rather than
the animation-name property. With no animation-name declared, there is no anima-
tion attached to the element.

In light of this, animation: 2s 3s 4s; may seem valid, as if the following were being
set:

#invalidName {
animation-name: 4s;
animation-duration: 2s;
animation-delay: 3s;

}
But as we remember from “Setting Up Your Keyframe Animation” on page 57, 4s is
not a valid identifier. Identifiers cannot start with a digit unless escaped. For this ani-
mation to be valid, it would have to be written as animation: 2s 3s \34 s;

To attach multiple animations to a single element or pseudo-element, comma-
separate the animation declarations:

.snowflake {
animation: 3s ease-in 200ms 32 forwards falling,
1.5s linear 200ms 64 spinning;

}

Our snowflake will fall while spinning for 96 seconds, spinning twice during each 3-
second fall. ® At the end of the last animation cycle, the snowflake will stay fixed on
the 100% keyframe of the falling @keyframes animation. We declared six of the
eight animation properties for the falling animation and five for the spinning ani-
mation, separating the two animations with a comma.

While you’ll most often see the animation name as the first value—it’s easier to read
that way, because of the issue with animation property keywords being valid keyframe
identifiers—it is not a best practice. That is why we put the animation name at
the end.

It is fine, even a good idea, to use the animation shorthand. Just remember that the
placement of the duration, delay, and name within that shorthand are important, and
omitted values will be set to their default values. Also, it is a good idea to not use any
animation keyterms as your identifier.

Animation, Specificity, and Precedence Order

In terms of specificity, the cascade, and which property values get applied to an ele-
ment, animations currently supersede all other values in the cascade. When an ani-
mation is attached to an element, it takes precedence, as if the specificity was even

102 | Chapter3: Animation

http://standardista.com/animations/snow.html

stronger than if the keyframe animations property values were set inline with
an !important: asif <div style="keyframe-property: value !important"s.

Specificity and ! important

In general, the weight of a property attached with an ID selector 1-0-0 should take
precedence over a property applied by an element selector 0-0-1. However, if that
property value was changed via a keyframe animation, it will be applied as if that
property/value pair were added as an inline style. The current behavior in all brows-
ers that support animation is as if the property values were declared inline with an
added !important. This is wrong, according to the specifications. The animation
specification states “animations override all normal rules, but are overridden
by !important rules” This is a bug in the current implementations and should be
resolved eventually.

A property added via a CSS animation, even if that animation was added on a CSS
block with very low specificity, will be applied to the element, even if the same prop-
erty is applied to the same element via a more specific selector, an inline style, or, cur-
rently, even the keyterm ! important—even on three nested ID selectors. Currently, if
an !important is declared on a property value within the cascade, that will not over-
ride the style that was added with an animation. ® The animation is “even
more !important”

That being said, don't include !important within your animation declaration block;
the property/value upon which it is declared will be ignored. ®

Animation Order

If there are multiple animations specifying values for the same property, the property
value from the last animation applied will override the previous animations:

#colorchange {
animation-name: red, green, blue;
animation-duration: 11s, 9s, 6s;

}
In this code example, if red, green, and blue are all keyframe animations that change
the color property to their respective names, once the animation-name and
animation-duration properties are applied to #colorchange, for the first six
seconds, the property values in blue will take precedence, then green for three sec-
onds, then red for two seconds, before returning to its default property values. ®

The default properties of an element are not impacted before the animation starts,
and the properties return to their original values after the animation ends unless an
animation-fill-mode value other than the default none has been set. If animation-
fill-mode: both were added to the mix, the color would always be blue, as the last

Animation, Specificity, and Precedence Order | 103

http://standardista.com/animations/important1.html
http://standardista.com/animations/important.html
http://standardista.com/animations/animationorder.html

animation, or blue, overrides the previous green animation, which overrides the red
first animation. ®

Animation Iteration and display: none;

If the display property is set to none on an element, any animation iterating on that
element or its descendants will cease, as if the animation were detached from the ele-
ment. Updating the display property back to a visible value will reattach all the ani-
mation properties, restarting the animation from scratch:

.snowflake {
animation: spin 2s linear 5s 20;

}
The snowflake will spin 20 times; each spin takes 2 seconds, with the first spin start-
ing after 5 seconds. If the snowflake element’s display property gets set to none after
15 seconds, it would have completed 5 spins before disappearing (5-second delay,
then 5 spins at 2 seconds each). If the snowflake display property changes back to
anything other than none, the animation starts from scratch: a 5-second delay will
elapse again before it starts spinning 20 times. It makes no difference how many ani-
mation cycles iterated before it disappeared from view the first time. ®

Animation and the Ul Thread

CSS animations have the lowest priority on the UI thread. If you attach multiple
animations on page load with positive values for animation-delay, the delays expire
as prescribed, but the animations may not begin until the UI thread is available
to animate.

If the animations require the UI thread (they aren’t on the GPU as described in “Ani-
mation chaining” on page 75); if you have 20 animations set with an animation delays
to start animating at 1-second intervals over 20 seconds, with the animation-delay
property on each set to 1s, 2s, 3s, 4s, and so on; if the document or application takes
a long time to load, with 11 seconds between the time the animated elements were
drawn to the page and the time the JavaScript finished being downloaded, parsed,
and executed; the delays of the first 11 animations will have expired and will all com-
mence when the UI thread becomes available. The remaining animations will each
then begin animating at one-second intervals.

Seizure Disorders

While you can use animations to create changing content, dynamically changing con-
tent can lead to seizures in some users. Always keep accessibility in mind, ensuring
the accessibility of your website to people with epilepsy and other seizure disorders.

104 | Chapter3: Animation

http://standardista.com/animations/animationorder2.html
http://standardista.com/animations/displaysnow.html

Animation Events and Prefixing

Let’s recap animation-related events we can access with DOM event listeners.

animationstart

The animationstart event occurs at the start of the animation. If there is an
animation-delay, this event will fire once the delay period has expired. If there is no
delay, the animationstart event occurs when the animation is applied to the ele-
ment. Even if there are no iterations, the animationstart event still occurs. If there
are multiple animations attached to an element, an animationstart event will occur
for each of the applied valid keyframe animations: generally, one animationstart for
each valid animation-name identifier present:

#colorchange {

animation: red, green, blue;

}
In this example, as long as the red, green, and blue keyframe animations are valid,
while the animations will not be perceptible (as the default duration of @s is set
on each), there will be three animationstart events thrown: one for each animation
name.

If the browser requires the -webkit- prefix for the animation properties—basically,
Safari 8 and earlier and Android 4.4.4 and older—the event is written as webkit
AnimationStart instead of animationstart. Note the -webkit- prefix and the cam-
elCasing. It is best to default to the unprefixed syntax and fall back to the prefixed
version only when the unprefixed is unavailable.

animationend

The animationend event occurs at the conclusion of the last animation. It only occurs
once per applied animation: if an element has 3 animations applied to it, like in our
#colorchange example, the animationend event will occur three times, at the end of
the animation. In the example, there was no duration for any of the animations; how-
ever, the animationend event timing is usually equivalent to the result of the follow-
ing equation:

(animation-duration * animation-iteration-count) + animation-delay = time

Even if there are no iterations, the animationend event still occurs once for each
animation applied. If the animation-iteration-count is set to infinite, the anima
tionend event never occurs.

If the browser requires the -webkit- prefix for the animation properties, the event is
written as webkitAnimationEnd instead of animationend.

Animation Events and Prefixing | 105

animationiteration

The animationiteration event occurs at the end of each iteration of an animation,
before the start of the next iteration. If there are no iterations, or the iteration count is
less than or equal to one, the animationiteration event never occurs. If the iteration
count is infinite, the animationiteration event occurs ad infinitum, unless there is
no duration set or the duration is 0s.

Unlike the animationstart and animationend events, which each occur once for
each animation name, the animationiteration event can occur multiple times or no
times per animation name, depending on how many iterations occur. Note that the
event happens between animation cycles and will not occur at the same time as an
animationend event. In other words, if the animation-iteration-count is an inte-
ger, the number of animationiteration events that occur is generally one less that
the value of the animation-1iteration-count property as long as the absolute value
of any negative delay is less than the duration.

Other Considerations

Printing Animations

While not actually “animating” on a printed piece of paper, when an animated ele-
ment is printed, the relevant property values will be printed. Obviously, you can’t see
the element animating on a piece of paper, but if the animation caused an element to
have a border -radius of 50%, the printed element will have a border-radius of 50%.

106 | Chapter3: Animation

About the Author

How does someone get to be the author of both Transitions and Animations in CSS
and Mobile HTML5 (O’Reilly), and coauthor of CSS3 for the Real World (SitePoint)?
For Estelle Weyl, the journey was not a direct one. She started out as an architect,
used her master’s degree in health and social behavior from the Harvard School of
Public Health to lead teen health programs, and then began dabbling in website
development. By the time Y2K rolled around, she had become somewhat known as a
web standardista at http://www.standardista.com.

Today, she writes a technical blog that pulls in millions of visitors, and speaks about
CSS3, HTML5, JavaScript, accessibility, and mobile web development at conferences
around the world. In addition to sharing esoteric programming tidbits with her read-
ing public, Estelle has consulted for Kodak Gallery, SurveyMonkey, Visa, Samsung,
Yahoo!, and Apple, among others.

When not coding, she spends her time doing construction, striving to remove the last
remnants of communal hippiedom from her 1960s throwback home. Basically, its
just one more way Estelle is working to bring the world into the 21st century.

Colophon

The animal on the cover of Transitions and Animations in CSS are salmon (salmoni-
dae), which is a family of fish consisting of many different species. Two of the most
common salmon are the Pacific salmon and the Atlantic salmon.

Pacific salmon live in the northern Pacific Ocean off the coasts of North America and
Asia. There are five subspecies of Pacific salmon, with an average weight of 10 to 30
pounds. Pacific salmon are born in the fall in freshwater stream gravel beds, where
they incubate through the winter and emerge as inch-long fish. They live for a year or
two in streams or lakes and then head downstream to the ocean. There they live for a
few years, before heading back upstream to their exact place of birth to spawn and
then die.

Atlantic salmon live in the northern Atlantic Ocean off the coasts of North America
and Europe. There are many subspecies of Atlantic salmon, including the trout and
the char. Their average weight is 10 to 20 pounds. The Atlantic salmon family has a
life cycle similar to that of its Pacific cousins, and also travels from freshwater gravel
beds to the sea. A major difference between the two, however, is that the Atlantic sal-
mon does not die after spawning; it can return to the ocean and then return to the
stream to spawn again, usually two or three times.

Salmon, in general, are graceful, silver-colored fish with spots on their backs and fins.
Their diet consists of plankton, insect larvae, shrimp, and smaller fish. Their unusu-

http://www.standardista.com

ally keen sense of smell is thought to help them navigate from the ocean back to the
exact spot of their birth, upstream past many obstacles. Some species of salmon
remain landlocked, living their entire lives in freshwater.

Salmon are an important part of the ecosystem, as their decaying bodies provide fer-
tilizer for streambeds. Their numbers have been dwindling over the years, however.
Factors in the declining salmon population include habitat destruction, fishing, dams
that block spawning paths, acid rain, droughts, floods, and pollution.

The cover image is a 19th-century engraving from the Dover Pictorial Archive. The
cover fonts are URW Typewriter and Guardian Sans. The text font is Adobe Minion
Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton
Maag’s Ubuntu Mono.

vww allitebooks.cond

http://www.allitebooks.org

	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. CSS Transitions and Animations
	12 Basic Principles of Animation
	Animation and Transition Considerations

	Chapter 2. Transitions
	CSS Transitions
	Fallbacks: Transitions Are Enhancements
	Transition Properties
	The transition-property Property
	The transition-duration Property
	The transition-timing-function Property
	The transition-delay Property
	The transition Shorthand Property

	In Reverse: Transitioning Back to Baseline
	Animatable Properties and Values
	How Property Values Are Interpolated
	Animatable Properties
	transition Events Revisited

	Chapter 3. Animation
	Keyframes
	Setting Up Your Keyframe Animation
	Keyframe Selectors
	Omitting from and to Values
	Repeating Keyframe Properties
	Animatable Properties
	Nonanimatable Properties That Aren’t Ignored
	Dynamically Changing @keyframes Animations

	Animated Elements
	The animation-name Property
	The animation-duration Property
	The animation-iteration-count Property
	The animation-direction Property
	The animation-delay Property
	Animation Events
	The animation-timing-function Property
	The animation-play-state property
	The animation-fill-mode Property
	The animation Shorthand Property

	Animation, Specificity, and Precedence Order
	Specificity and !important
	Animation Order
	Animation Iteration and display: none;
	Animation and the UI Thread
	Seizure Disorders

	Animation Events and Prefixing
	animationstart
	animationend
	animationiteration

	Other Considerations
	Printing Animations

	About the Author

