

Types and Grammar i

Table of Contents
Chapter 1: Types .. 1

A Type By Any Other Name... ... 1
Built-in Types ... 1
Values as Types ... 3
undefined vs "undeclared" ... 3
typeof Undeclared .. 4

Review ... 6
Chapter 2: Values ... 9

Arrays .. 9
Array-Likes ... 10

Strings ... 10
Numbers ... 12

Numeric Syntax .. 13
Small Decimal Values ... 15
Safe Integer Ranges .. 16
Testing for Integers .. 16
32-bit (Signed) Integers .. 17

Special Values ... 17
The Non-value Values .. 17
Undefined ... 17
Special Numbers .. 19
Special Equality .. 23

Value vs. Reference .. 23
Review ... 27

Chapter 3: Natives ... 27
Internal [[Class]] .. 28
Boxing Wrappers .. 29

Object Wrapper Gotchas ... 29
Unboxing .. 30
Natives as Constructors ... 30
Array(..) ... 30
Object(..), Function(..), and RegExp(..) ... 33
Date(..) and Error(..) .. 33
Symbol(..) .. 34
Native Prototypes .. 35

Review ... 37
Chapter 4: Coercion .. 39

Converting Values .. 39
Abstract Value Operations .. 40
ToString .. 40
ToNumber .. 44
ToBoolean ... 45

Explicit Coercion ... 48
Explicitly: Strings <--> Numbers ... 48
Explicitly: Parsing Numeric Strings ... 53
Explicitly: * --> Boolean .. 55

Implicit Coercion .. 57
Simplifying Implicitly ... 57
Implicitly: Strings <--> Numbers ... 58
Implicitly: Booleans --> Numbers ... 60
Implicitly: * --> Boolean .. 62
Operators || and &&... 62

ii Types and Grammar

Symbol Coercion .. 65
Loose Equals vs. Strict Equals ... 66

Equality Performance ... 66
Abstract Equality ... 66
Edge Cases ... 71

Abstract Relational Comparison .. 77
Review .. 79

Chapter 5: Grammar .. 81
Statements & Expressions .. 81

Statement Completion Values .. 81
Expression Side Effects ... 83
Contextual Rules .. 86

Operator Precedence .. 91
Short Circuited ... 93
Tighter Binding .. 94
Associativity .. 94
Disambiguation .. 96

Automatic Semicolons.. 97
Error Correction .. 98

Errors .. 99
Using Variables Too Early .. 100

Function Arguments .. 100
try..finally... 102
switch .. 105
Review ... 107

Appendix A: Mixed Environment JavaScript ... 109
Annex B (ECMAScript) .. 109

Web ECMAScript .. 109
Host Objects .. 110
Global DOM Variables.. 110
Native Prototypes ... 111

Shims/Polyfills .. 113
<script>s ... 114
Reserved Words .. 115
Implementation Limits ... 116
Review ... 117

Types and Grammar 1

Chapter 1: Types
Most developers would say that a dynamic language (like JS) does not have types. Let's see what the ES5.1
specification (http://www.ecma-international.org/ecma-262/5.1/) has to say on the topic:

Algorithms within this specification manipulate values each of which has an associated type. The possible value types are
exactly those defined in this clause. Types are further sub classified into ECMAScript language types and specification types.

An ECMAScript language type corresponds to values that are directly manipulated by an ECMAScript programmer using the
ECMAScript language. The ECMAScript language types are Undefined, Null, Boolean, String, Number, and Object.

Now, if you're a fan of strongly typed (statically typed) languages, you may object to this usage of the word
"type." In those languages, "type" means a whole lot more than it does here in JS.

Some people say JS shouldn't claim to have "types," and they should instead be called "tags" or perhaps
"subtypes".

Bah! We're going to use this rough definition (the same one that seems to drive the wording of the spec): a
type is an intrinsic, built-in set of characteristics that uniquely identifies the behavior of a particular value and
distinguishes it from other values, both to the engine and to the developer.

In other words, if both the engine and the developer treat value 42 (the number) differently than they treat
value "42" (the string), then those two values have different types -- number and string, respectively. When
you use 42, you are intending to do something numeric, like math. But when you use "42", you are intending to
do something string'ish, like outputting to the page, etc. These two values have different types.

That's by no means a perfect definition. But it's good enough for this discussion. And it's consistent with how
JS describes itself.

A Type By Any Other Name...
Beyond academic definition disagreements, why does it matter if JavaScript has types or not?

Having a proper understanding of each type and its intrinsic behavior is absolutely essential to understanding
how to properly and accurately convert values to different types (see Coercion, Chapter 4). Nearly every JS
program ever written will need to handle value coercion in some shape or form, so it's important you do so
responsibly and with confidence.

If you have the number value 42, but you want to treat it like a string, such as pulling out the "2" as a
character in position 1, you obviously must first convert (coerce) the value from number to string.

That seems simple enough.

But there are many different ways that such coercion can happen. Some of these ways are explicit, easy to
reason about, and reliable. But if you're not careful, coercion can happen in very strange and surprising ways.

Coercion confusion is perhaps one of the most profound frustrations for JavaScript developers. It has often
been criticized as being so dangerous as to be considered a flaw in the design of the language, to be shunned
and avoided.

Armed with a full understanding of JavaScript types, we're aiming to illustrate why coercion's bad reputation
is largely overhyped and somewhat undeserved -- to flip your perspective, to seeing coercion's power and
usefulness. But first, we have to get a much better grip on values and types.

Built-in Types
JavaScript defines seven built-in types:

 null

2 Types and Grammar

 undefined

 boolean

 number
 string

 object
 symbol -- added in ES6!

Note: All of these types except object are called "primitives".

The typeof operator inspects the type of the given value, and always returns one of seven string values --
surprisingly, there's not an exact 1-to-1 match with the seven built-in types we just listed.

typeof undefined === "undefined"; // true
typeof true === "boolean"; // true
typeof 42 === "number"; // true
typeof "42" === "string"; // true
typeof { life: 42 } === "object"; // true

// added in ES6!
typeof Symbol() === "symbol"; // true

These six listed types have values of the corresponding type and return a string value of the same name, as
shown. Symbol is a new data type as of ES6, and will be covered in Chapter 3.

As you may have noticed, I excluded null from the above listing. It's special -- special in the sense that it's
buggy when combined with the typeof operator:

typeof null === "object"; // true

It would have been nice (and correct!) if it returned "null", but this original bug in JS has persisted for nearly
two decades, and will likely never be fixed because there's too much existing web content that relies on its
buggy behavior that "fixing" the bug would create more "bugs" and break a lot of web software.

If you want to test for a null value using its type, you need a compound condition:

var a = null;

(!a && typeof a === "object"); // true

null is the only primitive value that is "falsy" (aka false-like; see Chapter 4) but that also returns "object"
from the typeof check.

So what's the seventh string value that typeof can return?

typeof function a(){ /* .. */ } === "function"; // true

It's easy to think that function would be a top-level built-in type in JS, especially given this behavior of the
typeof operator. However, if you read the spec, you'll see it's actually a "subtype" of object. Specifically, a
function is referred to as a "callable object" -- an object that has an internal [[Call]] property that allows it
to be invoked.

The fact that functions are actually objects is quite useful. Most importantly, they can have properties. For
example:

function a(b,c) {
 /* .. */
}

Types and Grammar 3

The function object has a length property set to the number of formal parameters it is declared with.

a.length; // 2

Since you declared the function with two formal named parameters (b and c), the "length of the function" is 2.

What about arrays? They're native to JS, so are they a special type?

typeof [1,2,3] === "object"; // true

Nope, just objects. It's most appropriate to think of them also as a "subtype" of object (see Chapter 3), in this
case with the additional characteristics of being numerically indexed (as opposed to just being string-keyed
like plain objects) and maintaining an automatically updated .length property.

Values as Types
In JavaScript, variables don't have types -- values have types. Variables can hold any value, at any time.

Another way to think about JS types is that JS doesn't have "type enforcement," in that the engine doesn't insist
that a variable always holds values of the same initial type that it starts out with. A variable can, in one
assignment statement, hold a string, and in the next hold a number, and so on.

The value 42 has an intrinsic type of number, and its type cannot be changed. Another value, like "42" with the
string type, can be created from the number value 42 through a process called coercion (see Chapter 4).

If you use typeof against a variable, it's not asking "what's the type of the variable?" as it may seem, since JS
variables have no types. Instead, it's asking "what's the type of the value in the variable?"

var a = 42;
typeof a; // "number"

a = true;
typeof a; // "boolean"

The typeof operator always returns a string. So:

typeof typeof 42; // "string"

The first typeof 42 returns "number", and typeof "number" is "string".

undefined vs "undeclared"
Variables that have no value currently, actually have the undefined value. Calling typeof against such
variables will return "undefined":

var a;

typeof a; // "undefined"

var b = 42;
var c;

// later
b = c;

typeof b; // "undefined"
typeof c; // "undefined"

4 Types and Grammar

It's tempting for most developers to think of the word "undefined" and think of it as a synonym for
"undeclared." However, in JS, these two concepts are quite different.

An "undefined" variable is one that has been declared in the accessible scope, but at the moment has no other
value in it. By contrast, an "undeclared" variable is one that has not been formally declared in the accessible
scope.

Consider:

var a;

a; // undefined
b; // ReferenceError: b is not defined

An annoying confusion is the error message that browsers assign to this condition. As you can see, the
message is "b is not defined," which is of course very easy and reasonable to confuse with "b is undefined." Yet
again, "undefined" and "is not defined" are very different things. It'd be nice if the browsers said something
like "b is not found" or "b is not declared," to reduce the confusion!

There's also a special behavior associated with typeof as it relates to undeclared variables that even further
reinforces the confusion. Consider:

var a;

typeof a; // "undefined"

typeof b; // "undefined"

The typeof operator returns "undefined" even for "undeclared" (or "not defined") variables. Notice that
there was no error thrown when we executed typeof b, even though b is an undeclared variable. This is a
special safety guard in the behavior of typeof.

Similar to above, it would have been nice if typeof used with an undeclared variable returned "undeclared"
instead of conflating the result value with the different "undefined" case.

typeof Undeclared
Nevertheless, this safety guard is a useful feature when dealing with JavaScript in the browser, where multiple
script files can load variables into the shared global namespace.

Note: Many developers believe there should never be any variables in the global namespace, and that
everything should be contained in modules and private/separate namespaces. This is great in theory but
nearly impossible in practicality; still it's a good goal to strive toward! Fortunately, ES6 added first-class
support for modules, which will eventually make that much more practical.

As a simple example, imagine having a "debug mode" in your program that is controlled by a global variable
(flag) called DEBUG. You'd want to check if that variable was declared before performing a debug task like
logging a message to the console. A top-level global var DEBUG = true declaration would only be included in
a "debug.js" file, which you only load into the browser when you're in development/testing, but not in
production.

However, you have to take care in how you check for the global DEBUG variable in the rest of your application
code, so that you don't throw a ReferenceError. The safety guard on typeof is our friend in this case.

// oops, this would throw an error!
if (DEBUG) {
 console.log("Debugging is starting");
}

Types and Grammar 5

// this is a safe existence check
if (typeof DEBUG !== "undefined") {
 console.log("Debugging is starting");
}

This sort of check is useful even if you're not dealing with user-defined variables (like DEBUG). If you are doing
a feature check for a built-in API, you may also find it helpful to check without throwing an error:

if (typeof atob === "undefined") {
 atob = function() { /*..*/ };
}

Note: If you're defining a "polyfill" for a feature if it doesn't already exist, you probably want to avoid using
var to make the atob declaration. If you declare var atob inside the if statement, this declaration is hoisted
(see the Scope & Closures title of this series) to the top of the scope, even if the if condition doesn't pass
(because the global atob already exists!). In some browsers and for some special types of global built-in
variables (often called "host objects"), this duplicate declaration may throw an error. Omitting the var
prevents this hoisted declaration.

Another way of doing these checks against global variables but without the safety guard feature of typeof is
to observe that all global variables are also properties of the global object, which in the browser is basically
the window object. So, the above checks could have been done (quite safely) as:

if (window.DEBUG) {
 // ..
}

if (!window.atob) {
 // ..
}

Unlike referencing undeclared variables, there is no ReferenceError thrown if you try to access an object
property (even on the global window object) that doesn't exist.

On the other hand, manually referencing the global variable with a window reference is something some
developers prefer to avoid, especially if your code needs to run in multiple JS environments (not just browsers,
but server-side node.js, for instance), where the global object may not always be called window.

Technically, this safety guard on typeof is useful even if you're not using global variables, though these
circumstances are less common, and some developers may find this design approach less desirable. Imagine a
utility function that you want others to copy-and-paste into their programs or modules, in which you want to
check to see if the including program has defined a certain variable (so that you can use it) or not:

function doSomethingCool() {
 var helper =
 (typeof FeatureXYZ !== "undefined") ?
 FeatureXYZ :
 function() { /*.. default feature ..*/ };

 var val = helper();
 // ..
}

doSomethingCool() tests for a variable called FeatureXYZ, and if found, uses it, but if not, uses its own.
Now, if someone includes this utility in their module/program, it safely checks if they've defined FeatureXYZ
or not:

6 Types and Grammar

// an IIFE (see "Immediately Invoked Function Expressions"
// discussion in the *Scope & Closures* title of this series)
(function(){
 function FeatureXYZ() { /*.. my XYZ feature ..*/ }

 // include `doSomethingCool(..)`
 function doSomethingCool() {
 var helper =
 (typeof FeatureXYZ !== "undefined") ?
 FeatureXYZ :
 function() { /*.. default feature ..*/ };

 var val = helper();
 // ..
 }

 doSomethingCool();
})();

Here, FeatureXYZ is not at all a global variable, but we're still using the safety guard of typeof to make it safe
to check for. And importantly, here there is no object we can use (like we did for global variables with
window.___) to make the check, so typeof is quite helpful.

Other developers would prefer a design pattern called "dependency injection," where instead of
doSomethingCool() inspecting implicitly for FeatureXYZ to be defined outside/around it, it would need to
have the dependency explicitly passed in, like:

function doSomethingCool(FeatureXYZ) {
 var helper = FeatureXYZ ||
 function() { /*.. default feature ..*/ };

 var val = helper();
 // ..
}

There are lots of options when designing such functionality. No one pattern here is "correct" or "wrong" --
there are various tradeoffs to each approach. But overall, it's nice that the typeof undeclared safety guard
gives us more options.

Review
JavaScript has seven built-in types: null, undefined, boolean, number, string, object, symbol. They can
be identified by the typeof operator.

Variables don't have types, but the values in them do. These types define intrinsic behavior of the values.

Many developers will assume "undefined" and "undeclared" are roughly the same thing, but in JavaScript,
they're quite different. undefined is a value that a declared variable can hold. "Undeclared" means a variable
has never been declared.

JavaScript unfortunately kind of conflates these two terms, not only in its error messages ("ReferenceError: a
is not defined") but also in the return values of typeof, which is "undefined" for both cases.

However, the safety guard (preventing an error) on typeof when used against an undeclared variable can be
helpful in certain cases.

Types and Grammar 7

8 Types and Grammar

Types and Grammar 9

Chapter 2: Values
arrays, strings, and numbers are the most basic building-blocks of any program, but JavaScript has some
unique characteristics with these types that may either delight or confound you.

Let's look at several of the built-in value types in JS, and explore how we can more fully understand and
correctly leverage their behaviors.

Arrays
As compared to other type-enforced languages, JavaScript arrays are just containers for any type of value,
from string to number to object to even another array (which is how you get multidimensional arrays).

var a = [1, "2", [3]];

a.length; // 3
a[0] === 1; // true
a[2][0] === 3; // true

You don't need to presize your arrays (see "Arrays" in Chapter 3), you can just declare them and add values
as you see fit:

var a = [];

a.length; // 0

a[0] = 1;
a[1] = "2";
a[2] = [3];

a.length; // 3

Warning: Using delete on an array value will remove that slot from the array, but even if you remove the
final element, it does not update the length property, so be careful! We'll cover the delete operator itself in
more detail in Chapter 5.

Be careful about creating "sparse" arrays (leaving or creating empty/missing slots):

var a = [];

a[0] = 1;
// no `a[1]` slot set here
a[2] = [3];

a[1]; // undefined

a.length; // 3

While that works, it can lead to some confusing behavior with the "empty slots" you leave in between. While
the slot appears to have the undefined value in it, it will not behave the same as if the slot is explicitly set
(a[1] = undefined). See "Arrays" in Chapter 3 for more information.

arrays are numerically indexed (as you'd expect), but the tricky thing is that they also are objects that can
have string keys/properties added to them (but which don't count toward the length of the array):

var a = [];

10 Types and Grammar

a[0] = 1;
a["foobar"] = 2;

a.length; // 1
a["foobar"]; // 2
a.foobar; // 2

However, a gotcha to be aware of is that if a string value intended as a key can be coerced to a standard base-
10 number, then it is assumed that you wanted to use it as a number index rather than as a string key!

var a = [];

a["13"] = 42;

a.length; // 14

Generally, it's not a great idea to add string keys/properties to arrays. Use objects for holding values in
keys/properties, and save arrays for strictly numerically indexed values.

Array-Likes
There will be occasions where you need to convert an array-like value (a numerically indexed collection of
values) into a true array, usually so you can call array utilities (like indexOf(..), concat(..),
forEach(..), etc.) against the collection of values.

For example, various DOM query operations return lists of DOM elements that are not true arrays but are
array-like enough for our conversion purposes. Another common example is when functions expose the
arguments (array-like) object (as of ES6, deprecated) to access the arguments as a list.

One very common way to make such a conversion is to borrow the slice(..) utility against the value:

function foo() {
 var arr = Array.prototype.slice.call(arguments);
 arr.push("bam");
 console.log(arr);
}

foo("bar", "baz"); // ["bar","baz","bam"]

If slice() is called without any other parameters, as it effectively is in the above snippet, the default values
for its parameters have the effect of duplicating the array (or, in this case, array-like).

As of ES6, there's also a built-in utility called Array.from(..) that can do the same task:

...
var arr = Array.from(arguments);
...

Note: Array.from(..) has several powerful capabilities, and will be covered in detail in the ES6 & Beyond
title of this series.

Strings
It's a very common belief that strings are essentially just arrays of characters. While the implementation
under the covers may or may not use arrays, it's important to realize that JavaScript strings are really not
the same as arrays of characters. The similarity is mostly just skin-deep.

For example, let's consider these two values:

Types and Grammar 11

var a = "foo";
var b = ["f","o","o"];

Strings do have a shallow resemblance to arrays -- array-likes, as above -- for instance, both of them having a
length property, an indexOf(..) method (array version only as of ES5), and a concat(..) method:

a.length; // 3
b.length; // 3

a.indexOf("o"); // 1
b.indexOf("o"); // 1

var c = a.concat("bar"); // "foobar"
var d = b.concat(["b","a","r"]); // ["f","o","o","b","a","r"]

a === c; // false
b === d; // false

a; // "foo"
b; // ["f","o","o"]

So, they're both basically just "arrays of characters", right? Not exactly:

a[1] = "O";
b[1] = "O";

a; // "foo"
b; // ["f","O","o"]

JavaScript strings are immutable, while arrays are quite mutable. Moreover, the a[1] character position
access form was not always widely valid JavaScript. Older versions of IE did not allow that syntax (but now
they do). Instead, the correct approach has been a.charAt(1).

A further consequence of immutable strings is that none of the string methods that alter its contents can
modify in-place, but rather must create and return new strings. By contrast, many of the methods that
change array contents actually do modify in-place.

c = a.toUpperCase();
a === c; // false
a; // "foo"
c; // "FOO"

b.push("!");
b; // ["f","O","o","!"]

Also, many of the array methods that could be helpful when dealing with strings are not actually available
for them, but we can "borrow" non-mutation array methods against our string:

a.join; // undefined
a.map; // undefined

var c = Array.prototype.join.call(a, "-");
var d = Array.prototype.map.call(a, function(v){
 return v.toUpperCase() + ".";
}).join("");

12 Types and Grammar

c; // "f-o-o"
d; // "F.O.O."

Let's take another example: reversing a string (incidentally, a common JavaScript interview trivia question!).
arrays have a reverse() in-place mutator method, but strings do not:

a.reverse; // undefined

b.reverse(); // ["!","o","O","f"]
b; // ["!","o","O","f"]

Unfortunately, this "borrowing" doesn't work with array mutators, because strings are immutable and thus
can't be modified in place:

Array.prototype.reverse.call(a);
// still returns a String object wrapper (see Chapter 3)
// for "foo" :(

Another workaround (aka hack) is to convert the string into an array, perform the desired operation, then
convert it back to a string.

var c = a
 // split `a` into an array of characters
 .split("")
 // reverse the array of characters
 .reverse()
 // join the array of characters back to a string
 .join("");

c; // "oof"

If that feels ugly, it is. Nevertheless, it works for simple strings, so if you need something quick-n-dirty, often
such an approach gets the job done.

Warning: Be careful! This approach doesn't work for strings with complex (unicode) characters in them
(astral symbols, multibyte characters, etc.). You need more sophisticated library utilities that are unicode-
aware for such operations to be handled accurately. Consult Mathias Bynens' work on the subject: Esrever
(https://github.com/mathiasbynens/esrever).

The other way to look at this is: if you are more commonly doing tasks on your "strings" that treat them as
basically arrays of characters, perhaps it's better to just actually store them as arrays rather than as strings.
You'll probably save yourself a lot of hassle of converting from string to array each time. You can always call
join("") on the array of characters whenever you actually need the string representation.

Numbers
JavaScript has just one numeric type: number. This type includes both "integer" values and fractional decimal
numbers. I say "integer" in quotes because it's long been a criticism of JS that there are not true integers, as
there are in other languages. That may change at some point in the future, but for now, we just have numbers
for everything.

So, in JS, an "integer" is just a value that has no fractional decimal value. That is, 42.0 is as much an "integer"
as 42.

Like most modern languages, including practically all scripting languages, the implementation of JavaScript's
numbers is based on the "IEEE 754" standard, often called "floating-point." JavaScript specifically uses the
"double precision" format (aka "64-bit binary") of the standard.

Types and Grammar 13

There are many great write-ups on the Web about the nitty-gritty details of how binary floating-point
numbers are stored in memory, and the implications of those choices. Because understanding bit patterns in
memory is not strictly necessary to understand how to correctly use numbers in JS, we'll leave it as an exercise
for the interested reader if you'd like to dig further into IEEE 754 details.

Numeric Syntax
Number literals are expressed in JavaScript generally as base-10 decimal literals. For example:

var a = 42;
var b = 42.3;

The leading portion of a decimal value, if 0, is optional:

var a = 0.42;
var b = .42;

Similarly, the trailing portion (the fractional) of a decimal value after the ., if 0, is optional:

var a = 42.0;
var b = 42.;

Warning: 42. is pretty uncommon, and probably not a great idea if you're trying to avoid confusion when
other people read your code. But it is, nevertheless, valid.

By default, most numbers will be outputted as base-10 decimals, with trailing fractional 0s removed. So:

var a = 42.300;
var b = 42.0;

a; // 42.3
b; // 42

Very large or very small numbers will by default be outputted in exponent form, the same as the output of the
toExponential() method, like:

var a = 5E10;
a; // 50000000000
a.toExponential(); // "5e+10"

var b = a * a;
b; // 2.5e+21

var c = 1 / a;
c; // 2e-11

Because number values can be boxed with the Number object wrapper (see Chapter 3), number values can
access methods that are built into the Number.prototype (see Chapter 3). For example, the toFixed(..)
method allows you to specify how many fractional decimal places you'd like the value to be represented with:

var a = 42.59;

a.toFixed(0); // "43"
a.toFixed(1); // "42.6"
a.toFixed(2); // "42.59"
a.toFixed(3); // "42.590"
a.toFixed(4); // "42.5900"

14 Types and Grammar

Notice that the output is actually a string representation of the number, and that the value is 0-padded on the
right-hand side if you ask for more decimals than the value holds.

toPrecision(..) is similar, but specifies how many significant digits should be used to represent the value:

var a = 42.59;

a.toPrecision(1); // "4e+1"
a.toPrecision(2); // "43"
a.toPrecision(3); // "42.6"
a.toPrecision(4); // "42.59"
a.toPrecision(5); // "42.590"
a.toPrecision(6); // "42.5900"

You don't have to use a variable with the value in it to access these methods; you can access these methods
directly on number literals. But you have to be careful with the . operator. Since . is a valid numeric character,
it will first be interpreted as part of the number literal, if possible, instead of being interpreted as a property
accessor.

// invalid syntax:
42.toFixed(3); // SyntaxError

// these are all valid:
(42).toFixed(3); // "42.000"
0.42.toFixed(3); // "0.420"
42..toFixed(3); // "42.000"

42.toFixed(3) is invalid syntax, because the . is swallowed up as part of the 42. literal (which is valid -- see
above!), and so then there's no . property operator present to make the .toFixed access.

42..toFixed(3) works because the first . is part of the number and the second . is the property operator.
But it probably looks strange, and indeed it's very rare to see something like that in actual JavaScript code. In
fact, it's pretty uncommon to access methods directly on any of the primitive values. Uncommon doesn't mean
bad or wrong.

Note: There are libraries that extend the built-in Number.prototype (see Chapter 3) to provide extra
operations on/with numbers, and so in those cases, it's perfectly valid to use something like
10..makeItRain() to set off a 10-second money raining animation, or something else silly like that.

This is also technically valid (notice the space):

42 .toFixed(3); // "42.000"

However, with the number literal specifically, this is particularly confusing coding style and will serve no
other purpose but to confuse other developers (and your future self). Avoid it.

numbers can also be specified in exponent form, which is common when representing larger numbers, such as:

var onethousand = 1E3; // means 1 * 10^3
var onemilliononehundredthousand = 1.1E6; // means 1.1 * 10^6

number literals can also be expressed in other bases, like binary, octal, and hexadecimal.

These formats work in current versions of JavaScript:

0xf3; // hexadecimal for: 243
0Xf3; // ditto

Types and Grammar 15

0363; // octal for: 243

Note: Starting with ES6 + strict mode, the 0363 form of octal literals is no longer allowed (see below for the
new form). The 0363 form is still allowed in non-strict mode, but you should stop using it anyway, to be
future-friendly (and because you should be using strict mode by now!).

As of ES6, the following new forms are also valid:

0o363; // octal for: 243
0O363; // ditto

0b11110011; // binary for: 243
0B11110011; // ditto

Please do your fellow developers a favor: never use the 0O363 form. 0 next to capital O is just asking for
confusion. Always use the lowercase predicates 0x, 0b, and 0o.

Small Decimal Values
The most (in)famous side effect of using binary floating-point numbers (which, remember, is true of all
languages that use IEEE 754 -- not just JavaScript as many assume/pretend) is:

0.1 + 0.2 === 0.3; // false

Mathematically, we know that statement should be true. Why is it false?

Simply put, the representations for 0.1 and 0.2 in binary floating-point are not exact, so when they are added,
the result is not exactly 0.3. It's really close: 0.30000000000000004, but if your comparison fails, "close" is
irrelevant.

Note: Should JavaScript switch to a different number implementation that has exact representations for all
values? Some think so. There have been many alternatives presented over the years. None of them have been
accepted yet, and perhaps never will. As easy as it may seem to just wave a hand and say, "fix that bug
already!", it's not nearly that easy. If it were, it most definitely would have been changed a long time ago.

Now, the question is, if some numbers can't be trusted to be exact, does that mean we can't use numbers at all?
Of course not.

There are some applications where you need to be more careful, especially when dealing with fractional
decimal values. There are also plenty of (maybe most?) applications that only deal with whole numbers
("integers"), and moreover, only deal with numbers in the millions or trillions at maximum. These applications
have been, and always will be, perfectly safe to use numeric operations in JS.

What if we did need to compare two numbers, like 0.1 + 0.2 to 0.3, knowing that the simple equality test
fails?

The most commonly accepted practice is to use a tiny "rounding error" value as the tolerance for comparison.
This tiny value is often called "machine epsilon," which is commonly 2^-52 (2.220446049250313e-16) for
the kind of numbers in JavaScript.

As of ES6, Number.EPSILON is predefined with this tolerance value, so you'd want to use it, but you can safely
polyfill the definition for pre-ES6:

if (!Number.EPSILON) {
 Number.EPSILON = Math.pow(2,-52);
}

16 Types and Grammar

We can use this Number.EPSILON to compare two numbers for "equality" (within the rounding error
tolerance):

function numbersCloseEnoughToEqual(n1,n2) {
 return Math.abs(n1 - n2) < Number.EPSILON;
}

var a = 0.1 + 0.2;
var b = 0.3;

numbersCloseEnoughToEqual(a, b); // true
numbersCloseEnoughToEqual(0.0000001, 0.0000002); // false

The maximum floating-point value that can be represented is roughly 1.798e+308 (which is really, really,
really huge!), predefined for you as Number.MAX_VALUE. On the small end, Number.MIN_VALUE is roughly 5e-
324, which isn't negative but is really close to zero!

Safe Integer Ranges
Because of how numbers are represented, there is a range of "safe" values for the whole number "integers",
and it's significantly less than Number.MAX_VALUE.

The maximum integer that can "safely" be represented (that is, there's a guarantee that the requested value is
actually representable unambiguously) is 2^53 - 1, which is 9007199254740991. If you insert your commas,
you'll see that this is just over 9 quadrillion. So that's pretty darn big for numbers to range up to.

This value is actually automatically predefined in ES6, as Number.MAX_SAFE_INTEGER. Unsurprisingly, there's
a minimum value, -9007199254740991, and it's defined in ES6 as Number.MIN_SAFE_INTEGER.

The main way that JS programs are confronted with dealing with such large numbers is when dealing with 64-
bit IDs from databases, etc. 64-bit numbers cannot be represented accurately with the number type, so must
be stored in (and transmitted to/from) JavaScript using string representation.

Numeric operations on such large ID number values (besides comparison, which will be fine with strings)
aren't all that common, thankfully. But if you do need to perform math on these very large values, for now
you'll need to use a big number utility. Big numbers may get official support in a future version of JavaScript.

Testing for Integers
To test if a value is an integer, you can use the ES6-specified Number.isInteger(..):

Number.isInteger(42); // true
Number.isInteger(42.000); // true
Number.isInteger(42.3); // false

To polyfill Number.isInteger(..) for pre-ES6:

if (!Number.isInteger) {
 Number.isInteger = function(num) {
 return typeof num == "number" && num % 1 == 0;
 };
}

To test if a value is a safe integer, use the ES6-specified Number.isSafeInteger(..):

Number.isSafeInteger(Number.MAX_SAFE_INTEGER); // true
Number.isSafeInteger(Math.pow(2, 53)); // false
Number.isSafeInteger(Math.pow(2, 53) - 1); // true

Types and Grammar 17

To polyfill Number.isSafeInteger(..) in pre-ES6 browsers:

if (!Number.isSafeInteger) {
 Number.isSafeInteger = function(num) {
 return Number.isInteger(num) &&
 Math.abs(num) <= Number.MAX_SAFE_INTEGER;
 };
}

32-bit (Signed) Integers
While integers can range up to roughly 9 quadrillion safely (53 bits), there are some numeric operations (like
the bitwise operators) that are only defined for 32-bit numbers, so the "safe range" for numbers used in that
way must be much smaller.

The range then is Math.pow(-2,31) (-2147483648, about -2.1 billion) up to Math.pow(2,31)-1
(2147483647, about +2.1 billion).

To force a number value in a to a 32-bit signed integer value, use a | 0. This works because the | bitwise
operator only works for 32-bit integer values (meaning it can only pay attention to 32 bits and any other bits
will be lost). Then, "or'ing" with zero is essentially a no-op bitwise speaking.

Note: Certain special values (which we will cover in the next section) such as NaN and Infinity are not "32-
bit safe," in that those values when passed to a bitwise operator will pass through the abstract operation
ToInt32 (see Chapter 4) and become simply the +0 value for the purpose of that bitwise operation.

Special Values
There are several special values spread across the various types that the alert JS developer needs to be aware
of, and use properly.

The Non-value Values
For the undefined type, there is one and only one value: undefined. For the null type, there is one and only
one value: null. So for both of them, the label is both its type and its value.

Both undefined and null are often taken to be interchangeable as either "empty" values or "non" values.
Other developers prefer to distinguish between them with nuance. For example:

 null is an empty value

 undefined is a missing value

Or:

 undefined hasn't had a value yet
 null had a value and doesn't anymore

Regardless of how you choose to "define" and use these two values, null is a special keyword, not an
identifier, and thus you cannot treat it as a variable to assign to (why would you!?). However, undefined is
(unfortunately) an identifier. Uh oh.

Undefined
In non-strict mode, it's actually possible (though incredibly ill-advised!) to assign a value to the globally
provided undefined identifier:

function foo() {
 undefined = 2; // really bad idea!
}

18 Types and Grammar

foo();

function foo() {
 "use strict";
 undefined = 2; // TypeError!
}

foo();

In both non-strict mode and strict mode, however, you can create a local variable of the name
undefined. But again, this is a terrible idea!

function foo() {
 "use strict";
 var undefined = 2;
 console.log(undefined); // 2
}

foo();

Friends don't let friends override undefined. Ever.

void Operator
While undefined is a built-in identifier that holds (unless modified -- see above!) the built-in undefined
value, another way to get this value is the void operator.

The expression void ___ "voids" out any value, so that the result of the expression is always the undefined
value. It doesn't modify the existing value; it just ensures that no value comes back from the operator
expression.

var a = 42;

console.log(void a, a); // undefined 42

By convention (mostly from C-language programming), to represent the undefined value stand-alone by
using void, you'd use void 0 (though clearly even void true or any other void expression does the same
thing). There's no practical difference between void 0, void 1, and undefined.

But the void operator can be useful in a few other circumstances, if you need to ensure that an expression has
no result value (even if it has side effects).

For example:

function doSomething() {
 // note: `APP.ready` is provided by our application
 if (!APP.ready) {
 // try again later
 return void setTimeout(doSomething, 100);
 }

 var result;

 // do some other stuff
 return result;
}

Types and Grammar 19

// were we able to do it right away?
if (doSomething()) {
 // handle next tasks right away
}

Here, the setTimeout(..) function returns a numeric value (the unique identifier of the timer interval, if you
wanted to cancel it), but we want to void that out so that the return value of our function doesn't give a false-
positive with the if statement.

Many devs prefer to just do these actions separately, which works the same but doesn't use the void operator:

if (!APP.ready) {
 // try again later
 setTimeout(doSomething, 100);
 return;
}

In general, if there's ever a place where a value exists (from some expression) and you'd find it useful for the
value to be undefined instead, use the void operator. That probably won't be terribly common in your
programs, but in the rare cases you do need it, it can be quite helpful.

Special Numbers
The number type includes several special values. We'll take a look at each in detail.

The Not Number, Number
Any mathematic operation you perform without both operands being numbers (or values that can be
interpreted as regular numbers in base 10 or base 16) will result in the operation failing to produce a valid
number, in which case you will get the NaN value.

NaN literally stands for "not a number", though this label/description is very poor and misleading, as we'll see
shortly. It would be much more accurate to think of NaN as being "invalid number," "failed number," or even
"bad number," than to think of it as "not a number."

For example:

var a = 2 / "foo"; // NaN

typeof a === "number"; // true

In other words: "the type of not-a-number is 'number'!" Hooray for confusing names and semantics.

NaN is a kind of "sentinel value" (an otherwise normal value that's assigned a special meaning) that represents
a special kind of error condition within the number set. The error condition is, in essence: "I tried to perform a
mathematic operation but failed, so here's the failed number result instead."

So, if you have a value in some variable and want to test to see if it's this special failed-number NaN, you might
think you could directly compare to NaN itself, as you can with any other value, like null or undefined. Nope.

var a = 2 / "foo";

a == NaN; // false
a === NaN; // false

NaN is a very special value in that it's never equal to another NaN value (i.e., it's never equal to itself). It's the
only value, in fact, that is not reflexive (without the Identity characteristic x === x). So, NaN !== NaN. A bit
strange, huh?

20 Types and Grammar

So how do we test for it, if we can't compare to NaN (since that comparison would always fail)?

var a = 2 / "foo";

isNaN(a); // true

Easy enough, right? We use the built-in global utility called isNaN(..) and it tells us if the value is NaN or not.
Problem solved!

Not so fast.

The isNaN(..) utility has a fatal flaw. It appears it tried to take the meaning of NaN ("Not a Number") too
literally -- that its job is basically: "test if the thing passed in is either not a number or is a number." But that's
not quite accurate.

var a = 2 / "foo";
var b = "foo";

a; // NaN
b; // "foo"

window.isNaN(a); // true
window.isNaN(b); // true -- ouch!

Clearly, "foo" is literally not a number, but it's definitely not the NaN value either! This bug has been in JS
since the very beginning (over 19 years of ouch).

As of ES6, finally a replacement utility has been provided: Number.isNaN(..). A simple polyfill for it so that
you can safely check NaN values now even in pre-ES6 browsers is:

if (!Number.isNaN) {
 Number.isNaN = function(n) {
 return (
 typeof n === "number" &&
 window.isNaN(n)
);
 };
}

var a = 2 / "foo";
var b = "foo";

Number.isNaN(a); // true
Number.isNaN(b); // false -- phew!

Actually, we can implement a Number.isNaN(..) polyfill even easier, by taking advantage of that peculiar
fact that NaN isn't equal to itself. NaN is the only value in the whole language where that's true; every other
value is always equal to itself.

So:

if (!Number.isNaN) {
 Number.isNaN = function(n) {
 return n !== n;
 };
}

Types and Grammar 21

Weird, huh? But it works!

NaNs are probably a reality in a lot of real-world JS programs, either on purpose or by accident. It's a really
good idea to use a reliable test, like Number.isNaN(..) as provided (or polyfilled), to recognize them
properly.

If you're currently using just isNaN(..) in a program, the sad reality is your program has a bug, even if you
haven't been bitten by it yet!

Infinities
Developers from traditional compiled languages like C are probably used to seeing either a compiler error or
runtime exception, like "Divide by zero," for an operation like:

var a = 1 / 0;

However, in JS, this operation is well-defined and results in the value Infinity (aka
Number.POSITIVE_INFINITY). Unsurprisingly:

var a = 1 / 0; // Infinity
var b = -1 / 0; // -Infinity

As you can see, -Infinity (aka Number.NEGATIVE_INFINITY) results from a divide-by-zero where either
(but not both!) of the divide operands is negative.

JS uses finite numeric representations (IEEE 754 floating-point, which we covered earlier), so contrary to pure
mathematics, it seems it is possible to overflow even with an operation like addition or subtraction, in which
case you'd get Infinity or -Infinity.

For example:

var a = Number.MAX_VALUE; // 1.7976931348623157e+308
a + a; // Infinity
a + Math.pow(2, 970); // Infinity
a + Math.pow(2, 969); // 1.7976931348623157e+308

According to the specification, if an operation like addition results in a value that's too big to represent, the
IEEE 754 "round-to-nearest" mode specifies what the result should be. So, in a crude sense,
Number.MAX_VALUE + Math.pow(2, 969) is closer to Number.MAX_VALUE than to Infinity, so it
"rounds down," whereas Number.MAX_VALUE + Math.pow(2, 970) is closer to Infinity so it "rounds
up".

If you think too much about that, it's going to make your head hurt. So don't. Seriously, stop!

Once you overflow to either one of the infinities, however, there's no going back. In other words, in an almost
poetic sense, you can go from finite to infinite but not from infinite back to finite.

It's almost philosophical to ask: "What is infinity divided by infinity". Our naive brains would likely say "1" or
maybe "infinity." Turns out neither is true. Both mathematically and in JavaScript, Infinity / Infinity is
not a defined operation. In JS, this results in NaN.

But what about any positive finite number divided by Infinity? That's easy! 0. And what about a negative
finite number divided by Infinity? Keep reading!

Zeros
While it may confuse the mathematics-minded reader, JavaScript has both a normal zero 0 (otherwise known
as a positive zero +0) and a negative zero -0. Before we explain why the -0 exists, we should examine how JS
handles it, because it can be quite confusing.

22 Types and Grammar

Besides being specified literally as -0, negative zero also results from certain mathematic operations. For
example:

var a = 0 / -3; // -0
var b = 0 * -3; // -0

Addition and subtraction cannot result in a negative zero.

A negative zero when examined in the developer console will usually reveal -0, though that was not the
common case until fairly recently, so some older browsers you encounter may still report it as 0.

However, if you try to stringify a negative zero value, it will always be reported as "0", according to the spec.

var a = 0 / -3;

// (some browser) consoles at least get it right
a; // -0

// but the spec insists on lying to you!
a.toString(); // "0"
a + ""; // "0"
String(a); // "0"

// strangely, even JSON gets in on the deception
JSON.stringify(a); // "0"

Interestingly, the reverse operations (going from string to number) don't lie:

+"-0"; // -0
Number("-0"); // -0
JSON.parse("-0"); // -0

Warning: The JSON.stringify(-0) behavior of "0" is particularly strange when you observe that it's
inconsistent with the reverse: JSON.parse("-0") reports -0 as you'd correctly expect.

In addition to stringification of negative zero being deceptive to hide its true value, the comparison operators
are also (intentionally) configured to lie.

var a = 0;
var b = 0 / -3;

a == b; // true
-0 == 0; // true

a === b; // true
-0 === 0; // true

0 > -0; // false
a > b; // false

Clearly, if you want to distinguish a -0 from a 0 in your code, you can't just rely on what the developer console
outputs, so you're going to have to be a bit more clever:

function isNegZero(n) {
 n = Number(n);
 return (n === 0) && (1 / n === -Infinity);
}

Types and Grammar 23

isNegZero(-0); // true
isNegZero(0 / -3); // true
isNegZero(0); // false

Now, why do we need a negative zero, besides academic trivia?

There are certain applications where developers use the magnitude of a value to represent one piece of
information (like speed of movement per animation frame) and the sign of that number to represent another
piece of information (like the direction of that movement).

In those applications, as one example, if a variable arrives at zero and it loses its sign, then you would lose the
information of what direction it was moving in before it arrived at zero. Preserving the sign of the zero
prevents potentially unwanted information loss.

Special Equality
As we saw above, the NaN value and the -0 value have special behavior when it comes to equality comparison.
NaN is never equal to itself, so you have to use ES6's Number.isNaN(..) (or a polyfill). Similarly, -0 lies and
pretends that it's equal (even === strict equal -- see Chapter 4) to regular positive 0, so you have to use the
somewhat hackish isNegZero(..) utility we suggested above.

As of ES6, there's a new utility that can be used to test two values for absolute equality, without any of these
exceptions. It's called Object.is(..):

var a = 2 / "foo";
var b = -3 * 0;

Object.is(a, NaN); // true
Object.is(b, -0); // true

Object.is(b, 0); // false

There's a pretty simple polyfill for Object.is(..) for pre-ES6 environments:

if (!Object.is) {
 Object.is = function(v1, v2) {
 // test for `-0`
 if (v1 === 0 && v2 === 0) {
 return 1 / v1 === 1 / v2;
 }
 // test for `NaN`
 if (v1 !== v1) {
 return v2 !== v2;
 }
 // everything else
 return v1 === v2;
 };
}

Object.is(..) probably shouldn't be used in cases where == or === are known to be safe (see Chapter 4
"Coercion"), as the operators are likely much more efficient and certainly are more idiomatic/common.
Object.is(..) is mostly for these special cases of equality.

Value vs. Reference
In many other languages, values can either be assigned/passed by value-copy or by reference-copy depending
on the syntax you use.

24 Types and Grammar

For example, in C++ if you want to pass a number variable into a function and have that variable's value
updated, you can declare the function parameter like int& myNum, and when you pass in a variable like x,
myNum will be a reference to x; references are like a special form of pointers, where you obtain a pointer to
another variable (like an alias). If you don't declare a reference parameter, the value passed in will always be
copied, even if it's a complex object.

In JavaScript, there are no pointers, and references work a bit differently. You cannot have a reference from
one JS variable to another variable. That's just not possible.

A reference in JS points at a (shared) value, so if you have 10 different references, they are all always distinct
references to a single shared value; none of them are references/pointers to each other.

Moreover, in JavaScript, there are no syntactic hints that control value vs. reference assignment/passing.
Instead, the type of the value solely controls whether that value will be assigned by value-copy or by reference-
copy.

Let's illustrate:

var a = 2;
var b = a; // `b` is always a copy of the value in `a`
b++;
a; // 2
b; // 3

var c = [1,2,3];
var d = c; // `d` is a reference to the shared `[1,2,3]` value
d.push(4);
c; // [1,2,3,4]
d; // [1,2,3,4]

Simple values (aka scalar primitives) are always assigned/passed by value-copy: null, undefined, string,
number, boolean, and ES6's symbol.

Compound values -- objects (including arrays, and all boxed object wrappers -- see Chapter 3) and
functions -- always create a copy of the reference on assignment or passing.

In the above snippet, because 2 is a scalar primitive, a holds one initial copy of that value, and b is assigned
another copy of the value. When changing b, you are in no way changing the value in a.

But both c and d are separate references to the same shared value [1,2,3], which is a compound value. It's
important to note that neither c nor d more "owns" the [1,2,3] value -- both are just equal peer references to
the value. So, when using either reference to modify (.push(4)) the actual shared array value itself, it's
affecting just the one shared value, and both references will reference the newly modified value [1,2,3,4].

Since references point to the values themselves and not to the variables, you cannot use one reference to
change where another reference is pointed:

var a = [1,2,3];
var b = a;
a; // [1,2,3]
b; // [1,2,3]

// later
b = [4,5,6];
a; // [1,2,3]
b; // [4,5,6]

Types and Grammar 25

When we make the assignment b = [4,5,6], we are doing absolutely nothing to affect where a is still
referencing ([1,2,3]). To do that, b would have to be a pointer to a rather than a reference to the array --
but no such capability exists in JS!

The most common way such confusion happens is with function parameters:

function foo(x) {
 x.push(4);
 x; // [1,2,3,4]

 // later
 x = [4,5,6];
 x.push(7);
 x; // [4,5,6,7]
}

var a = [1,2,3];

foo(a);

a; // [1,2,3,4] not [4,5,6,7]

When we pass in the argument a, it assigns a copy of the a reference to x. x and a are separate references
pointing at the same [1,2,3] value. Now, inside the function, we can use that reference to mutate the value
itself (push(4)). But when we make the assignment x = [4,5,6], this is in no way affecting where the initial
reference a is pointing -- still points at the (now modified) [1,2,3,4] value.

There is no way to use the x reference to change where a is pointing. We could only modify the contents of the
shared value that both a and x are pointing to.

To accomplish changing a to have the [4,5,6,7] value contents, you can't create a new array and assign --
you must modify the existing array value:

function foo(x) {
 x.push(4);
 x; // [1,2,3,4]

 // later
 x.length = 0; // empty existing array in-place
 x.push(4, 5, 6, 7);
 x; // [4,5,6,7]
}

var a = [1,2,3];

foo(a);

a; // [4,5,6,7] not [1,2,3,4]

As you can see, x.length = 0 and x.push(4,5,6,7) were not creating a new array, but modifying the
existing shared array. So of course, a references the new [4,5,6,7] contents.

Remember: you cannot directly control/override value-copy vs. reference -- those semantics are controlled
entirely by the type of the underlying value.

To effectively pass a compound value (like an array) by value-copy, you need to manually make a copy of it,
so that the reference passed doesn't still point to the original. For example:

26 Types and Grammar

foo(a.slice());

slice(..) with no parameters by default makes an entirely new (shallow) copy of the array. So, we pass in a
reference only to the copied array, and thus foo(..) cannot affect the contents of a.

To do the reverse -- pass a scalar primitive value in a way where its value updates can be seen, kinda like a
reference -- you have to wrap the value in another compound value (object, array, etc) that can be passed by
reference-copy:

function foo(wrapper) {
 wrapper.a = 42;
}

var obj = {
 a: 2
};

foo(obj);

obj.a; // 42

Here, obj acts as a wrapper for the scalar primitive property a. When passed to foo(..), a copy of the obj
reference is passed in and set to the wrapper parameter. We now can use the wrapper reference to access the
shared object, and update its property. After the function finishes, obj.a will see the updated value 42.

It may occur to you that if you wanted to pass in a reference to a scalar primitive value like 2, you could just
box the value in its Number object wrapper (see Chapter 3).

It is true a copy of the reference to this Number object will be passed to the function, but unfortunately, having
a reference to the shared object is not going to give you the ability to modify the shared primitive value, like
you may expect:

function foo(x) {
 x = x + 1;
 x; // 3
}

var a = 2;
var b = new Number(a); // or equivalently `Object(a)`

foo(b);
console.log(b); // 2, not 3

The problem is that the underlying scalar primitive value is not mutable (same goes for String and Boolean).
If a Number object holds the scalar primitive value 2, that exact Number object can never be changed to hold
another value; you can only create a whole new Number object with a different value.

When x is used in the expression x + 1, the underlying scalar primitive value 2 is unboxed (extracted) from
the Number object automatically, so the line x = x + 1 very subtly changes x from being a shared reference
to the Number object, to just holding the scalar primitive value 3 as a result of the addition operation 2 + 1.
Therefore, b on the outside still references the original unmodified/immutable Number object holding the
value 2.

You can add properties on top of the Number object (just not change its inner primitive value), so you could
exchange information indirectly via those additional properties.

Types and Grammar 27

This is not all that common, however; it probably would not be considered a good practice by most
developers.

Instead of using the wrapper object Number in this way, it's probably much better to use the manual object
wrapper (obj) approach in the earlier snippet. That's not to say that there's no clever uses for the boxed
object wrappers like Number -- just that you should probably prefer the scalar primitive value form in most
cases.

References are quite powerful, but sometimes they get in your way, and sometimes you need them where they
don't exist. The only control you have over reference vs. value-copy behavior is the type of the value itself, so
you must indirectly influence the assignment/passing behavior by which value types you choose to use.

Review
In JavaScript, arrays are simply numerically indexed collections of any value-type. strings are somewhat
"array-like", but they have distinct behaviors and care must be taken if you want to treat them as arrays.
Numbers in JavaScript include both "integers" and floating-point values.

Several special values are defined within the primitive types.

The null type has just one value: null, and likewise the undefined type has just the undefined value.
undefined is basically the default value in any variable or property if no other value is present. The void
operator lets you create the undefined value from any other value.

numbers include several special values, like NaN (supposedly "Not a Number", but really more appropriately
"invalid number"); +Infinity and -Infinity; and -0.

Simple scalar primitives (strings, numbers, etc.) are assigned/passed by value-copy, but compound values
(objects, etc.) are assigned/passed by reference-copy. References are not like references/pointers in other
languages -- they're never pointed at other variables/references, only at the underlying values.

Chapter 3: Natives
Several times in Chapters 1 and 2, we alluded to various built-ins, usually called "natives," like String and
Number. Let's examine those in detail now.

Here's a list of the most commonly used natives:

 String()
 Number()
 Boolean()
 Array()
 Object()

 Function()
 RegExp()

 Date()
 Error()
 Symbol() -- added in ES6!

As you can see, these natives are actually built-in functions.

If you're coming to JS from a language like Java, JavaScript's String() will look like the String(..)
constructor you're used to for creating string values. So, you'll quickly observe that you can do things like:

var s = new String("Hello World!");

console.log(s.toString()); // "Hello World!"

28 Types and Grammar

It is true that each of these natives can be used as a native constructor. But what's being constructed may be
different than you think.

var a = new String("abc");

typeof a; // "object" ... not "String"

a instanceof String; // true

Object.prototype.toString.call(a); // "[object String]"

The result of the constructor form of value creation (new String("abc")) is an object wrapper around the
primitive ("abc") value.

Importantly, typeof shows that these objects are not their own special types, but more appropriately they are
subtypes of the object type.

This object wrapper can further be observed with:

console.log(a);

The output of that statement varies depending on your browser, as developer consoles are free to choose
however they feel it's appropriate to serialize the object for developer inspection.

Note: At the time of writing, the latest Chrome prints something like this: String {0: "a", 1: "b", 2:
"c", length: 3, [[PrimitiveValue]]: "abc"}. But older versions of Chrome used to just print this:
String {0: "a", 1: "b", 2: "c"}. The latest Firefox currently prints String ["a","b","c"], but
used to print "abc" in italics, which was clickable to open the object inspector. Of course, these results are
subject to rapid change and your experience may vary.

The point is, new String("abc") creates a string wrapper object around "abc", not just the primitive "abc"
value itself.

Internal [[Class]]
Values that are typeof "object" (such as an array) are additionally tagged with an internal [[Class]]
property (think of this more as an internal classification rather than related to classes from traditional class-
oriented coding). This property cannot be accessed directly, but can generally be revealed indirectly by
borrowing the default Object.prototype.toString(..) method called against the value. For example:

Object.prototype.toString.call([1,2,3]); // "[object Array]"

Object.prototype.toString.call(/regex-literal/i); // "[object RegExp]"

So, for the array in this example, the internal [[Class]] value is "Array", and for the regular expression, it's
"RegExp". In most cases, this internal [[Class]] value corresponds to the built-in native constructor (see
below) that's related to the value, but that's not always the case.

What about primitive values? First, null and undefined:

Object.prototype.toString.call(null); // "[object Null]"
Object.prototype.toString.call(undefined); // "[object Undefined]"

You'll note that there are no Null() or Undefined() native constructors, but nevertheless the "Null" and
"Undefined" are the internal [[Class]] values exposed.

But for the other simple primitives like string, number, and boolean, another behavior actually kicks in,
which is usually called "boxing" (see "Boxing Wrappers" section next):

Types and Grammar 29

Object.prototype.toString.call("abc"); // "[object String]"
Object.prototype.toString.call(42); // "[object Number]"
Object.prototype.toString.call(true); // "[object Boolean]"

In this snippet, each of the simple primitives are automatically boxed by their respective object wrappers,
which is why "String", "Number", and "Boolean" are revealed as the respective internal [[Class]] values.

Note: The behavior of toString() and [[Class]] as illustrated here has changed a bit from ES5 to ES6, but
we cover those details in the ES6 & Beyond title of this series.

Boxing Wrappers
These object wrappers serve a very important purpose. Primitive values don't have properties or methods, so
to access .length or .toString() you need an object wrapper around the value. Thankfully, JS will
automatically box (aka wrap) the primitive value to fulfill such accesses.

var a = "abc";

a.length; // 3
a.toUpperCase(); // "ABC"

So, if you're going to be accessing these properties/methods on your string values regularly, like a i <
a.length condition in a for loop for instance, it might seem to make sense to just have the object form of the
value from the start, so the JS engine doesn't need to implicitly create it for you.

But it turns out that's a bad idea. Browsers long ago performance-optimized the common cases like .length,
which means your program will actually go slower if you try to "preoptimize" by directly using the object form
(which isn't on the optimized path).

In general, there's basically no reason to use the object form directly. It's better to just let the boxing happen
implicitly where necessary. In other words, never do things like new String("abc"), new Number(42), etc -
- always prefer using the literal primitive values "abc" and 42.

Object Wrapper Gotchas
There are some gotchas with using the object wrappers directly that you should be aware of if you do choose
to ever use them.

For example, consider Boolean wrapped values:

var a = new Boolean(false);

if (!a) {
 console.log("Oops"); // never runs
}

The problem is that you've created an object wrapper around the false value, but objects themselves are
"truthy" (see Chapter 4), so using the object behaves oppositely to using the underlying false value itself,
which is quite contrary to normal expectation.

If you want to manually box a primitive value, you can use the Object(..) function (no new keyword):

var a = "abc";
var b = new String(a);
var c = Object(a);

typeof a; // "string"
typeof b; // "object"
typeof c; // "object"

30 Types and Grammar

b instanceof String; // true
c instanceof String; // true

Object.prototype.toString.call(b); // "[object String]"
Object.prototype.toString.call(c); // "[object String]"

Again, using the boxed object wrapper directly (like b and c above) is usually discouraged, but there may be
some rare occasions you'll run into where they may be useful.

Unboxing
If you have an object wrapper and you want to get the underlying primitive value out, you can use the
valueOf() method:

var a = new String("abc");
var b = new Number(42);
var c = new Boolean(true);

a.valueOf(); // "abc"
b.valueOf(); // 42
c.valueOf(); // true

Unboxing can also happen implicitly, when using an object wrapper value in a way that requires the primitive
value. This process (coercion) will be covered in more detail in Chapter 4, but briefly:

var a = new String("abc");
var b = a + ""; // `b` has the unboxed primitive value "abc"

typeof a; // "object"
typeof b; // "string"

Natives as Constructors
For array, object, function, and regular-expression values, it's almost universally preferred that you use
the literal form for creating the values, but the literal form creates the same sort of object as the constructor
form does (that is, there is no nonwrapped value).

Just as we've seen above with the other natives, these constructor forms should generally be avoided, unless
you really know you need them, mostly because they introduce exceptions and gotchas that you probably
don't really want to deal with.

Array(..)
var a = new Array(1, 2, 3);
a; // [1, 2, 3]

var b = [1, 2, 3];
b; // [1, 2, 3]

Note: The Array(..) constructor does not require the new keyword in front of it. If you omit it, it will behave
as if you have used it anyway. So Array(1,2,3) is the same outcome as new Array(1,2,3).

The Array constructor has a special form where if only one number argument is passed, instead of providing
that value as contents of the array, it's taken as a length to "presize the array" (well, sorta).

This is a terrible idea. Firstly, you can trip over that form accidentally, as it's easy to forget.

Types and Grammar 31

But more importantly, there's no such thing as actually presizing the array. Instead, what you're creating is an
otherwise empty array, but setting the length property of the array to the numeric value specified.

An array that has no explicit values in its slots, but has a length property that implies the slots exist, is a weird
exotic type of data structure in JS with some very strange and confusing behavior. The capability to create
such a value comes purely from old, deprecated, historical functionalities ("array-like objects" like the
arguments object).

Note: An array with at least one "empty slot" in it is often called a "sparse array."

It doesn't help matters that this is yet another example where browser developer consoles vary on how they
represent such an object, which breeds more confusion.

For example:

var a = new Array(3);

a.length; // 3
a;

The serialization of a in Chrome is (at the time of writing): [undefined x 3]. This is really unfortunate.
It implies that there are three undefined values in the slots of this array, when in fact the slots do not exist
(so-called "empty slots" -- also a bad name!).

To visualize the difference, try this:

var a = new Array(3);
var b = [undefined, undefined, undefined];
var c = [];
c.length = 3;

a;
b;
c;

Note: As you can see with c in this example, empty slots in an array can happen after creation of the array.
Changing the length of an array to go beyond its number of actually-defined slot values, you implicitly
introduce empty slots. In fact, you could even call delete b[1] in the above snippet, and it would introduce
an empty slot into the middle of b.

For b (in Chrome, currently), you'll find [undefined, undefined, undefined] as the serialization, as
opposed to [undefined x 3] for a and c. Confused? Yeah, so is everyone else.

Worse than that, at the time of writing, Firefox reports [, , ,] for a and c. Did you catch why that's so
confusing? Look closely. Three commas implies four slots, not three slots like we'd expect.

What!? Firefox puts an extra , on the end of their serialization here because as of ES5, trailing commas in lists
(array values, property lists, etc.) are allowed (and thus dropped and ignored). So if you were to type in a [,
, ,] value into your program or the console, you'd actually get the underlying value that's like [, ,]
(that is, an array with three empty slots). This choice, while confusing if reading the developer console, is
defended as instead making copy-n-paste behavior accurate.

If you're shaking your head or rolling your eyes about now, you're not alone! Shrugs.

Unfortunately, it gets worse. More than just confusing console output, a and b from the above code snippet
actually behave the same in some cases but differently in others:

32 Types and Grammar

a.join("-"); // "--"
b.join("-"); // "--"

a.map(function(v,i){ return i; }); // [undefined x 3]
b.map(function(v,i){ return i; }); // [0, 1, 2]

Ugh.

The a.map(..) call fails because the slots don't actually exist, so map(..) has nothing to iterate over.
join(..) works differently. Basically, we can think of it implemented sort of like this:

function fakeJoin(arr,connector) {
 var str = "";
 for (var i = 0; i < arr.length; i++) {
 if (i > 0) {
 str += connector;
 }
 if (arr[i] !== undefined) {
 str += arr[i];
 }
 }
 return str;
}

var a = new Array(3);
fakeJoin(a, "-"); // "--"

As you can see, join(..) works by just assuming the slots exist and looping up to the length value.
Whatever map(..) does internally, it (apparently) doesn't make such an assumption, so the result from the
strange "empty slots" array is unexpected and likely to cause failure.

So, if you wanted to actually create an array of actual undefined values (not just "empty slots"), how could
you do it (besides manually)?

var a = Array.apply(null, { length: 3 });
a; // [undefined, undefined, undefined]

Confused? Yeah. Here's roughly how it works.

apply(..) is a utility available to all functions, which calls the function it's used with but in a special way.

The first argument is a this object binding (covered in the this & Object Prototypes title of this series), which
we don't care about here, so we set it to null. The second argument is supposed to be an array (or something
like an array -- aka an "array-like object"). The contents of this "array" are "spread" out as arguments to the
function in question.

So, Array.apply(..) is calling the Array(..) function and spreading out the values (of the { length: 3 }
object value) as its arguments.

Inside of apply(..), we can envision there's another for loop (kinda like join(..) from above) that goes
from 0 up to, but not including, length (3 in our case).

For each index, it retrieves that key from the object. So if the array-object parameter was named arr internally
inside of the apply(..) function, the property access would effectively be arr[0], arr[1], and arr[2]. Of
course, none of those properties exist on the { length: 3 } object value, so all three of those property
accesses would return the value undefined.

Types and Grammar 33

In other words, it ends up calling Array(..) basically like this:
Array(undefined,undefined,undefined), which is how we end up with an array filled with undefined
values, and not just those (crazy) empty slots.

While Array.apply(null, { length: 3 }) is a strange and verbose way to create an array filled with
undefined values, it's vastly better and more reliable than what you get with the footgun'ish Array(3)
empty slots.

Bottom line: never ever, under any circumstances, should you intentionally create and use these exotic
empty-slot arrays. Just don't do it. They're nuts.

Object(..), Function(..), and RegExp(..)
The Object(..)/Function(..)/RegExp(..) constructors are also generally optional (and thus should
usually be avoided unless specifically called for):

var c = new Object();
c.foo = "bar";
c; // { foo: "bar" }

var d = { foo: "bar" };
d; // { foo: "bar" }

var e = new Function("a", "return a * 2;");
var f = function(a) { return a * 2; };
function g(a) { return a * 2; }

var h = new RegExp("^a*b+", "g");
var i = /^a*b+/g;

There's practically no reason to ever use the new Object() constructor form, especially since it forces you to
add properties one-by-one instead of many at once in the object literal form.

The Function constructor is helpful only in the rarest of cases, where you need to dynamically define a
function's parameters and/or its function body. Do not just treat Function(..) as an alternate form of
eval(..). You will almost never need to dynamically define a function in this way.

Regular expressions defined in the literal form (/^a*b+/g) are strongly preferred, not just for ease of syntax
but for performance reasons -- the JS engine precompiles and caches them before code execution. Unlike the
other constructor forms we've seen so far, RegExp(..) has some reasonable utility: to dynamically define the
pattern for a regular expression.

var name = "Kyle";
var namePattern = new RegExp("\\b(?:" + name + ")+\\b", "ig");

var matches = someText.match(namePattern);

This kind of scenario legitimately occurs in JS programs from time to time, so you'd need to use the new
RegExp("pattern","flags") form.

Date(..) and Error(..)
The Date(..) and Error(..) native constructors are much more useful than the other natives, because
there is no literal form for either.

To create a date object value, you must use new Date(). The Date(..) constructor accepts optional
arguments to specify the date/time to use, but if omitted, the current date/time is assumed.

34 Types and Grammar

By far the most common reason you construct a date object is to get the current timestamp value (a signed
integer number of milliseconds since Jan 1, 1970). You can do this by calling getTime() on a date object
instance.

But an even easier way is to just call the static helper function defined as of ES5: Date.now(). And to polyfill
that for pre-ES5 is pretty easy:

if (!Date.now) {
 Date.now = function(){
 return (new Date()).getTime();
 };
}

Note: If you call Date() without new, you'll get back a string representation of the date/time at that moment.
The exact form of this representation is not specified in the language spec, though browsers tend to agree on
something close to: "Fri Jul 18 2014 00:31:02 GMT-0500 (CDT)".

The Error(..) constructor (much like Array() above) behaves the same with the new keyword present or
omitted.

The main reason you'd want to create an error object is that it captures the current execution stack context
into the object (in most JS engines, revealed as a read-only .stack property once constructed). This stack
context includes the function call-stack and the line-number where the error object was created, which makes
debugging that error much easier.

You would typically use such an error object with the throw operator:

function foo(x) {
 if (!x) {
 throw new Error("x wasn't provided");
 }
 // ..
}

Error object instances generally have at least a message property, and sometimes other properties (which you
should treat as read-only), like type. However, other than inspecting the above-mentioned stack property,
it's usually best to just call toString() on the error object (either explicitly, or implicitly through coercion --
see Chapter 4) to get a friendly-formatted error message.

Tip: Technically, in addition to the general Error(..) native, there are several other specific-error-type
natives: EvalError(..), RangeError(..), ReferenceError(..), SyntaxError(..), TypeError(..),
and URIError(..). But it's very rare to manually use these specific error natives. They are automatically
used if your program actually suffers from a real exception (such as referencing an undeclared variable and
getting a ReferenceError error).

Symbol(..)
New as of ES6, an additional primitive value type has been added, called "Symbol". Symbols are special
"unique" (not strictly guaranteed!) values that can be used as properties on objects with little fear of any
collision. They're primarily designed for special built-in behaviors of ES6 constructs, but you can also define
your own symbols.

Symbols can be used as property names, but you cannot see or access the actual value of a symbol from your
program, nor from the developer console. If you evaluate a symbol in the developer console, what's shown
looks like Symbol(Symbol.create), for example.

There are several predefined symbols in ES6, accessed as static properties of the Symbol function object, like
Symbol.create, Symbol.iterator, etc. To use them, do something like:

Types and Grammar 35

obj[Symbol.iterator] = function(){ /*..*/ };

To define your own custom symbols, use the Symbol(..) native. The Symbol(..) native "constructor" is
unique in that you're not allowed to use new with it, as doing so will throw an error.

var mysym = Symbol("my own symbol");
mysym; // Symbol(my own symbol)
mysym.toString(); // "Symbol(my own symbol)"
typeof mysym; // "symbol"

var a = { };
a[mysym] = "foobar";

Object.getOwnPropertySymbols(a);
// [Symbol(my own symbol)]

While symbols are not actually private (Object.getOwnPropertySymbols(..) reflects on the object and
reveals the symbols quite publicly), using them for private or special properties is likely their primary use-
case. For most developers, they may take the place of property names with _ underscore prefixes, which are
almost always by convention signals to say, "hey, this is a private/special/internal property, so leave it alone!"

Note: Symbols are not objects, they are simple scalar primitives.

Native Prototypes
Each of the built-in native constructors has its own .prototype object -- Array.prototype,
String.prototype, etc.

These objects contain behavior unique to their particular object subtype.

For example, all string objects, and by extension (via boxing) string primitives, have access to default
behavior as methods defined on the String.prototype object.

Note: By documentation convention, String.prototype.XYZ is shortened to String#XYZ, and likewise for
all the other .prototypes.

 String#indexOf(..): find the position in the string of another substring
 String#charAt(..): access the character at a position in the string
 String#substr(..), String#substring(..), and String#slice(..): extract a portion of the

string as a new string
 String#toUpperCase() and String#toLowerCase(): create a new string that's converted to either

uppercase or lowercase
 String#trim(): create a new string that's stripped of any trailing or leading whitespace

None of the methods modify the string in place. Modifications (like case conversion or trimming) create a new
value from the existing value.

By virtue of prototype delegation (see the this & Object Prototypes title in this series), any string value can
access these methods:

var a = " abc ";

a.indexOf("c"); // 3
a.toUpperCase(); // " ABC "
a.trim(); // "abc"

36 Types and Grammar

The other constructor prototypes contain behaviors appropriate to their types, such as Number#toFixed(..)
(stringifying a number with a fixed number of decimal digits) and Array#concat(..) (merging arrays). All
functions have access to apply(..), call(..), and bind(..) because Function.prototype defines them.

But, some of the native prototypes aren't just plain objects:

typeof Function.prototype; // "function"
Function.prototype(); // it's an empty function!

RegExp.prototype.toString(); // "/(?:)/" -- empty regex
"abc".match(RegExp.prototype); // [""]

A particularly bad idea, you can even modify these native prototypes (not just adding properties as you're
probably familiar with):

Array.isArray(Array.prototype); // true
Array.prototype.push(1, 2, 3); // 3
Array.prototype; // [1,2,3]

// don't leave it that way, though, or expect weirdness!
// reset the `Array.prototype` to empty
Array.prototype.length = 0;

As you can see, Function.prototype is a function, RegExp.prototype is a regular expression, and
Array.prototype is an array. Interesting and cool, huh?

Prototypes As Defaults
Function.prototype being an empty function, RegExp.prototype being an "empty" (e.g., non-matching)
regex, and Array.prototype being an empty array, make them all nice "default" values to assign to variables
if those variables wouldn't already have had a value of the proper type.

For example:

function isThisCool(vals,fn,rx) {
 vals = vals || Array.prototype;
 fn = fn || Function.prototype;
 rx = rx || RegExp.prototype;

 return rx.test(
 vals.map(fn).join("")
);
}

isThisCool(); // true

isThisCool(
 ["a","b","c"],
 function(v){ return v.toUpperCase(); },
 /D/
); // false

Note: As of ES6, we don't need to use the vals = vals || .. default value syntax trick (see Chapter 4)
anymore, because default values can be set for parameters via native syntax in the function declaration (see
Chapter 5).

Types and Grammar 37

One minor side-benefit of this approach is that the .prototypes are already created and built-in, thus created
only once. By contrast, using [], function(){}, and /(?:)/ values themselves for those defaults would
(likely, depending on engine implementations) be recreating those values (and probably garbage-collecting
them later) for each call of isThisCool(..). That could be memory/CPU wasteful.

Also, be very careful not to use Array.prototype as a default value that will subsequently be modified. In
this example, vals is used read-only, but if you were to instead make in-place changes to vals, you would
actually be modifying Array.prototype itself, which would lead to the gotchas mentioned earlier!

Note: While we're pointing out these native prototypes and some usefulness, be cautious of relying on them
and even more wary of modifying them in any way. See Appendix A "Native Prototypes" for more discussion.

Review
JavaScript provides object wrappers around primitive values, known as natives (String, Number, Boolean,
etc). These object wrappers give the values access to behaviors appropriate for each object subtype
(String#trim() and Array#concat(..)).

If you have a simple scalar primitive value like "abc" and you access its length property or some
String.prototype method, JS automatically "boxes" the value (wraps it in its respective object wrapper) so
that the property/method accesses can be fulfilled.

38 Types and Grammar

Types and Grammar 39

Chapter 4: Coercion
Now that we much more fully understand JavaScript's types and values, we turn our attention to a very
controversial topic: coercion.

As we mentioned in Chapter 1, the debates over whether coercion is a useful feature or a flaw in the design of
the language (or somewhere in between!) have raged since day one. If you've read other popular books on JS,
you know that the overwhelmingly prevalent message out there is that coercion is magical, evil, confusing, and
just downright a bad idea.

In the same overall spirit of this book series, rather than running away from coercion because everyone else
does, or because you get bitten by some quirk, I think you should run toward that which you don't understand
and seek to get it more fully.

Our goal is to fully explore the pros and cons (yes, there are pros!) of coercion, so that you can make an
informed decision on its appropriateness in your program.

Converting Values
Converting a value from one type to another is often called "type casting," when done explicitly, and "coercion"
when done implicitly (forced by the rules of how a value is used).

Note: It may not be obvious, but JavaScript coercions always result in one of the scalar primitive (see Chapter
2) values, like string, number, or boolean. There is no coercion that results in a complex value like object
or function. Chapter 3 covers "boxing," which wraps scalar primitive values in their object counterparts,
but this is not really coercion in an accurate sense.

Another way these terms are often distinguished is as follows: "type casting" (or "type conversion") occur in
statically typed languages at compile time, while "type coercion" is a runtime conversion for dynamically
typed languages.

However, in JavaScript, most people refer to all these types of conversions as coercion, so the way I prefer to
distinguish is to say "implicit coercion" vs. "explicit coercion."

The difference should be obvious: "explicit coercion" is when it is obvious from looking at the code that a type
conversion is intentionally occurring, whereas "implicit coercion" is when the type conversion will occur as a
less obvious side effect of some other intentional operation.

For example, consider these two approaches to coercion:

var a = 42;

var b = a + ""; // implicit coercion

var c = String(a); // explicit coercion

For b, the coercion that occurs happens implicitly, because the + operator combined with one of the operands
being a string value ("") will insist on the operation being a string concatenation (adding two strings
together), which as a (hidden) side effect will force the 42 value in a to be coerced to its string equivalent:
"42".

By contrast, the String(..) function makes it pretty obvious that it's explicitly taking the value in a and
coercing it to a string representation.

Both approaches accomplish the same effect: "42" comes from 42. But it's the how that is at the heart of the
heated debates over JavaScript coercion.

40 Types and Grammar

Note: Technically, there's some nuanced behavioral difference here beyond the stylistic difference. We cover
that in more detail later in the chapter, in the "Implicitly: Strings <--> Numbers" section.

The terms "explicit" and "implicit," or "obvious" and "hidden side effect," are relative.

If you know exactly what a + "" is doing and you're intentionally doing that to coerce to a string, you might
feel the operation is sufficiently "explicit." Conversely, if you've never seen the String(..) function used for
string coercion, its behavior might seem hidden enough as to feel "implicit" to you.

But we're having this discussion of "explicit" vs. "implicit" based on the likely opinions of an average,
reasonably informed, but not expert or JS specification devotee developer. To whatever extent you do or do not
find yourself fitting neatly in that bucket, you will need to adjust your perspective on our observations here
accordingly.

Just remember: it's often rare that we write our code and are the only ones who ever read it. Even if you're an
expert on all the ins and outs of JS, consider how a less experienced teammate of yours will feel when they
read your code. Will it be "explicit" or "implicit" to them in the same way it is for you?

Abstract Value Operations
Before we can explore explicit vs implicit coercion, we need to learn the basic rules that govern how values
become either a string, number, or boolean. The ES5 spec in section 9 defines several "abstract operations"
(fancy spec-speak for "internal-only operation") with the rules of value conversion. We will specifically pay
attention to: ToString, ToNumber, and ToBoolean, and to a lesser extent, ToPrimitive.

ToString
When any non-string value is coerced to a string representation, the conversion is handled by the
ToString abstract operation in section 9.8 of the specification.

Built-in primitive values have natural stringification: null becomes "null", undefined becomes
"undefined" and true becomes "true". numbers are generally expressed in the natural way you'd expect,
but as we discussed in Chapter 2, very small or very large numbers are represented in exponent form:

// multiplying `1.07` by `1000`, seven times over
var a = 1.07 * 1000 * 1000 * 1000 * 1000 * 1000 * 1000 * 1000;

// seven times three digits => 21 digits
a.toString(); // "1.07e21"

For regular objects, unless you specify your own, the default toString() (located in
Object.prototype.toString()) will return the internal [[Class]] (see Chapter 3), like for instance
"[object Object]".

But as shown earlier, if an object has its own toString() method on it, and you use that object in a string-
like way, its toString() will automatically be called, and the string result of that call will be used instead.

Note: The way an object is coerced to a string technically goes through the ToPrimitive abstract operation
(ES5 spec, section 9.1), but those nuanced details are covered in more detail in the ToNumber section later in
this chapter, so we will skip over them here.

Arrays have an overridden default toString() that stringifies as the (string) concatenation of all its values
(each stringified themselves), with "," in between each value:

var a = [1,2,3];

a.toString(); // "1,2,3"

Types and Grammar 41

Again, toString() can either be called explicitly, or it will automatically be called if a non-string is used in a
string context.

JSON Stringification
Another task that seems awfully related to ToString is when you use the JSON.stringify(..) utility to
serialize a value to a JSON-compatible string value.

It's important to note that this stringification is not exactly the same thing as coercion. But since it's related to
the ToString rules above, we'll take a slight diversion to cover JSON stringification behaviors here.

For most simple values, JSON stringification behaves basically the same as toString() conversions, except
that the serialization result is always a string:

JSON.stringify(42); // "42"
JSON.stringify("42"); // ""42"" (a string with a quoted string value in it)
JSON.stringify(null); // "null"
JSON.stringify(true); // "true"

Any JSON-safe value can be stringified by JSON.stringify(..). But what is JSON-safe? Any value that can be
represented validly in a JSON representation.

It may be easier to consider values that are not JSON-safe. Some examples: undefineds, functions, (ES6+)
symbols, and objects with circular references (where property references in an object structure create a
never-ending cycle through each other). These are all illegal values for a standard JSON structure, mostly
because they aren't portable to other languages that consume JSON values.

The JSON.stringify(..) utility will automatically omit undefined, function, and symbol values when it
comes across them. If such a value is found in an array, that value is replaced by null (so that the array
position information isn't altered). If found as a property of an object, that property will simply be excluded.

Consider:

JSON.stringify(undefined); // undefined
JSON.stringify(function(){}); // undefined

JSON.stringify([1,undefined,function(){},4]); // "[1,null,null,4]"
JSON.stringify({ a:2, b:function(){} }); // "{"a":2}"

But if you try to JSON.stringify(..) an object with circular reference(s) in it, an error will be thrown.

JSON stringification has the special behavior that if an object value has a toJSON() method defined, this
method will be called first to get a value to use for serialization.

If you intend to JSON stringify an object that may contain illegal JSON value(s), or if you just have values in the
object that aren't appropriate for the serialization, you should define a toJSON() method for it that returns a
JSON-safe version of the object.

For example:

var o = { };

var a = {
 b: 42,
 c: o,
 d: function(){}
};

42 Types and Grammar

// create a circular reference inside `a`
o.e = a;

// would throw an error on the circular reference
// JSON.stringify(a);

// define a custom JSON value serialization
a.toJSON = function() {
 // only include the `b` property for serialization
 return { b: this.b };
};

JSON.stringify(a); // "{"b":42}"

It's a very common misconception that toJSON() should return a JSON stringification representation. That's
probably incorrect, unless you're wanting to actually stringify the string itself (usually not!). toJSON()
should return the actual regular value (of whatever type) that's appropriate, and JSON.stringify(..) itself
will handle the stringification.

In other words, toJSON() should be interpreted as "to a JSON-safe value suitable for stringification," not "to a
JSON string" as many developers mistakenly assume.

Consider:

var a = {
 val: [1,2,3],

 // probably correct!
 toJSON: function(){
 return this.val.slice(1);
 }
};

var b = {
 val: [1,2,3],

 // probably incorrect!
 toJSON: function(){
 return "[" +
 this.val.slice(1).join() +
 "]";
 }
};

JSON.stringify(a); // "[2,3]"

JSON.stringify(b); // ""[2,3]""

In the second call, we stringified the returned string rather than the array itself, which was probably not
what we wanted to do.

While we're talking about JSON.stringify(..), let's discuss some lesser-known functionalities that can still
be very useful.

An optional second argument can be passed to JSON.stringify(..) that is called replacer. This argument
can either be an array or a function. It's used to customize the recursive serialization of an object by

Types and Grammar 43

providing a filtering mechanism for which properties should and should not be included, in a similar way to
how toJSON() can prepare a value for serialization.

If replacer is an array, it should be an array of strings, each of which will specify a property name that is
allowed to be included in the serialization of the object. If a property exists that isn't in this list, it will be
skipped.

If replacer is a function, it will be called once for the object itself, and then once for each property in the
object, and each time is passed two arguments, key and value. To skip a key in the serialization, return
undefined. Otherwise, return the value provided.

var a = {
 b: 42,
 c: "42",
 d: [1,2,3]
};

JSON.stringify(a, ["b","c"]); // "{"b":42,"c":"42"}"

JSON.stringify(a, function(k,v){
 if (k !== "c") return v;
});
// "{"b":42,"d":[1,2,3]}"

Note: In the function replacer case, the key argument k is undefined for the first call (where the a object
itself is being passed in). The if statement filters out the property named "c". Stringification is recursive, so
the [1,2,3] array has each of its values (1, 2, and 3) passed as v to replacer, with indexes (0, 1, and 2) as k.

A third optional argument can also be passed to JSON.stringify(..), called space, which is used as
indentation for prettier human-friendly output. space can be a positive integer to indicate how many space
characters should be used at each indentation level. Or, space can be a string, in which case up to the first ten
characters of its value will be used for each indentation level.

var a = {
 b: 42,
 c: "42",
 d: [1,2,3]
};

JSON.stringify(a, null, 3);
// "{
// "b": 42,
// "c": "42",
// "d": [
// 1,
// 2,
// 3
//]
// }"

JSON.stringify(a, null, "-----");
// "{
// -----"b": 42,
// -----"c": "42",
// -----"d": [
// ----------1,

44 Types and Grammar

// ----------2,
// ----------3
// -----]
// }"

Remember, JSON.stringify(..) is not directly a form of coercion. We covered it here, however, for two
reasons that relate its behavior to ToString coercion:

1. string, number, boolean, and null values all stringify for JSON basically the same as how they coerce
to string values via the rules of the ToString abstract operation.

2. If you pass an object value to JSON.stringify(..), and that object has a toJSON() method on it,
toJSON() is automatically called to (sort of) "coerce" the value to be JSON-safe before stringification.

ToNumber
If any non-number value is used in a way that requires it to be a number, such as a mathematical operation, the
ES5 spec defines the ToNumber abstract operation in section 9.3.

For example, true becomes 1 and false becomes 0. undefined becomes NaN, but (curiously) null becomes
0.

ToNumber for a string value essentially works for the most part like the rules/syntax for numeric literals
(see Chapter 3). If it fails, the result is NaN (instead of a syntax error as with number literals). One example
difference is that 0-prefixed octal numbers are not handled as octals (just as normal base-10 decimals) in this
operation, though such octals are valid as number literals (see Chapter 2).

Note: The differences between number literal grammar and ToNumber on a string value are subtle and
highly nuanced, and thus will not be covered further here. Consult section 9.3.1 of the ES5 spec for more
information.

Objects (and arrays) will first be converted to their primitive value equivalent, and the resulting value (if a
primitive but not already a number) is coerced to a number according to the ToNumber rules just mentioned.

To convert to this primitive value equivalent, the ToPrimitive abstract operation (ES5 spec, section 9.1) will
consult the value (using the internal DefaultValue operation -- ES5 spec, section 8.12.8) in question to see if
it has a valueOf() method. If valueOf() is available and it returns a primitive value, that value is used for
the coercion. If not, but toString() is available, it will provide the value for the coercion.

If neither operation can provide a primitive value, a TypeError is thrown.

As of ES5, you can create such a noncoercible object -- one without valueOf() and toString() -- if it has a
null value for its [[Prototype]], typically created with Object.create(null). See the this & Object
Prototypes title of this series for more information on [[Prototype]]s.

Note: We cover how to coerce to numbers later in this chapter in detail, but for this next code snippet, just
assume the Number(..) function does so.

Consider:

var a = {
 valueOf: function(){
 return "42";
 }
};

var b = {
 toString: function(){

Types and Grammar 45

 return "42";
 }
};

var c = [4,2];
c.toString = function(){
 return this.join(""); // "42"
};

Number(a); // 42
Number(b); // 42
Number(c); // 42
Number(""); // 0
Number([]); // 0
Number(["abc"]); // NaN

ToBoolean
Next, let's have a little chat about how booleans behave in JS. There's lots of confusion and misconception
floating out there around this topic, so pay close attention!

First and foremost, JS has actual keywords true and false, and they behave exactly as you'd expect of
boolean values. It's a common misconception that the values 1 and 0 are identical to true/false. While that
may be true in other languages, in JS the numbers are numbers and the booleans are booleans. You can
coerce 1 to true (and vice versa) or 0 to false (and vice versa). But they're not the same.

Falsy Values
But that's not the end of the story. We need to discuss how values other than the two booleans behave
whenever you coerce to their boolean equivalent.

All of JavaScript's values can be divided into two categories:

1. values that will become false if coerced to boolean

2. everything else (which will obviously become true)

I'm not just being facetious. The JS spec defines a specific, narrow list of values that will coerce to false when
coerced to a boolean value.

How do we know what the list of values is? In the ES5 spec, section 9.2 defines a ToBoolean abstract
operation, which says exactly what happens for all the possible values when you try to coerce them "to
boolean."

From that table, we get the following as the so-called "falsy" values list:

 undefined

 null
 false
 +0, -0, and NaN
 ""

That's it. If a value is on that list, it's a "falsy" value, and it will coerce to false if you force a boolean coercion
on it.

By logical conclusion, if a value is not on that list, it must be on another list, which we call the "truthy" values
list. But JS doesn't really define a "truthy" list per se. It gives some examples, such as saying explicitly that all
objects are truthy, but mostly the spec just implies: anything not explicitly on the falsy list is therefore
truthy.

46 Types and Grammar

Falsy Objects
Wait a minute, that section title even sounds contradictory. I literally just said the spec calls all objects truthy,
right? There should be no such thing as a "falsy object."

What could that possibly even mean?

You might be tempted to think it means an object wrapper (see Chapter 3) around a falsy value (such as "", 0
or false). But don't fall into that trap.

Note: That's a subtle specification joke some of you may get.

Consider:

var a = new Boolean(false);
var b = new Number(0);
var c = new String("");

We know all three values here are objects (see Chapter 3) wrapped around obviously falsy values. But do
these objects behave as true or as false? That's easy to answer:

var d = Boolean(a && b && c);

d; // true

So, all three behave as true, as that's the only way d could end up as true.

Tip: Notice the Boolean(..) wrapped around the a && b && c expression -- you might wonder why
that's there. We'll come back to that later in this chapter, so make a mental note of it. For a sneak-peek (trivia-
wise), try for yourself what d will be if you just do d = a && b && c without the Boolean(..) call!

So, if "falsy objects" are not just objects wrapped around falsy values, what the heck are they?

The tricky part is that they can show up in your JS program, but they're not actually part of JavaScript itself.

What!?

There are certain cases where browsers have created their own sort of exotic values behavior, namely this
idea of "falsy objects," on top of regular JS semantics.

A "falsy object" is a value that looks and acts like a normal object (properties, etc.), but when you coerce it to a
boolean, it coerces to a false value.

Why!?

The most well-known case is document.all: an array-like (object) provided to your JS program by the DOM
(not the JS engine itself), which exposes elements in your page to your JS program. It used to behave like a
normal object--it would act truthy. But not anymore.

document.all itself was never really "standard" and has long since been deprecated/abandoned.

"Can't they just remove it, then?" Sorry, nice try. Wish they could. But there's far too many legacy JS code bases
out there that rely on using it.

So, why make it act falsy? Because coercions of document.all to boolean (like in if statements) were
almost always used as a means of detecting old, nonstandard IE.

IE has long since come up to standards compliance, and in many cases is pushing the web forward as much or
more than any other browser. But all that old if (document.all) { /* it's IE */ } code is still out

Types and Grammar 47

there, and much of it is probably never going away. All this legacy code is still assuming it's running in decade-
old IE, which just leads to bad browsing experience for IE users.

So, we can't remove document.all completely, but IE doesn't want if (document.all) { .. } code to
work anymore, so that users in modern IE get new, standards-compliant code logic.

"What should we do?" **"I've got it! Let's bastardize the JS type system and pretend that document.all is
falsy!"

Ugh. That sucks. It's a crazy gotcha that most JS developers don't understand. But the alternative (doing
nothing about the above no-win problems) sucks just a little bit more.

So... that's what we've got: crazy, nonstandard "falsy objects" added to JavaScript by the browsers. Yay!

Truthy Values
Back to the truthy list. What exactly are the truthy values? Remember: a value is truthy if it's not on the
falsy list.

Consider:

var a = "false";
var b = "0";
var c = "''";

var d = Boolean(a && b && c);

d;

What value do you expect d to have here? It's gotta be either true or false.

It's true. Why? Because despite the contents of those string values looking like falsy values, the string
values themselves are all truthy, because "" is the only string value on the falsy list.

What about these?

var a = []; // empty array -- truthy or falsy?
var b = {}; // empty object -- truthy or falsy?
var c = function(){}; // empty function -- truthy or falsy?

var d = Boolean(a && b && c);

d;

Yep, you guessed it, d is still true here. Why? Same reason as before. Despite what it may seem like, [], {},
and function(){} are not on the falsy list, and thus are truthy values.

In other words, the truthy list is infinitely long. It's impossible to make such a list. You can only make a finite
falsy list and consult it.

Take five minutes, write the falsy list on a post-it note for your computer monitor, or memorize it if you prefer.
Either way, you'll easily be able to construct a virtual truthy list whenever you need it by simply asking if it's
on the falsy list or not.

The importance of truthy and falsy is in understanding how a value will behave if you coerce it (either
explicitly or implicitly) to a boolean value. Now that you have those two lists in mind, we can dive into
coercion examples themselves.

48 Types and Grammar

Explicit Coercion
Explicit coercion refers to type conversions that are obvious and explicit. There's a wide range of type
conversion usage that clearly falls under the explicit coercion category for most developers.

The goal here is to identify patterns in our code where we can make it clear and obvious that we're converting
a value from one type to another, so as to not leave potholes for future developers to trip into. The more
explicit we are, the more likely someone later will be able to read our code and understand without undue
effort what our intent was.

It would be hard to find any salient disagreements with explicit coercion, as it most closely aligns with how the
commonly accepted practice of type conversion works in statically typed languages. As such, we'll take for
granted (for now) that explicit coercion can be agreed upon to not be evil or controversial. We'll revisit this
later, though.

Explicitly: Strings <--> Numbers
We'll start with the simplest and perhaps most common coercion operation: coercing values between string
and number representation.

To coerce between strings and numbers, we use the built-in String(..) and Number(..) functions (which
we referred to as "native constructors" in Chapter 3), but very importantly, we do not use the new keyword
in front of them. As such, we're not creating object wrappers.

Instead, we're actually explicitly coercing between the two types:

var a = 42;
var b = String(a);

var c = "3.14";
var d = Number(c);

b; // "42"
d; // 3.14

String(..) coerces from any other value to a primitive string value, using the rules of the ToString
operation discussed earlier. Number(..) coerces from any other value to a primitive number value, using the
rules of the ToNumber operation discussed earlier.

I call this explicit coercion because in general, it's pretty obvious to most developers that the end result of
these operations is the applicable type conversion.

In fact, this usage actually looks a lot like it does in some other statically typed languages.

For example, in C/C++, you can say either (int)x or int(x), and both will convert the value in x to an
integer. Both forms are valid, but many prefer the latter, which kinda looks like a function call. In JavaScript,
when you say Number(x), it looks awfully similar. Does it matter that it's actually a function call in JS? Not
really.

Besides String(..) and Number(..), there are other ways to "explicitly" convert these values between
string and number:

var a = 42;
var b = a.toString();

var c = "3.14";
var d = +c;

Types and Grammar 49

b; // "42"
d; // 3.14

Calling a.toString() is ostensibly explicit (pretty clear that "toString" means "to a string"), but there's some
hidden implicitness here. toString() cannot be called on a primitive value like 42. So JS automatically
"boxes" (see Chapter 3) 42 in an object wrapper, so that toString() can be called against the object. In other
words, you might call it "explicitly implicit."

+c here is showing the unary operator form (operator with only one operand) of the + operator. Instead of
performing mathematic addition (or string concatenation -- see below), the unary + explicitly coerces its
operand (c) to a number value.

Is +c explicit coercion? Depends on your experience and perspective. If you know (which you do, now!) that
unary + is explicitly intended for number coercion, then it's pretty explicit and obvious. However, if you've
never seen it before, it can seem awfully confusing, implicit, with hidden side effects, etc.

Note: The generally accepted perspective in the open-source JS community is that unary + is an accepted form
of explicit coercion.

Even if you really like the +c form, there are definitely places where it can look awfully confusing. Consider:

var c = "3.14";
var d = 5+ +c;

d; // 8.14

The unary - operator also coerces like + does, but it also flips the sign of the number. However, you cannot put
two -- next to each other to unflip the sign, as that's parsed as the decrement operator. Instead, you would
need to do: - -"3.14" with a space in between, and that would result in coercion to 3.14.

You can probably dream up all sorts of hideous combinations of binary operators (like + for addition) next to
the unary form of an operator. Here's another crazy example:

1 + - + + + - + 1; // 2

You should strongly consider avoiding unary + (or -) coercion when it's immediately adjacent to other
operators. While the above works, it would almost universally be considered a bad idea. Even d = +c (or d
=+ c for that matter!) can far too easily be confused for d += c, which is entirely different!

Note: Another extremely confusing place for unary + to be used adjacent to another operator would be the ++
increment operator and -- decrement operator. For example: a +++b, a + ++b, and a + + +b. See
"Expression Side-Effects" in Chapter 5 for more about ++.

Remember, we're trying to be explicit and reduce confusion, not make it much worse!

Date To number
Another common usage of the unary + operator is to coerce a Date object into a number, because the result is
the unix timestamp (milliseconds elapsed since 1 January 1970 00:00:00 UTC) representation of the date/time
value:

var d = new Date("Mon, 18 Aug 2014 08:53:06 CDT");

+d; // 1408369986000

The most common usage of this idiom is to get the current now moment as a timestamp, such as:

var timestamp = +new Date();

50 Types and Grammar

Note: Some developers are aware of a peculiar syntactic "trick" in JavaScript, which is that the () set on a
constructor call (a function called with new) is optional if there are no arguments to pass. So you may run
across the var timestamp = +new Date; form. However, not all developers agree that omitting the ()
improves readability, as it's an uncommon syntax exception that only applies to the new fn() call form and
not the regular fn() call form.

But coercion is not the only way to get the timestamp out of a Date object. A noncoercion approach is perhaps
even preferable, as it's even more explicit:

var timestamp = new Date().getTime();
// var timestamp = (new Date()).getTime();
// var timestamp = (new Date).getTime();

But an even more preferable noncoercion option is to use the ES5 added Date.now() static function:

var timestamp = Date.now();

And if you want to polyfill Date.now() into older browsers, it's pretty simple:

if (!Date.now) {
 Date.now = function() {
 return +new Date();
 };
}

I'd recommend skipping the coercion forms related to dates. Use Date.now() for current now timestamps,
and new Date(..).getTime() for getting a timestamp of a specific non-now date/time that you need to
specify.

The Curious Case of the ~
One coercive JS operator that is often overlooked and usually very confused is the tilde ~ operator (aka
"bitwise NOT"). Many of those who even understand what it does will often times still want to avoid it. But
sticking to the spirit of our approach in this book and series, let's dig into it to find out if ~ has anything useful
to give us.

In the "32-bit (Signed) Integers" section of Chapter 2, we covered how bitwise operators in JS are defined only
for 32-bit operations, which means they force their operands to conform to 32-bit value representations. The
rules for how this happens are controlled by the ToInt32 abstract operation (ES5 spec, section 9.5).

ToInt32 first does a ToNumber coercion, which means if the value is "123", it's going to first become 123
before the ToInt32 rules are applied.

While not technically coercion itself (since the type doesn't change!), using bitwise operators (like | or ~) with
certain special number values produces a coercive effect that results in a different number value.

For example, let's first consider the | "bitwise OR" operator used in the otherwise no-op idiom 0 | x, which
(as Chapter 2 showed) essentially only does the ToInt32 conversion:

0 | -0; // 0
0 | NaN; // 0
0 | Infinity; // 0
0 | -Infinity; // 0

These special numbers aren't 32-bit representable (since they come from the 64-bit IEEE 754 standard -- see
Chapter 2), so ToInt32 just specifies 0 as the result from these values.

Types and Grammar 51

It's debatable if 0 | __ is an explicit form of this coercive ToInt32 operation or if it's more implicit. From the
spec perspective, it's unquestionably explicit, but if you don't understand bitwise operations at this level, it can
seem a bit more implicitly magical. Nevertheless, consistent with other assertions in this chapter, we will call it
explicit.

So, let's turn our attention back to ~. The ~ operator first "coerces" to a 32-bit number value, and then
performs a bitwise negation (flipping each bit's parity).

Note: This is very similar to how ! not only coerces its value to boolean but also flips its parity (see
discussion of the "unary !" later).

But... what!? Why do we care about bits being flipped? That's some pretty specialized, nuanced stuff. It's pretty
rare for JS developers to need to reason about individual bits.

Another way of thinking about the definition of ~ comes from old-school computer science/discrete
Mathematics: ~ performs two's-complement. Great, thanks, that's totally clearer!

Let's try again: ~x is roughly the same as -(x+1). That's weird, but slightly easier to reason about. So:

~42; // -(42+1) ==> -43

You're probably still wondering what the heck all this ~ stuff is about, or why it really matters for a coercion
discussion. Let's quickly get to the point.

Consider -(x+1). What's the only value that you can perform that operation on that will produce a 0 (or -0
technically!) result? -1. In other words, ~ used with a range of number values will produce a falsy (easily
coercible to false) 0 value for the -1 input value, and any other truthy number otherwise.

Why is that relevant?

-1 is commonly called a "sentinel value," which basically means a value that's given an arbitrary semantic
meaning within the greater set of values of its same type (numbers). The C-language uses -1 sentinel values
for many functions that return >= 0 values for "success" and -1 for "failure."

JavaScript adopted this precedent when defining the string operation indexOf(..), which searches for a
substring and if found returns its zero-based index position, or -1 if not found.

It's pretty common to try to use indexOf(..) not just as an operation to get the position, but as a boolean
check of presence/absence of a substring in another string. Here's how developers usually perform such
checks:

var a = "Hello World";

if (a.indexOf("lo") >= 0) { // true
 // found it!
}
if (a.indexOf("lo") != -1) { // true
 // found it
}

if (a.indexOf("ol") < 0) { // true
 // not found!
}
if (a.indexOf("ol") == -1) { // true
 // not found!
}

52 Types and Grammar

I find it kind of gross to look at >= 0 or == -1. It's basically a "leaky abstraction," in that it's leaking
underlying implementation behavior -- the usage of sentinel -1 for "failure" -- into my code. I would prefer to
hide such a detail.

And now, finally, we see why ~ could help us! Using ~ with indexOf() "coerces" (actually just transforms) the
value to be appropriately boolean-coercible:

var a = "Hello World";

~a.indexOf("lo"); // -4 <-- truthy!

if (~a.indexOf("lo")) { // true
 // found it!
}

~a.indexOf("ol"); // 0 <-- falsy!
!~a.indexOf("ol"); // true

if (!~a.indexOf("ol")) { // true
 // not found!
}

~ takes the return value of indexOf(..) and transforms it: for the "failure" -1 we get the falsy 0, and every
other value is truthy.

Note: The -(x+1) pseudo-algorithm for ~ would imply that ~-1 is -0, but actually it produces 0 because the
underlying operation is actually bitwise, not mathematic.

Technically, if (~a.indexOf(..)) is still relying on implicit coercion of its resultant 0 to false or nonzero
to true. But overall, ~ still feels to me more like an explicit coercion mechanism, as long as you know what it's
intended to do in this idiom.

I find this to be cleaner code than the previous >= 0 / == -1 clutter.

Truncating Bits
There's one more place ~ may show up in code you run across: some developers use the double tilde ~~ to
truncate the decimal part of a number (i.e., "coerce" it to a whole number "integer"). It's commonly (though
mistakingly) said this is the same result as calling Math.floor(..).

How ~~ works is that the first ~ applies the ToInt32 "coercion" and does the bitwise flip, and then the second
~ does another bitwise flip, flipping all the bits back to the original state. The end result is just the ToInt32
"coercion" (aka truncation).

Note: The bitwise double-flip of ~~ is very similar to the parity double-negate !! behavior, explained in the
"Explicitly: * --> Boolean" section later.

However, ~~ needs some caution/clarification. First, it only works reliably on 32-bit values. But more
importantly, it doesn't work the same on negative numbers as Math.floor(..) does!

Math.floor(-49.6); // -50
~~-49.6; // -49

Setting the Math.floor(..) difference aside, ~~x can truncate to a (32-bit) integer. But so does x | 0, and
seemingly with (slightly) less effort.

So, why might you choose ~~x over x | 0, then? Operator precedence (see Chapter 5):

Types and Grammar 53

~~1E20 / 10; // 166199296

1E20 | 0 / 10; // 1661992960
(1E20 | 0) / 10; // 166199296

Just as with all other advice here, use ~ and ~~ as explicit mechanisms for "coercion" and value transformation
only if everyone who reads/writes such code is properly aware of how these operators work!

Explicitly: Parsing Numeric Strings
A similar outcome to coercing a string to a number can be achieved by parsing a number out of a string's
character contents. There are, however, distinct differences between this parsing and the type conversion we
examined above.

Consider:

var a = "42";
var b = "42px";

Number(a); // 42
parseInt(a); // 42

Number(b); // NaN
parseInt(b); // 42

Parsing a numeric value out of a string is tolerant of non-numeric characters -- it just stops parsing left-to-
right when encountered -- whereas coercion is not tolerant and fails resulting in the NaN value.

Parsing should not be seen as a substitute for coercion. These two tasks, while similar, have different
purposes. Parse a string as a number when you don't know/care what other non-numeric characters there
may be on the right-hand side. Coerce a string (to a number) when the only acceptable values are numeric
and something like "42px" should be rejected as a number.

Tip: parseInt(..) has a twin, parseFloat(..), which (as it sounds) pulls out a floating-point number from
a string.

Don't forget that parseInt(..) operates on string values. It makes absolutely no sense to pass a number
value to parseInt(..). Nor would it make sense to pass any other type of value, like true, function(){..}
or [1,2,3].

If you pass a non-string, the value you pass will automatically be coerced to a string first (see "ToString"
earlier), which would clearly be a kind of hidden implicit coercion. It's a really bad idea to rely upon such a
behavior in your program, so never use parseInt(..) with a non-string value.

Prior to ES5, another gotcha existed with parseInt(..), which was the source of many JS programs' bugs. If
you didn't pass a second argument to indicate which numeric base (aka radix) to use for interpreting the
numeric string contents, parseInt(..) would look at the beginning character(s) to make a guess.

If the first two characters were "0x" or "0X", the guess (by convention) was that you wanted to interpret the
string as a hexadecimal (base-16) number. Otherwise, if the first character was "0", the guess (again, by
convention) was that you wanted to interpret the string as an octal (base-8) number.

Hexadecimal strings (with the leading 0x or 0X) aren't terribly easy to get mixed up. But the octal number
guessing proved devilishly common. For example:

var hour = parseInt(selectedHour.value);
var minute = parseInt(selectedMinute.value);

54 Types and Grammar

console.log("The time you selected was: " + hour + ":" + minute);

Seems harmless, right? Try selecting 08 for the hour and 09 for the minute. You'll get 0:0. Why? because
neither 8 nor 9 are valid characters in octal base-8.

The pre-ES5 fix was simple, but so easy to forget: always pass 10 as the second argument. This was totally
safe:

var hour = parseInt(selectedHour.value, 10);
var minute = parseInt(selectedMiniute.value, 10);

As of ES5, parseInt(..) no longer guesses octal. Unless you say otherwise, it assumes base-10 (or base-16
for "0x" prefixes). That's much nicer. Just be careful if your code has to run in pre-ES5 environments, in which
case you still need to pass 10 for the radix.

Parsing Non-Strings
One somewhat infamous example of parseInt(..)'s behavior is highlighted in a sarcastic joke post a few
years ago, poking fun at this JS behavior:

parseInt(1/0, 19); // 18

The assumptive (but totally invalid) assertion was, "If I pass in Infinity, and parse an integer out of that, I
should get Infinity back, not 18." Surely, JS must be crazy for this outcome, right?

Though this example is obviously contrived and unreal, let's indulge the madness for a moment and examine
whether JS really is that crazy.

First off, the most obvious sin committed here is to pass a non-string to parseInt(..). That's a no-no. Do it
and you're asking for trouble. But even if you do, JS politely coerces what you pass in into a string that it can
try to parse.

Some would argue that this is unreasonable behavior, and that parseInt(..) should refuse to operate on a
non-string value. Should it perhaps throw an error? That would be very Java-like, frankly. I shudder at
thinking JS should start throwing errors all over the place so that try..catch is needed around almost every
line.

Should it return NaN? Maybe. But... what about:

parseInt(new String("42"));

Should that fail, too? It's a non-string value. If you want that String object wrapper to be unboxed to "42",
then is it really so unusual for 42 to first become "42" so that 42 can be parsed back out?

I would argue that this half-explicit, half-implicit coercion that can occur can often be a very helpful thing. For
example:

var a = {
 num: 21,
 toString: function() { return String(this.num * 2); }
};

parseInt(a); // 42

The fact that parseInt(..) forcibly coerces its value to a string to perform the parse on is quite sensible. If
you pass in garbage, and you get garbage back out, don't blame the trash can -- it just did its job faithfully.

Types and Grammar 55

So, if you pass in a value like Infinity (the result of 1 / 0 obviously), what sort of string representation
would make the most sense for its coercion? Only two reasonable choices come to mind: "Infinity" and
"∞". JS chose "Infinity". I'm glad it did.

I think it's a good thing that all values in JS have some sort of default string representation, so that they
aren't mysterious black boxes that we can't debug and reason about.

Now, what about base-19? Obviously, completely bogus and contrived. No real JS programs use base-19. It's
absurd. But again, let's indulge the ridiculousness. In base-19, the valid numeric characters are 0 - 9 and a - i
(case insensitive).

So, back to our parseInt(1/0, 19) example. It's essentially parseInt("Infinity", 19). How does
it parse? The first character is "I", which is value 18 in the silly base-19. The second character "n" is not in
the valid set of numeric characters, and as such the parsing simply politely stops, just like when it ran across
"p" in "42px".

The result? 18. Exactly like it sensibly should be. The behaviors involved to get us there, and not to an error or
to Infinity itself, are very important to JS, and should not be so easily discarded.

Other examples of this behavior with parseInt(..) that may be surprising but are quite sensible include:

parseInt(0.000008); // 0 ("0" from "0.000008")
parseInt(0.0000008); // 8 ("8" from "8e-7")
parseInt(false, 16); // 250 ("fa" from "false")
parseInt(parseInt, 16); // 15 ("f" from "function..")

parseInt("0x10"); // 16
parseInt("103", 2); // 2

parseInt(..) is actually pretty predictable and consistent in its behavior. If you use it correctly, you'll get
sensible results. If you use it incorrectly, the crazy results you get are not the fault of JavaScript.

Explicitly: * --> Boolean
Now, let's examine coercing from any non-boolean value to a boolean.

Just like with String(..) and Number(..) above, Boolean(..) (without the new, of course!) is an explicit
way of forcing the ToBoolean coercion:

var a = "0";
var b = [];
var c = {};

var d = "";
var e = 0;
var f = null;
var g;

Boolean(a); // true
Boolean(b); // true
Boolean(c); // true

Boolean(d); // false
Boolean(e); // false
Boolean(f); // false
Boolean(g); // false

While Boolean(..) is clearly explicit, it's not at all common or idiomatic.

56 Types and Grammar

Just like the unary + operator coerces a value to a number (see above), the unary ! negate operator explicitly
coerces a value to a boolean. The problem is that it also flips the value from truthy to falsy or vice versa. So,
the most common way JS developers explicitly coerce to boolean is to use the !! double-negate operator,
because the second ! will flip the parity back to the original:

var a = "0";
var b = [];
var c = {};

var d = "";
var e = 0;
var f = null;
var g;

!!a; // true
!!b; // true
!!c; // true

!!d; // false
!!e; // false
!!f; // false
!!g; // false

Any of these ToBoolean coercions would happen implicitly without the Boolean(..) or !!, if used in a
boolean context such as an if (..) .. statement. But the goal here is to explicitly force the value to a
boolean to make it clearer that the ToBoolean coercion is intended.

Another example use-case for explicit ToBoolean coercion is if you want to force a true/false value
coercion in the JSON serialization of a data structure:

var a = [
 1,
 function(){ /*..*/ },
 2,
 function(){ /*..*/ }
];

JSON.stringify(a); // "[1,null,2,null]"

JSON.stringify(a, function(key,val){
 if (typeof val == "function") {
 // force `ToBoolean` coercion of the function
 return !!val;
 }
 else {
 return val;
 }
});
// "[1,true,2,true]"

If you come to JavaScript from Java, you may recognize this idiom:

var a = 42;

var b = a ? true : false;

Types and Grammar 57

The ? : ternary operator will test a for truthiness, and based on that test will either assign true or false to
b, accordingly.

On its surface, this idiom looks like a form of explicit ToBoolean-type coercion, since it's obvious that only
either true or false come out of the operation.

However, there's a hidden implicit coercion, in that the a expression has to first be coerced to boolean to
perform the truthiness test. I'd call this idiom "explicitly implicit." Furthermore, I'd suggest you should avoid
this idiom completely in JavaScript. It offers no real benefit, and worse, masquerades as something it's not.

Boolean(a) and !!a are far better as explicit coercion options.

Implicit Coercion
Implicit coercion refers to type conversions that are hidden, with non-obvious side-effects that implicitly occur
from other actions. In other words, implicit coercions are any type conversions that aren't obvious (to you).

While it's clear what the goal of explicit coercion is (making code explicit and more understandable), it might
be too obvious that implicit coercion has the opposite goal: making code harder to understand.

Taken at face value, I believe that's where much of the ire towards coercion comes from. The majority of
complaints about "JavaScript coercion" are actually aimed (whether they realize it or not) at implicit coercion.

Note: Douglas Crockford, author of "JavaScript: The Good Parts", has claimed in many conference talks and
writings that JavaScript coercion should be avoided. But what he seems to mean is that implicit coercion is bad
(in his opinion). However, if you read his own code, you'll find plenty of examples of coercion, both implicit
and explicit! In truth, his angst seems to primarily be directed at the == operation, but as you'll see in this
chapter, that's only part of the coercion mechanism.

So, is implicit coercion evil? Is it dangerous? Is it a flaw in JavaScript's design? Should we avoid it at all costs?

I bet most of you readers are inclined to enthusiastically cheer, "Yes!"

Not so fast. Hear me out.

Let's take a different perspective on what implicit coercion is, and can be, than just that it's "the opposite of the
good explicit kind of coercion." That's far too narrow and misses an important nuance.

Let's define the goal of implicit coercion as: to reduce verbosity, boilerplate, and/or unnecessary
implementation detail that clutters up our code with noise that distracts from the more important intent.

Simplifying Implicitly
Before we even get to JavaScript, let me suggest something pseudo-code'ish from some theoretical strongly
typed language to illustrate:

SomeType x = SomeType(AnotherType(y))

In this example, I have some arbitrary type of value in y that I want to convert to the SomeType type. The
problem is, this language can't go directly from whatever y currently is to SomeType. It needs an intermediate
step, where it first converts to AnotherType, and then from AnotherType to SomeType.

Now, what if that language (or definition you could create yourself with the language) did just let you say:

SomeType x = SomeType(y)

Wouldn't you generally agree that we simplified the type conversion here to reduce the unnecessary "noise" of
the intermediate conversion step? I mean, is it really all that important, right here at this point in the code, to
see and deal with the fact that y goes to AnotherType first before then going to SomeType?

58 Types and Grammar

Some would argue, at least in some circumstances, yes. But I think an equal argument can be made of many
other circumstances that here, the simplification actually aids in the readability of the code by abstracting
or hiding away such details, either in the language itself or in our own abstractions.

Undoubtedly, behind the scenes, somewhere, the intermediate conversion step is still happening. But if that
detail is hidden from view here, we can just reason about getting y to type SomeType as a generic operation
and hide the messy details.

While not a perfect analogy, what I'm going to argue throughout the rest of this chapter is that JS implicit
coercion can be thought of as providing a similar aid to your code.

But, and this is very important, that is not an unbounded, absolute statement. There are definitely plenty of
evils lurking around implicit coercion, that will harm your code much more than any potential readability
improvements. Clearly, we have to learn how to avoid such constructs so we don't poison our code with all
manner of bugs.

Many developers believe that if a mechanism can do some useful thing A but can also be abused or misused to
do some awful thing Z, then we should throw out that mechanism altogether, just to be safe.

My encouragement to you is: don't settle for that. Don't "throw the baby out with the bathwater." Don't
assume implicit coercion is all bad because all you think you've ever seen is its "bad parts." I think there are
"good parts" here, and I want to help and inspire more of you to find and embrace them!

Implicitly: Strings <--> Numbers
Earlier in this chapter, we explored explicitly coercing between string and number values. Now, let's explore
the same task but with implicit coercion approaches. But before we do, we have to examine some nuances of
operations that will implicitly force coercion.

The + operator is overloaded to serve the purposes of both number addition and string concatenation. So
how does JS know which type of operation you want to use? Consider:

var a = "42";
var b = "0";

var c = 42;
var d = 0;

a + b; // "420"
c + d; // 42

What's different that causes "420" vs 42? It's a common misconception that the difference is whether one or
both of the operands is a string, as that means + will assume string concatenation. While that's partially
true, it's more complicated than that.

Consider:

var a = [1,2];
var b = [3,4];

a + b; // "1,23,4"

Neither of these operands is a string, but clearly they were both coerced to strings and then the string
concatenation kicked in. So what's really going on?

(Warning: deeply nitty gritty spec-speak coming, so skip the next two paragraphs if that intimidates you!)

Types and Grammar 59

According to ES5 spec section 11.6.1, the + algorithm (when an object value is an operand) will concatenate
if either operand is either already a string, or if the following steps produce a string representation. So,
when + receives an object (including array) for either operand, it first calls the ToPrimitive abstract
operation (section 9.1) on the value, which then calls the [[DefaultValue]] algorithm (section 8.12.8) with
a context hint of number.

If you're paying close attention, you'll notice that this operation is now identical to how the ToNumber abstract
operation handles objects (see the "ToNumber"" section earlier). The valueOf() operation on the array
will fail to produce a simple primitive, so it then falls to a toString() representation. The two arrays thus
become "1,2" and "3,4", respectively. Now, + concatenates the two strings as you'd normally expect:
"1,23,4".

Let's set aside those messy details and go back to an earlier, simplified explanation: if either operand to + is a
string (or becomes one with the above steps!), the operation will be string concatenation. Otherwise, it's
always numeric addition.

Note: A commonly cited coercion gotcha is [] + {} vs. {} + [], as those two expressions result,
respectively, in "[object Object]" and 0. There's more to it, though, and we cover those details in "Blocks"
in Chapter 5.

What's that mean for implicit coercion?

You can coerce a number to a string simply by "adding" the number and the "" empty string:

var a = 42;
var b = a + "";

b; // "42"

Tip: Numeric addition with the + operator is commutative, which means 2 + 3 is the same as 3 + 2. String
concatenation with + is obviously not generally commutative, but with the specific case of "", it's effectively
commutative, as a + "" and "" + a will produce the same result.

It's extremely common/idiomatic to (implicitly) coerce number to string with a + "" operation. In fact,
interestingly, even some of the most vocal critics of implicit coercion still use that approach in their own code,
instead of one of its explicit alternatives.

I think this is a great example of a useful form in implicit coercion, despite how frequently the mechanism
gets criticized!

Comparing this implicit coercion of a + "" to our earlier example of String(a) explicit coercion, there's one
additional quirk to be aware of. Because of how the ToPrimitive abstract operation works, a + "" invokes
valueOf() on the a value, whose return value is then finally converted to a string via the internal ToString
abstract operation. But String(a) just invokes toString() directly.

Both approaches ultimately result in a string, but if you're using an object instead of a regular primitive
number value, you may not necessarily get the same string value!

Consider:

var a = {
 valueOf: function() { return 42; },
 toString: function() { return 4; }
};

a + ""; // "42"

60 Types and Grammar

String(a); // "4"

Generally, this sort of gotcha won't bite you unless you're really trying to create confusing data structures and
operations, but you should be careful if you're defining both your own valueOf() and toString() methods
for some object, as how you coerce the value could affect the outcome.

What about the other direction? How can we implicitly coerce from string to number?

var a = "3.14";
var b = a - 0;

b; // 3.14

The - operator is defined only for numeric subtraction, so a - 0 forces a's value to be coerced to a number.
While far less common, a * 1 or a / 1 would accomplish the same result, as those operators are also only
defined for numeric operations.

What about object values with the - operator? Similar story as for + above:

var a = [3];
var b = [1];

a - b; // 2

Both array values have to become numbers, but they end up first being coerced to strings (using the
expected toString() serialization), and then are coerced to numbers, for the - subtraction to perform on.

So, is implicit coercion of string and number values the ugly evil you've always heard horror stories about? I
don't personally think so.

Compare b = String(a) (explicit) to b = a + "" (implicit). I think cases can be made for both approaches
being useful in your code. Certainly b = a + "" is quite a bit more common in JS programs, proving its own
utility regardless of feelings about the merits or hazards of implicit coercion in general.

Implicitly: Booleans --> Numbers
I think a case where implicit coercion can really shine is in simplifying certain types of complicated boolean
logic into simple numeric addition. Of course, this is not a general-purpose technique, but a specific solution
for specific cases.

Consider:

function onlyOne(a,b,c) {
 return !!((a && !b && !c) ||
 (!a && b && !c) || (!a && !b && c));
}

var a = true;
var b = false;

onlyOne(a, b, b); // true
onlyOne(b, a, b); // true

onlyOne(a, b, a); // false

This onlyOne(..) utility should only return true if exactly one of the arguments is true / truthy. It's using
implicit coercion on the truthy checks and explicit coercion on the others, including the final return value.

Types and Grammar 61

But what if we needed that utility to be able to handle four, five, or twenty flags in the same way? It's pretty
difficult to imagine implementing code that would handle all those permutations of comparisons.

But here's where coercing the boolean values to numbers (0 or 1, obviously) can greatly help:

function onlyOne() {
 var sum = 0;
 for (var i=0; i < arguments.length; i++) {
 // skip falsy values. same as treating
 // them as 0's, but avoids NaN's.
 if (arguments[i]) {
 sum += arguments[i];
 }
 }
 return sum == 1;
}

var a = true;
var b = false;

onlyOne(b, a); // true
onlyOne(b, a, b, b, b); // true

onlyOne(b, b); // false
onlyOne(b, a, b, b, b, a); // false

Note: Of course, instead of the for loop in onlyOne(..), you could more tersely use the ES5 reduce(..)
utility, but I didn't want to obscure the concepts.

What we're doing here is relying on the 1 for true/truthy coercions, and numerically adding them all up. sum
+= arguments[i] uses implicit coercion to make that happen. If one and only one value in the arguments list
is true, then the numeric sum will be 1, otherwise the sum will not be 1 and thus the desired condition is not
met.

We could of course do this with explicit coercion instead:

function onlyOne() {
 var sum = 0;
 for (var i=0; i < arguments.length; i++) {
 sum += Number(!!arguments[i]);
 }
 return sum === 1;
}

We first use !!arguments[i] to force the coercion of the value to true or false. That's so you could pass
non-boolean values in, like onlyOne("42", 0), and it would still work as expected (otherwise you'd end
up with string concatenation and the logic would be incorrect).

Once we're sure it's a boolean, we do another explicit coercion with Number(..) to make sure the value is 0
or 1.

Is the explicit coercion form of this utility "better"? It does avoid the NaN trap as explained in the code
comments. But, ultimately, it depends on your needs. I personally think the former version, relying on implicit
coercion is more elegant (if you won't be passing undefined or NaN), and the explicit version is needlessly
more verbose.

But as with almost everything we're discussing here, it's a judgment call.

62 Types and Grammar

Note: Regardless of implicit or explicit approaches, you could easily make onlyTwo(..) or onlyFive(..)
variations by simply changing the final comparison from 1, to 2 or 5, respectively. That's drastically easier
than adding a bunch of && and || expressions. So, generally, coercion is very helpful in this case.

Implicitly: * --> Boolean
Now, let's turn our attention to implicit coercion to boolean values, as it's by far the most common and also by
far the most potentially troublesome.

Remember, implicit coercion is what kicks in when you use a value in such a way that it forces the value to be
converted. For numeric and string operations, it's fairly easy to see how the coercions can occur.

But, what sort of expression operations require/force (implicitly) a boolean coercion?

1. The test expression in an if (..) statement.
2. The test expression (second clause) in a for (.. ; .. ; ..) header.
3. The test expression in while (..) and do..while(..) loops.
4. The test expression (first clause) in ? : ternary expressions.
5. The left-hand operand (which serves as a test expression -- see below!) to the || ("logical or") and &&

("logical and") operators.

Any value used in these contexts that is not already a boolean will be implicitly coerced to a boolean using
the rules of the ToBoolean abstract operation covered earlier in this chapter.

Let's look at some examples:

var a = 42;
var b = "abc";
var c;
var d = null;

if (a) {
 console.log("yep"); // yep
}

while (c) {
 console.log("nope, never runs");
}

c = d ? a : b;
c; // "abc"

if ((a && d) || c) {
 console.log("yep"); // yep
}

In all these contexts, the non-boolean values are implicitly coerced to their boolean equivalents to make the
test decisions.

Operators || and &&
It's quite likely that you have seen the || ("logical or") and && ("logical and") operators in most or all other
languages you've used. So it'd be natural to assume that they work basically the same in JavaScript as in other
similar languages.

There's some very little known, but very important, nuance here.

Types and Grammar 63

In fact, I would argue these operators shouldn't even be called "logical ___ operators", as that name is
incomplete in describing what they do. If I were to give them a more accurate (if more clumsy) name, I'd call
them "selector operators," or more completely, "operand selector operators."

Why? Because they don't actually result in a logic value (aka boolean) in JavaScript, as they do in some other
languages.

So what do they result in? They result in the value of one (and only one) of their two operands. In other words,
they select one of the two operand's values.

Quoting the ES5 spec from section 11.11:

The value produced by a && or || operator is not necessarily of type Boolean. The value produced will always be the value of
one of the two operand expressions.

Let's illustrate:

var a = 42;
var b = "abc";
var c = null;

a || b; // 42
a && b; // "abc"

c || b; // "abc"
c && b; // null

Wait, what!? Think about that. In languages like C and PHP, those expressions result in true or false, but in
JS (and Python and Ruby, for that matter!), the result comes from the values themselves.

Both || and && operators perform a boolean test on the first operand (a or c). If the operand is not already
boolean (as it's not, here), a normal ToBoolean coercion occurs, so that the test can be performed.

For the || operator, if the test is true, the || expression results in the value of the first operand (a or c). If the
test is false, the || expression results in the value of the second operand (b).

Inversely, for the && operator, if the test is true, the && expression results in the value of the second operand
(b). If the test is false, the && expression results in the value of the first operand (a or c).

The result of a || or && expression is always the underlying value of one of the operands, not the (possibly
coerced) result of the test. In c && b, c is null, and thus falsy. But the && expression itself results in null (the
value in c), not in the coerced false used in the test.

Do you see how these operators act as "operand selectors", now?

Another way of thinking about these operators:

a || b;
// roughly equivalent to:
a ? a : b;

a && b;
// roughly equivalent to:
a ? b : a;

Note: I call a || b "roughly equivalent" to a ? a : b because the outcome is identical, but there's a nuanced
difference. In a ? a : b, if a was a more complex expression (like for instance one that might have side
effects like calling a function, etc.), then the a expression would possibly be evaluated twice (if the first

64 Types and Grammar

evaluation was truthy). By contrast, for a || b, the a expression is evaluated only once, and that value is used
both for the coercive test as well as the result value (if appropriate). The same nuance applies to the a && b
and a ? b : a expressions.

An extremely common and helpful usage of this behavior, which there's a good chance you may have used
before and not fully understood, is:

function foo(a,b) {
 a = a || "hello";
 b = b || "world";

 console.log(a + " " + b);
}

foo(); // "hello world"
foo("yeah", "yeah!"); // "yeah yeah!"

The a = a || "hello" idiom (sometimes said to be JavaScript's version of the C# "null coalescing
operator") acts to test a and if it has no value (or only an undesired falsy value), provides a backup default
value ("hello").

Be careful, though!

foo("That's it!", ""); // "That's it! world" <-- Oops!

See the problem? "" as the second argument is a falsy value (see ToBoolean earlier in this chapter), so the b
= b || "world" test fails, and the "world" default value is substituted, even though the intent probably was
to have the explicitly passed "" be the value assigned to b.

This || idiom is extremely common, and quite helpful, but you have to use it only in cases where all falsy
values should be skipped. Otherwise, you'll need to be more explicit in your test, and probably use a ? :
ternary instead.

This default value assignment idiom is so common (and useful!) that even those who publicly and vehemently
decry JavaScript coercion often use it in their own code!

What about &&?

There's another idiom that is quite a bit less commonly authored manually, but which is used by JS minifiers
frequently. The && operator "selects" the second operand if and only if the first operand tests as truthy, and
this usage is sometimes called the "guard operator" (also see "Short Circuited" in Chapter 5) -- the first
expression test "guards" the second expression:

function foo() {
 console.log(a);
}

var a = 42;

a && foo(); // 42

foo() gets called only because a tests as truthy. If that test failed, this a && foo() expression statement
would just silently stop -- this is known as "short circuiting" -- and never call foo().

Again, it's not nearly as common for people to author such things. Usually, they'd do if (a) { foo(); }
instead. But JS minifiers choose a && foo() because it's much shorter. So, now, if you ever have to decipher
such code, you'll know what it's doing and why.

Types and Grammar 65

OK, so || and && have some neat tricks up their sleeve, as long as you're willing to allow the implicit coercion
into the mix.

Note: Both the a = b || "something" and a && b() idioms rely on short circuiting behavior, which we
cover in more detail in Chapter 5.

The fact that these operators don't actually result in true and false is possibly messing with your head a
little bit by now. You're probably wondering how all your if statements and for loops have been working, if
they've included compound logical expressions like a && (b || c).

Don't worry! The sky is not falling. Your code is (probably) just fine. It's just that you probably never realized
before that there was an implicit coercion to boolean going on after the compound expression was evaluated.

Consider:

var a = 42;
var b = null;
var c = "foo";

if (a && (b || c)) {
 console.log("yep");
}

This code still works the way you always thought it did, except for one subtle extra detail. The a && (b ||
c) expression actually results in "foo", not true. So, the if statement then forces the "foo" value to coerce
to a boolean, which of course will be true.

See? No reason to panic. Your code is probably still safe. But now you know more about how it does what it
does.

And now you also realize that such code is using implicit coercion. If you're in the "avoid (implicit) coercion
camp" still, you're going to need to go back and make all of those tests explicit:

if (!!a && (!!b || !!c)) {
 console.log("yep");
}

Good luck with that! ... Sorry, just teasing.

Symbol Coercion
Up to this point, there's been almost no observable outcome difference between explicit and implicit coercion -
- only the readability of code has been at stake.

But ES6 Symbols introduce a gotcha into the coercion system that we need to discuss briefly. For reasons that
go well beyond the scope of what we'll discuss in this book, explicit coercion of a symbol to a string is
allowed, but implicit coercion of the same is disallowed and throws an error.

Consider:

var s1 = Symbol("cool");
String(s1); // "Symbol(cool)"

var s2 = Symbol("not cool");
s2 + ""; // TypeError

symbol values cannot coerce to number at all (throws an error either way), but strangely they can both
explicitly and implicitly coerce to boolean (always true).

66 Types and Grammar

Consistency is always easier to learn, and exceptions are never fun to deal with, but we just need to be careful
around the new ES6 symbol values and how we coerce them.

The good news: it's probably going to be exceedingly rare for you to need to coerce a symbol value. The way
they're typically used (see Chapter 3) will probably not call for coercion on a normal basis.

Loose Equals vs. Strict Equals
Loose equals is the == operator, and strict equals is the === operator. Both operators are used for comparing
two values for "equality," but the "loose" vs. "strict" indicates a very important difference in behavior
between the two, specifically in how they decide "equality."

A very common misconception about these two operators is: "== checks values for equality and === checks
both values and types for equality." While that sounds nice and reasonable, it's inaccurate. Countless well-
respected JavaScript books and blogs have said exactly that, but unfortunately they're all wrong.

The correct description is: "== allows coercion in the equality comparison and === disallows coercion."

Equality Performance
Stop and think about the difference between the first (inaccurate) explanation and this second (accurate) one.

In the first explanation, it seems obvious that === is doing more work than ==, because it has to also check the
type. In the second explanation, == is the one doing more work because it has to follow through the steps of
coercion if the types are different.

Don't fall into the trap, as many have, of thinking this has anything to do with performance, though, as if == is
going to be slower than === in any relevant way. While it's measurable that coercion does take a little bit of
processing time, it's mere microseconds (yes, that's millionths of a second!).

If you're comparing two values of the same types, == and === use the identical algorithm, and so other than
minor differences in engine implementation, they should do the same work.

If you're comparing two values of different types, the performance isn't the important factor. What you should
be asking yourself is: when comparing these two values, do I want coercion or not?

If you want coercion, use == loose equality, but if you don't want coercion, use === strict equality.

Note: The implication here then is that both == and === check the types of their operands. The difference is in
how they respond if the types don't match.

Abstract Equality
The == operator's behavior is defined as "The Abstract Equality Comparison Algorithm" in section 11.9.3 of
the ES5 spec. What's listed there is a comprehensive but simple algorithm that explicitly states every possible
combination of types, and how the coercions (if necessary) should happen for each combination.

Warning: When (implicit) coercion is maligned as being too complicated and too flawed to be a useful good
part, it is these rules of "abstract equality" that are being condemned. Generally, they are said to be too
complex and too unintuitive for developers to practically learn and use, and that they are prone more to
causing bugs in JS programs than to enabling greater code readability. I believe this is a flawed premise -- that
you readers are competent developers who write (and read and understand!) algorithms (aka code) all day
long. So, what follows is a plain exposition of the "abstract equality" in simple terms. But I implore you to also
read the ES5 spec section 11.9.3. I think you'll be surprised at just how reasonable it is.

Basically, the first clause (11.9.3.1) says, if the two values being compared are of the same type, they are
simply and naturally compared via Identity as you'd expect. For example, 42 is only equal to 42, and "abc" is
only equal to "abc".

Types and Grammar 67

Some minor exceptions to normal expectation to be aware of:

• NaN is never equal to itself (see Chapter 2)

• +0 and -0 are equal to each other (see Chapter 2)

The final provision in clause 11.9.3.1 is for == loose equality comparison with objects (including functions
and arrays). Two such values are only equal if they are both references to the exact same value. No coercion
occurs here.

Note: The === strict equality comparison is defined identically to 11.9.3.1, including the provision about two
object values. It's a very little known fact that == and === behave identically in the case where two
objects are being compared!

The rest of the algorithm in 11.9.3 specifies that if you use == loose equality to compare two values of different
types, one or both of the values will need to be implicitly coerced. This coercion happens so that both values
eventually end up as the same type, which can then directly be compared for equality using simple value
Identity.

Note: The != loose not-equality operation is defined exactly as you'd expect, in that it's literally the ==
operation comparison performed in its entirety, then the negation of the result. The same goes for the !==
strict not-equality operation.

Comparing: strings to numbers
To illustrate == coercion, let's first build off the string and number examples earlier in this chapter:

var a = 42;
var b = "42";

a === b; // false
a == b; // true

As we'd expect, a === b fails, because no coercion is allowed, and indeed the 42 and "42" values are
different.

However, the second comparison a == b uses loose equality, which means that if the types happen to be
different, the comparison algorithm will perform implicit coercion on one or both values.

But exactly what kind of coercion happens here? Does the a value of 42 become a string, or does the b value
of "42" become a number?

In the ES5 spec, clauses 11.9.3.4-5 say:

1. If Type(x) is Number and Type(y) is String, return the result of the comparison x == ToNumber(y).

2. If Type(x) is String and Type(y) is Number, return the result of the comparison ToNumber(x) == y.

Warning: The spec uses Number and String as the formal names for the types, while this book prefers
number and string for the primitive types. Do not let the capitalization of Number in the spec confuse you for
the Number() native function. For our purposes, the capitalization of the type name is irrelevant -- they have
basically the same meaning.

Clearly, the spec says the "42" value is coerced to a number for the comparison. The how of that coercion has
already been covered earlier, specifically with the ToNumber abstract operation. In this case, it's quite obvious
then that the resulting two 42 values are equal.

Comparing: anything to boolean
One of the biggest gotchas with the implicit coercion of == loose equality pops up when you try to compare a
value directly to true or false.

68 Types and Grammar

Consider:

var a = "42";
var b = true;

a == b; // false

Wait, what happened here!? We know that "42" is a truthy value (see earlier in this chapter). So, how come
it's not == loose equal to true?

The reason is both simple and deceptively tricky. It's so easy to misunderstand, many JS developers never pay
close enough attention to fully grasp it.

Let's again quote the spec, clauses 11.9.3.6-7:

1. If Type(x) is Boolean, return the result of the comparison ToNumber(x) == y.

2. If Type(y) is Boolean, return the result of the comparison x == ToNumber(y).

Let's break that down. First:

var x = true;
var y = "42";

x == y; // false

The Type(x) is indeed Boolean, so it performs ToNumber(x), which coerces true to 1. Now, 1 == "42" is
evaluated. The types are still different, so (essentially recursively) we reconsult the algorithm, which just as
above will coerce "42" to 42, and 1 == 42 is clearly false.

Reverse it, and we still get the same outcome:

var x = "42";
var y = false;

x == y; // false

The Type(y) is Boolean this time, so ToNumber(y) yields 0. "42" == 0 recursively becomes 42 == 0,
which is of course false.

In other words, the value "42" is neither == true nor == false. At first, that statement might seem crazy.
How can a value be neither truthy nor falsy?

But that's the problem! You're asking the wrong question, entirely. It's not your fault, really. Your brain is
tricking you.

"42" is indeed truthy, but "42" == true is not performing a boolean test/coercion at all, no matter what
your brain says. "42" is not being coerced to a boolean (true), but instead true is being coerced to a 1, and
then "42" is being coerced to 42.

Whether we like it or not, ToBoolean is not even involved here, so the truthiness or falsiness of "42" is
irrelevant to the == operation!

What is relevant is to understand how the == comparison algorithm behaves with all the different type
combinations. As it regards a boolean value on either side of the ==, a boolean always coerces to a number
first.

If that seems strange to you, you're not alone. I personally would recommend to never, ever, under any
circumstances, use == true or == false. Ever.

Types and Grammar 69

But remember, I'm only talking about == here. === true and === false wouldn't allow the coercion, so
they're safe from this hidden ToNumber coercion.

Consider:

var a = "42";

// bad (will fail!):
if (a == true) {
 // ..
}

// also bad (will fail!):
if (a === true) {
 // ..
}

// good enough (works implicitly):
if (a) {
 // ..
}

// better (works explicitly):
if (!!a) {
 // ..
}

// also great (works explicitly):
if (Boolean(a)) {
 // ..
}

If you avoid ever using == true or == false (aka loose equality with booleans) in your code, you'll never
have to worry about this truthiness/falsiness mental gotcha.

Comparing: nulls to undefineds
Another example of implicit coercion can be seen with == loose equality between null and undefined values.
Yet again quoting the ES5 spec, clauses 11.9.3.2-3:

1. If x is null and y is undefined, return true.
2. If x is undefined and y is null, return true.

null and undefined, when compared with == loose equality, equate to (aka coerce to) each other (as well as
themselves, obviously), and no other values in the entire language.

What this means is that null and undefined can be treated as indistinguishable for comparison purposes, if
you use the == loose equality operator to allow their mutual implicit coercion.

var a = null;
var b;

a == b; // true
a == null; // true
b == null; // true

a == false; // false

70 Types and Grammar

b == false; // false
a == ""; // false
b == ""; // false
a == 0; // false
b == 0; // false

The coercion between null and undefined is safe and predictable, and no other values can give false
positives in such a check. I recommend using this coercion to allow null and undefined to be
indistinguishable and thus treated as the same value.

For example:

var a = doSomething();

if (a == null) {
 // ..
}

The a == null check will pass only if doSomething() returns either null or undefined, and will fail with
any other value, even other falsy values like 0, false, and "".

The explicit form of the check, which disallows any such coercion, is (I think) unnecessarily much uglier (and
perhaps a tiny bit less performant!):

var a = doSomething();

if (a === undefined || a === null) {
 // ..
}

In my opinion, the form a == null is yet another example where implicit coercion improves code readability,
but does so in a reliably safe way.

Comparing: objects to non-objects
If an object/function/array is compared to a simple scalar primitive (string, number, or boolean), the
ES5 spec says in clauses 11.9.3.8-9:

1. If Type(x) is either String or Number and Type(y) is Object, return the result of the comparison x ==
ToPrimitive(y).

2. If Type(x) is Object and Type(y) is either String or Number, return the result of the comparison
ToPrimitive(x) == y.

Note: You may notice that these clauses only mention String and Number, but not Boolean. That's because,
as quoted earlier, clauses 11.9.3.6-7 take care of coercing any Boolean operand presented to a Number first.

Consider:

var a = 42;
var b = [42];

a == b; // true

The [42] value has its ToPrimitive abstract operation called (see the "Abstract Value Operations" section
earlier), which results in the "42" value. From there, it's just 42 == "42", which as we've already covered
becomes 42 == 42, so a and b are found to be coercively equal.

Types and Grammar 71

Tip: All the quirks of the ToPrimitive abstract operation that we discussed earlier in this chapter
(toString(), valueOf()) apply here as you'd expect. This can be quite useful if you have a complex data
structure that you want to define a custom valueOf() method on, to provide a simple value for equality
comparison purposes.

In Chapter 3, we covered "unboxing," where an object wrapper around a primitive value (like from new
String("abc"), for instance) is unwrapped, and the underlying primitive value ("abc") is returned. This
behavior is related to the ToPrimitive coercion in the == algorithm:

var a = "abc";
var b = Object(a); // same as `new String(a)`

a === b; // false
a == b; // true

a == b is true because b is coerced (aka "unboxed," unwrapped) via ToPrimitive to its underlying "abc"
simple scalar primitive value, which is the same as the value in a.

There are some values where this is not the case, though, because of other overriding rules in the ==
algorithm. Consider:

var a = null;
var b = Object(a); // same as `Object()`
a == b; // false

var c = undefined;
var d = Object(c); // same as `Object()`
c == d; // false

var e = NaN;
var f = Object(e); // same as `new Number(e)`
e == f; // false

The null and undefined values cannot be boxed -- they have no object wrapper equivalent -- so
Object(null) is just like Object() in that both just produce a normal object.

NaN can be boxed to its Number object wrapper equivalent, but when == causes an unboxing, the NaN == NaN
comparison fails because NaN is never equal to itself (see Chapter 2).

Edge Cases
Now that we've thoroughly examined how the implicit coercion of == loose equality works (in both sensible
and surprising ways), let's try to call out the worst, craziest corner cases so we can see what we need to avoid
to not get bitten with coercion bugs.

First, let's examine how modifying the built-in native prototypes can produce crazy results:

A Number By Any Other Value Would...
Number.prototype.valueOf = function() {
 return 3;
};

new Number(2) == 3; // true

Warning: 2 == 3 would not have fallen into this trap, because neither 2 nor 3 would have invoked the built-
in Number.prototype.valueOf() method because both are already primitive number values and can be

72 Types and Grammar

compared directly. However, new Number(2) must go through the ToPrimitive coercion, and thus invoke
valueOf().

Evil, huh? Of course it is. No one should ever do such a thing. The fact that you can do this is sometimes used as
a criticism of coercion and ==. But that's misdirected frustration. JavaScript is not bad because you can do such
things, a developer is bad if they do such things. Don't fall into the "my programming language should protect
me from myself" fallacy.

Next, let's consider another tricky example, which takes the evil from the previous example to another level:

if (a == 2 && a == 3) {
 // ..
}

You might think this would be impossible, because a could never be equal to both 2 and 3 at the same time. But
"at the same time" is inaccurate, since the first expression a == 2 happens strictly before a == 3.

So, what if we make a.valueOf() have side effects each time it's called, such that the first time it returns 2
and the second time it's called it returns 3? Pretty easy:

var i = 2;

Number.prototype.valueOf = function() {
 return i++;
};

var a = new Number(42);

if (a == 2 && a == 3) {
 console.log("Yep, this happened.");
}

Again, these are evil tricks. Don't do them. But also don't use them as complaints against coercion. Potential
abuses of a mechanism are not sufficient evidence to condemn the mechanism. Just avoid these crazy tricks,
and stick only with valid and proper usage of coercion.

False-y Comparisons
The most common complaint against implicit coercion in == comparisons comes from how falsy values behave
surprisingly when compared to each other.

To illustrate, let's look at a list of the corner-cases around falsy value comparisons, to see which ones are
reasonable and which are troublesome:

"0" == null; // false
"0" == undefined; // false
"0" == false; // true -- UH OH!
"0" == NaN; // false
"0" == 0; // true
"0" == ""; // false

false == null; // false
false == undefined; // false
false == NaN; // false
false == 0; // true -- UH OH!
false == ""; // true -- UH OH!
false == []; // true -- UH OH!

Types and Grammar 73

false == {}; // false

"" == null; // false
"" == undefined; // false
"" == NaN; // false
"" == 0; // true -- UH OH!
"" == []; // true -- UH OH!
"" == {}; // false

0 == null; // false
0 == undefined; // false
0 == NaN; // false
0 == []; // true -- UH OH!
0 == {}; // false

In this list of 24 comparisons, 17 of them are quite reasonable and predictable. For example, we know that ""
and NaN are not at all equatable values, and indeed they don't coerce to be loose equals, whereas "0" and 0 are
reasonably equatable and do coerce as loose equals.

However, seven of the comparisons are marked with "UH OH!" because as false positives, they are much more
likely gotchas that could trip you up. "" and 0 are definitely distinctly different values, and it's rare you'd want
to treat them as equatable, so their mutual coercion is troublesome. Note that there aren't any false negatives
here.

The Crazy Ones
We don't have to stop there, though. We can keep looking for even more troublesome coercions:

[] == ![]; // true

Oooo, that seems at a higher level of crazy, right!? Your brain may likely trick you that you're comparing a
truthy to a falsy value, so the true result is surprising, as we know a value can never be truthy and falsy at the
same time!

But that's not what's actually happening. Let's break it down. What do we know about the ! unary operator? It
explicitly coerces to a boolean using the ToBoolean rules (and it also flips the parity). So before [] == ![]
is even processed, it's actually already translated to [] == false. We already saw that form in our above list
(false == []), so its surprise result is not new to us.

How about other corner cases?

2 == [2]; // true
"" == [null]; // true

As we said earlier in our ToNumber discussion, the right-hand side [2] and [null] values will go through a
ToPrimitive coercion so they can be more readily compared to the simple primitives (2 and "", respectively)
on the left-hand side. Since the valueOf() for array values just returns the array itself, coercion falls to
stringifying the array.

[2] will become "2", which then is ToNumber coerced to 2 for the right-hand side value in the first
comparison. [null] just straight becomes "".

So, 2 == 2 and "" == "" are completely understandable.

If your instinct is to still dislike these results, your frustration is not actually with coercion like you probably
think it is. It's actually a complaint against the default array values' ToPrimitive behavior of coercing to a
string value. More likely, you'd just wish that [2].toString() didn't return "2", or that
[null].toString() didn't return "".

74 Types and Grammar

But what exactly should these string coercions result in? I can't really think of any other appropriate string
coercion of [2] than "2", except perhaps "[2]" -- but that could be very strange in other contexts!

You could rightly make the case that since String(null) becomes "null", then String([null]) should
also become "null". That's a reasonable assertion. So, that's the real culprit.

Implicit coercion itself isn't the evil here. Even an explicit coercion of [null] to a string results in "". What's
at odds is whether it's sensible at all for array values to stringify to the equivalent of their contents, and
exactly how that happens. So, direct your frustration at the rules for String([..]), because that's where
the craziness stems from. Perhaps there should be no stringification coercion of arrays at all? But that would
have lots of other downsides in other parts of the language.

Another famously cited gotcha:

0 == "\n"; // true

As we discussed earlier with empty "", "\n" (or " " or any other whitespace combination) is coerced via
ToNumber, and the result is 0. What other number value would you expect whitespace to coerce to? Does it
bother you that explicit Number(" ") yields 0?

Really the only other reasonable number value that empty strings or whitespace strings could coerce to is the
NaN. But would that really be better? The comparison " " == NaN would of course fail, but it's unclear that
we'd have really fixed any of the underlying concerns.

The chances that a real-world JS program fails because 0 == "\n" are awfully rare, and such corner cases are
easy to avoid.

Type conversions always have corner cases, in any language -- nothing specific to coercion. The issues here
are about second-guessing a certain set of corner cases (and perhaps rightly so!?), but that's not a salient
argument against the overall coercion mechanism.

Bottom line: almost any crazy coercion between normal values that you're likely to run into (aside from
intentionally tricky valueOf() or toString() hacks as earlier) will boil down to the short seven-item list of
gotcha coercions we've identified above.

To contrast against these 24 likely suspects for coercion gotchas, consider another list like this:

42 == "43"; // false
"foo" == 42; // false
"true" == true; // false

42 == "42"; // true
"foo" == ["foo"]; // true

In these nonfalsy, noncorner cases (and there are literally an infinite number of comparisons we could put on
this list), the coercion results are totally safe, reasonable, and explainable.

Sanity Check
OK, we've definitely found some crazy stuff when we've looked deeply into implicit coercion. No wonder that
most developers claim coercion is evil and should be avoided, right!?

But let's take a step back and do a sanity check.

By way of magnitude comparison, we have a list of seven troublesome gotcha coercions, but we have another
list of (at least 17, but actually infinite) coercions that are totally sane and explainable.

Types and Grammar 75

If you're looking for a textbook example of "throwing the baby out with the bathwater," this is it: discarding
the entirety of coercion (the infinitely large list of safe and useful behaviors) because of a list of literally just
seven gotchas.

The more prudent reaction would be to ask, "how can I use the countless good parts of coercion, but avoid the
few bad parts?"

Let's look again at the bad list:

"0" == false; // true -- UH OH!
false == 0; // true -- UH OH!
false == ""; // true -- UH OH!
false == []; // true -- UH OH!
"" == 0; // true -- UH OH!
"" == []; // true -- UH OH!
0 == []; // true -- UH OH!

Four of the seven items on this list involve == false comparison, which we said earlier you should always,
always avoid. That's a pretty easy rule to remember.

Now the list is down to three.

"" == 0; // true -- UH OH!
"" == []; // true -- UH OH!
0 == []; // true -- UH OH!

Are these reasonable coercions you'd do in a normal JavaScript program? Under what conditions would they
really happen?

I don't think it's terribly likely that you'd literally use == [] in a boolean test in your program, at least not if
you know what you're doing. You'd probably instead be doing == "" or == 0, like:

function doSomething(a) {
 if (a == "") {
 // ..
 }
}

You'd have an oops if you accidentally called doSomething(0) or doSomething([]). Another scenario:

function doSomething(a,b) {
 if (a == b) {
 // ..
 }
}

Again, this could break if you did something like doSomething("",0) or doSomething([],"").

So, while the situations can exist where these coercions will bite you, and you'll want to be careful around
them, they're probably not super common on the whole of your code base.

Safely Using Implicit Coercion
The most important advice I can give you: examine your program and reason about what values can show up
on either side of an == comparison. To effectively avoid issues with such comparisons, here's some heuristic
rules to follow:

1. If either side of the comparison can have true or false values, don't ever, EVER use ==.

76 Types and Grammar

2. If either side of the comparison can have [], "", or 0 values, seriously consider not using ==.

In these scenarios, it's almost certainly better to use === instead of ==, to avoid unwanted coercion. Follow
those two simple rules and pretty much all the coercion gotchas that could reasonably hurt you will effectively
be avoided.

Being more explicit/verbose in these cases will save you from a lot of headaches.

The question of == vs. === is really appropriately framed as: should you allow coercion for a comparison or
not?

There's lots of cases where such coercion can be helpful, allowing you to more tersely express some
comparison logic (like with null and undefined, for example).

In the overall scheme of things, there's relatively few cases where implicit coercion is truly dangerous. But in
those places, for safety sake, definitely use ===.

Tip: Another place where coercion is guaranteed not to bite you is with the typeof operator. typeof is
always going to return you one of seven strings (see Chapter 1), and none of them are the empty "" string. As
such, there's no case where checking the type of some value is going to run afoul of implicit coercion. typeof
x == "function" is 100% as safe and reliable as typeof x === "function". Literally, the spec says the
algorithm will be identical in this situation. So, don't just blindly use === everywhere simply because that's
what your code tools tell you to do, or (worst of all) because you've been told in some book to not think about
it. You own the quality of your code.

Is implicit coercion evil and dangerous? In a few cases, yes, but overwhelmingly, no.

Be a responsible and mature developer. Learn how to use the power of coercion (both explicit and implicit)
effectively and safely. And teach those around you to do the same.

Here's a handy table made by Alex Dorey (@dorey on GitHub) to visualize a variety of comparisons:

Types and Grammar 77

Source: https://github.com/dorey/JavaScript-Equality-Table

Abstract Relational Comparison
While this part of implicit coercion often gets a lot less attention, it's important nonetheless to think about
what happens with a < b comparisons (similar to how we just examined a == b in depth).

The "Abstract Relational Comparison" algorithm in ES5 section 11.8.5 essentially divides itself into two parts:
what to do if the comparison involves both string values (second half), or anything else (first half).

Note: The algorithm is only defined for a < b. So, a > b is handled as b < a.

The algorithm first calls ToPrimitive coercion on both values, and if the return result of either call is not a
string, then both values are coerced to number values using the ToNumber operation rules, and compared
numerically.

For example:

var a = [42];
var b = ["43"];

a < b; // true
b < a; // false

Note: Similar caveats for -0 and NaN apply here as they did in the == algorithm discussed earlier.

However, if both values are strings for the < comparison, simple lexicographic (natural alphabetic)
comparison on the characters is performed:

78 Types and Grammar

var a = ["42"];
var b = ["043"];

a < b; // false

a and b are not coerced to numbers, because both of them end up as strings after the ToPrimitive coercion
on the two arrays. So, "42" is compared character by character to "043", starting with the first characters
"4" and "0", respectively. Since "0" is lexicographically less than than "4", the comparison returns false.

The exact same behavior and reasoning goes for:

var a = [4, 2];
var b = [0, 4, 3];

a < b; // false

Here, a becomes "4,2" and b becomes "0,4,3", and those lexicographically compare identically to the
previous snippet.

What about:

var a = { b: 42 };
var b = { b: 43 };

a < b; // ??

a < b is also false, because a becomes [object Object] and b becomes [object Object], and so clearly
a is not lexicographically less than b.

But strangely:

var a = { b: 42 };
var b = { b: 43 };

a < b; // false
a == b; // false
a > b; // false

a <= b; // true
a >= b; // true

Why is a == b not true? They're the same string value ("[object Object]"), so it seems they should be
equal, right? Nope. Recall the previous discussion about how == works with object references.

But then how are a <= b and a >= b resulting in true, if a < b and a == b and a > b are all false?

Because the spec says for a <= b, it will actually evaluate b < a first, and then negate that result. Since b < a
is also false, the result of a <= b is true.

That's probably awfully contrary to how you might have explained what <= does up to now, which would
likely have been the literal: "less than or equal to." JS more accurately considers <= as "not greater than" (!(a
> b), which JS treats as !(b < a)). Moreover, a >= b is explained by first considering it as b <= a, and then
applying the same reasoning.

Unfortunately, there is no "strict relational comparison" as there is for equality. In other words, there's no way
to prevent implicit coercion from occurring with relational comparisons like a < b, other than to ensure that
a and b are of the same type explicitly before making the comparison.

Types and Grammar 79

Use the same reasoning from our earlier == vs. === sanity check discussion. If coercion is helpful and
reasonably safe, like in a 42 < "43" comparison, use it. On the other hand, if you need to be safe about a
relational comparison, explicitly coerce the values first, before using < (or its counterparts).

var a = [42];
var b = "043";

a < b; // false -- string comparison!
Number(a) < Number(b); // true -- number comparison!

Review
In this chapter, we turned our attention to how JavaScript type conversions happen, called coercion, which
can be characterized as either explicit or implicit.

Coercion gets a bad rap, but it's actually quite useful in many cases. An important task for the responsible JS
developer is to take the time to learn all the ins and outs of coercion to decide which parts will help improve
their code, and which parts they really should avoid.

Explicit coercion is code which is obvious that the intent is to convert a value from one type to another. The
benefit is improvement in readability and maintainability of code by reducing confusion.

Implicit coercion is coercion that is "hidden" as a side-effect of some other operation, where it's not as obvious
that the type conversion will occur. While it may seem that implicit coercion is the opposite of explicit and is
thus bad (and indeed, many think so!), actually implicit coercion is also about improving the readability of
code.

Especially for implicit, coercion must be used responsibly and consciously. Know why you're writing the code
you're writing, and how it works. Strive to write code that others will easily be able to learn from and
understand as well.

80 Types and Grammar

Types and Grammar 81

Chapter 5: Grammar
The last major topic we want to tackle is how JavaScript's language syntax works (aka its grammar). You may
think you know how to write JS, but there's an awful lot of nuance to various parts of the language grammar
that lead to confusion and misconception, so we want to dive into those parts and clear some things up.

Note: The term "grammar" may be a little less familiar to readers than the term "syntax." In many ways, they
are similar terms, describing the rules for how the language works. There are nuanced differences, but they
mostly don't matter for our discussion here. The grammar for JavaScript is a structured way to describe how
the syntax (operators, keywords, etc.) fits together into well-formed, valid programs. In other words,
discussing syntax without grammar would leave out a lot of the important details. So our focus here in this
chapter is most accurately described as grammar, even though the raw syntax of the language is what
developers directly interact with.

Statements & Expressions
It's fairly common for developers to assume that the term "statement" and "expression" are roughly
equivalent. But here we need to distinguish between the two, because there are some very important
differences in our JS programs.

To draw the distinction, let's borrow from terminology you may be more familiar with: the English language.

A "sentence" is one complete formation of words that expresses a thought. It's comprised of one or more
"phrases," each of which can be connected with punctuation marks or conjunction words ("and," "or," etc). A
phrase can itself be made up of smaller phrases. Some phrases are incomplete and don't accomplish much by
themselves, while other phrases can stand on their own. These rules are collectively called the grammar of the
English language.

And so it goes with JavaScript grammar. Statements are sentences, expressions are phrases, and operators are
conjunctions/punctuation.

Every expression in JS can be evaluated down to a single, specific value result. For example:

var a = 3 * 6;
var b = a;
b;

In this snippet, 3 * 6 is an expression (evaluates to the value 18). But a on the second line is also an
expression, as is b on the third line. The a and b expressions both evaluate to the values stored in those
variables at that moment, which also happens to be 18.

Moreover, each of the three lines is a statement containing expressions. var a = 3 * 6 and var b = a are
called "declaration statements" because they each declare a variable (and optionally assign a value to it). The a
= 3 * 6 and b = a assignments (minus the vars) are called assignment expressions.

The third line contains just the expression b, but it's also a statement all by itself (though not a terribly
interesting one!). This is generally referred to as an "expression statement."

Statement Completion Values
It's a fairly little known fact that statements all have completion values (even if that value is just undefined).

How would you even go about seeing the completion value of a statement?

The most obvious answer is to type the statement into your browser's developer console, because when you
execute it, the console by default reports the completion value of the most recent statement it executed.

Let's consider var b = a. What's the completion value of that statement?

82 Types and Grammar

The b = a assignment expression results in the value that was assigned (18 above), but the var statement
itself results in undefined. Why? Because var statements are defined that way in the spec. If you put var a
= 42; into your console, you'll see undefined reported back instead of 42.

Note: Technically, it's a little more complex than that. In the ES5 spec, section 12.2 "Variable Statement," the
VariableDeclaration algorithm actually does return a value (a string containing the name of the variable
declared -- weird, huh!?), but that value is basically swallowed up (except for use by the for..in loop) by the
VariableStatement algorithm, which forces an empty (aka undefined) completion value.

In fact, if you've done much code experimenting in your console (or in a JavaScript environment REPL --
read/evaluate/print/loop tool), you've probably seen undefined reported after many different statements,
and perhaps never realized why or what that was. Put simply, the console is just reporting the statement's
completion value.

But what the console prints out for the completion value isn't something we can use inside our program. So
how can we capture the completion value?

That's a much more complicated task. Before we explain how, let's explore why you would want to do that.

We need to consider other types of statement completion values. For example, any regular { .. } block has a
completion value of the completion value of its last contained statement/expression.

Consider:

var b;

if (true) {
 b = 4 + 38;
}

If you typed that into your console/REPL, you'd probably see 42 reported, since 42 is the completion value of
the if block, which took on the completion value of its last assignment expression statement b = 4 + 38.

In other words, the completion value of a block is like an implicit return of the last statement value in the
block.

Note: This is conceptually familiar in languages like CoffeeScript, which have implicit return values from
functions that are the same as the last statement value in the function.

But there's an obvious problem. This kind of code doesn't work:

var a, b;

a = if (true) {
 b = 4 + 38;
};

We can't capture the completion value of a statement and assign it into another variable in any easy
syntactic/grammatical way (at least not yet!).

So, what can we do?

Warning: For demo purposes only -- don't actually do the following in your real code!

We could use the much maligned eval(..) (sometimes pronounced "evil") function to capture this
completion value.

Types and Grammar 83

var a, b;

a = eval("if (true) { b = 4 + 38; }");

a; // 42

Yeeeaaahhhh. That's terribly ugly. But it works! And it illustrates the point that statement completion values
are a real thing that can be captured not just in our console but in our programs.

There's a proposal for ES7 called "do expression." Here's how it might work:

var a, b;

a = do {
 if (true) {
 b = 4 + 38;
 }
};

a; // 42

The do { .. } expression executes a block (with one or many statements in it), and the final statement
completion value inside the block becomes the completion value of the do expression, which can then be
assigned to a as shown.

The general idea is to be able to treat statements as expressions -- they can show up inside other statements --
without needing to wrap them in an inline function expression and perform an explicit return ...

For now, statement completion values are not much more than trivia. But they're probably going to take on
more significance as JS evolves, and hopefully do { .. } expressions will reduce the temptation to use stuff
like eval(..).

Warning: Repeating my earlier admonition: avoid eval(..). Seriously. See the Scope & Closures title of this
series for more explanation.

Expression Side Effects
Most expressions don't have side effects. For example:

var a = 2;
var b = a + 3;

The expression a + 3 did not itself have a side effect, like for instance changing a. It had a result, which is 5,
and that result was assigned to b in the statement b = a + 3.

The most common example of an expression with (possible) side effects is a function call expression:

function foo() {
 a = a + 1;
}

var a = 1;
foo(); // result: `undefined`, side effect: changed `a`

There are other side-effecting expressions, though. For example:

var a = 42;
var b = a++;

84 Types and Grammar

The expression a++ has two separate behaviors. First, it returns the current value of a, which is 42 (which then
gets assigned to b). But next, it changes the value of a itself, incrementing it by one.

var a = 42;
var b = a++;

a; // 43
b; // 42

Many developers would mistakenly believe that b has value 43 just like a does. But the confusion comes from
not fully considering the when of the side effects of the ++ operator.

The ++ increment operator and the -- decrement operator are both unary operators (see Chapter 4), which
can be used in either a postfix ("after") position or prefix ("before") position.

var a = 42;

a++; // 42
a; // 43

++a; // 44
a; // 44

When ++ is used in the prefix position as ++a, its side effect (incrementing a) happens before the value is
returned from the expression, rather than after as with a++.

Note: Would you think ++a++ was legal syntax? If you try it, you'll get a ReferenceError error, but why?
Because side-effecting operators require a variable reference to target their side effects to. For ++a++, the
a++ part is evaluated first (because of operator precedence -- see below), which gives back the value of a
before the increment. But then it tries to evaluate ++42, which (if you try it) gives the same ReferenceError
error, since ++ can't have a side effect directly on a value like 42.

It is sometimes mistakenly thought that you can encapsulate the after side effect of a++ by wrapping it in a (
) pair, like:

var a = 42;
var b = (a++);

a; // 43
b; // 42

Unfortunately, () itself doesn't define a new wrapped expression that would be evaluated after the after side
effect of the a++ expression, as we might have hoped. In fact, even if it did, a++ returns 42 first, and unless you
have another expression that reevaluates a after the side effect of ++, you're not going to get 43 from that
expression, so b will not be assigned 43.

There's an option, though: the , statement-series comma operator. This operator allows you to string together
multiple standalone expression statements into a single statement:

var a = 42, b;
b = (a++, a);

a; // 43
b; // 43

Note: The (..) around a++, a is required here. The reason is operator precedence, which we'll cover later
in this chapter.

Types and Grammar 85

The expression a++, a means that the second a statement expression gets evaluated after the after side
effects of the first a++ statement expression, which means it returns the 43 value for assignment to b.

Another example of a side-effecting operator is delete. As we showed in Chapter 2, delete is used to remove
a property from an object or a slot from an array. But it's usually just called as a standalone statement:

var obj = {
 a: 42
};

obj.a; // 42
delete obj.a; // true
obj.a; // undefined

The result value of the delete operator is true if the requested operation is valid/allowable, or false
otherwise. But the side effect of the operator is that it removes the property (or array slot).

Note: What do we mean by valid/allowable? Nonexistent properties, or properties that exist and are
configurable (see Chapter 3 of the this & Object Prototypes title of this series) will return true from the
delete operator. Otherwise, the result will be false or an error.

One last example of a side-effecting operator, which may at once be both obvious and nonobvious, is the =
assignment operator.

Consider:

var a;

a = 42; // 42
a; // 42

It may not seem like = in a = 42 is a side-effecting operator for the expression. But if we examine the result
value of the a = 42 statement, it's the value that was just assigned (42), so the assignment of that same value
into a is essentially a side effect.

Tip: The same reasoning about side effects goes for the compound-assignment operators like +=, -=, etc. For
example, a = b += 2 is processed first as b += 2 (which is b = b + 2), and the result of that = assignment
is then assigned to a.

This behavior that an assignment expression (or statement) results in the assigned value is primarily useful
for chained assignments, such as:

var a, b, c;

a = b = c = 42;

Here, c = 42 is evaluated to 42 (with the side effect of assigning 42 to c), then b = 42 is evaluated to 42
(with the side effect of assigning 42 to b), and finally a = 42 is evaluated (with the side effect of assigning 42
to a).

Warning: A common mistake developers make with chained assignments is like var a = b = 42. While this
looks like the same thing, it's not. If that statement were to happen without there also being a separate var b
(somewhere in the scope) to formally declare b, then var a = b = 42 would not declare b directly.
Depending on strict mode, that would either throw an error or create an accidental global (see the Scope &
Closures title of this series).

Another scenario to consider:

86 Types and Grammar

function vowels(str) {
 var matches;

 if (str) {
 // pull out all the vowels
 matches = str.match(/[aeiou]/g);

 if (matches) {
 return matches;
 }
 }
}

vowels("Hello World"); // ["e","o","o"]

This works, and many developers prefer such. But using an idiom where we take advantage of the assignment
side effect, we can simplify by combining the two if statements into one:

function vowels(str) {
 var matches;

 // pull out all the vowels
 if (str && (matches = str.match(/[aeiou]/g))) {
 return matches;
 }
}

vowels("Hello World"); // ["e","o","o"]

Note: The (..) around matches = str.match.. is required. The reason is operator precedence, which
we'll cover in the "Operator Precedence" section later in this chapter.

I prefer this shorter style, as I think it makes it clearer that the two conditionals are in fact related rather than
separate. But as with most stylistic choices in JS, it's purely opinion which one is better.

Contextual Rules
There are quite a few places in the JavaScript grammar rules where the same syntax means different things
depending on where/how it's used. This kind of thing can, in isolation, cause quite a bit of confusion.

We won't exhaustively list all such cases here, but just call out a few of the common ones.

{ .. } Curly Braces
There's two main places (and more coming as JS evolves!) that a pair of { .. } curly braces will show up in
your code. Let's take a look at each of them.

Object Literals
First, as an object literal:

// assume there's a `bar()` function defined

var a = {
 foo: bar()
};

How do we know this is an object literal? Because the { .. } pair is a value that's getting assigned to a.

Types and Grammar 87

Note: The a reference is called an "l-value" (aka left-hand value) since it's the target of an assignment. The {
.. } pair is an "r-value" (aka right-hand value) since it's used just as a value (in this case as the source of an
assignment).

Labels
What happens if we remove the var a = part of the above snippet?

// assume there's a `bar()` function defined

{
 foo: bar()
}

A lot of developers assume that the { .. } pair is just a standalone object literal that doesn't get assigned
anywhere. But it's actually entirely different.

Here, { .. } is just a regular code block. It's not very idiomatic in JavaScript (much more so in other
languages!) to have a standalone { .. } block like that, but it's perfectly valid JS grammar. It can be especially
helpful when combined with let block-scoping declarations (see the Scope & Closures title in this series).

The { .. } code block here is functionally pretty much identical to the code block being attached to some
statement, like a for/while loop, if conditional, etc.

But if it's a normal block of code, what's that bizarre looking foo: bar() syntax, and how is that legal?

It's because of a little known (and, frankly, discouraged) feature in JavaScript called "labeled statements." foo
is a label for the statement bar() (which has omitted its trailing ; -- see "Automatic Semicolons" later in this
chapter). But what's the point of a labeled statement?

If JavaScript had a goto statement, you'd theoretically be able to say goto foo and have execution jump to
that location in code. gotos are usually considered terrible coding idioms as they make code much harder to
understand (aka "spaghetti code"), so it's a very good thing that JavaScript doesn't have a general goto.

However, JS does support a limited, special form of goto: labeled jumps. Both the continue and break
statements can optionally accept a specified label, in which case the program flow "jumps" kind of like a goto.
Consider:

// `foo` labeled-loop
foo: for (var i=0; i<4; i++) {
 for (var j=0; j<4; j++) {
 // whenever the loops meet, continue outer loop
 if (j == i) {
 // jump to the next iteration of
 // the `foo` labeled-loop
 continue foo;
 }

 // skip odd multiples
 if ((j * i) % 2 == 1) {
 // normal (non-labeled) `continue` of inner loop
 continue;
 }

 console.log(i, j);
 }
}
// 1 0

88 Types and Grammar

// 2 0
// 2 1
// 3 0
// 3 2

Note: continue foo does not mean "go to the 'foo' labeled position to continue", but rather, "continue the
loop that is labeled 'foo' with its next iteration." So, it's not really an arbitrary goto.

As you can see, we skipped over the odd-multiple 3 1 iteration, but the labeled-loop jump also skipped
iterations 1 1 and 2 2.

Perhaps a slightly more useful form of the labeled jump is with break __ from inside an inner loop where you
want to break out of the outer loop. Without a labeled break, this same logic could sometimes be rather
awkward to write:

// `foo` labeled-loop
foo: for (var i=0; i<4; i++) {
 for (var j=0; j<4; j++) {
 if ((i * j) >= 3) {
 console.log("stopping!", i, j);
 // break out of the `foo` labeled loop
 break foo;
 }

 console.log(i, j);
 }
}
// 0 0
// 0 1
// 0 2
// 0 3
// 1 0
// 1 1
// 1 2
// stopping! 1 3

Note: break foo does not mean "go to the 'foo' labeled position to continue," but rather, "break out of the
loop/block that is labeled 'foo' and continue after it." Not exactly a goto in the traditional sense, huh?

The nonlabeled break alternative to the above would probably need to involve one or more functions, shared
scope variable access, etc. It would quite likely be more confusing than labeled break, so here using a labeled
break is perhaps the better option.

A label can apply to a non-loop block, but only break can reference such a non-loop label. You can do a labeled
break ___ out of any labeled block, but you cannot continue ___ a non-loop label, nor can you do a non-
labeled break out of a block.

function foo() {
 // `bar` labeled-block
 bar: {
 console.log("Hello");
 break bar;
 console.log("never runs");
 }
 console.log("World");
}

Types and Grammar 89

foo();
// Hello
// World

Labeled loops/blocks are extremely uncommon, and often frowned upon. It's best to avoid them if possible;
for example using function calls instead of the loop jumps. But there are perhaps some limited cases where
they might be useful. If you're going to use a labeled jump, make sure to document what you're doing with
plenty of comments!

It's a very common belief that JSON is a proper subset of JS, so a string of JSON (like {"a":42} -- notice the
quotes around the property name as JSON requires!) is thought to be a valid JavaScript program. Not true! Try
putting {"a":42} into your JS console, and you'll get an error.

That's because statement labels cannot have quotes around them, so "a" is not a valid label, and thus : can't
come right after it.

So, JSON is truly a subset of JS syntax, but JSON is not valid JS grammar by itself.

One extremely common misconception along these lines is that if you were to load a JS file into a <script
src=..> tag that only has JSON content in it (like from an API call), the data would be read as valid JavaScript
but just be inaccessible to the program. JSON-P (the practice of wrapping the JSON data in a function call, like
foo({"a":42})) is usually said to solve this inaccessibility by sending the value to one of your program's
functions.

Not true! The totally valid JSON value {"a":42} by itself would actually throw a JS error because it'd be
interpreted as a statement block with an invalid label. But foo({"a":42}) is valid JS because in it, {"a":42}
is an object literal value being passed to foo(..). So, properly said, JSON-P makes JSON into valid JS
grammar!

Blocks
Another commonly cited JS gotcha (related to coercion -- see Chapter 4) is:

[] + {}; // "[object Object]"
{} + []; // 0

This seems to imply the + operator gives different results depending on whether the first operand is the [] or
the {}. But that actually has nothing to do with it!

On the first line, {} appears in the + operator's expression, and is therefore interpreted as an actual value (an
empty object). Chapter 4 explained that [] is coerced to "" and thus {} is coerced to a string value as well:
"[object Object]".

But on the second line, {} is interpreted as a standalone {} empty block (which does nothing). Blocks don't
need semicolons to terminate them, so the lack of one here isn't a problem. Finally, + [] is an expression that
explicitly coerces (see Chapter 4) the [] to a number, which is the 0 value.

Object Destructuring
Starting with ES6, another place that you'll see { .. } pairs showing up is with "destructuring assignments"
(see the ES6 & Beyond title of this series for more info), specifically object destructuring. Consider:

function getData() {
 // ..
 return {
 a: 42,
 b: "foo"
 };

90 Types and Grammar

}

var { a, b } = getData();

console.log(a, b); // 42 "foo"

As you can probably tell, var { a , b } = .. is a form of ES6 destructuring assignment, which is roughly
equivalent to:

var res = getData();
var a = res.a;
var b = res.b;

Note: { a, b } is actually ES6 destructuring shorthand for { a: a, b: b }, so either will work, but it's
expected that the shorter { a, b } will become the preferred form.

Object destructuring with a { .. } pair can also be used for named function arguments, which is sugar for
this same sort of implicit object property assignment:

function foo({ a, b, c }) {
 // no need for:
 // var a = obj.a, b = obj.b, c = obj.c
 console.log(a, b, c);
}

foo({
 c: [1,2,3],
 a: 42,
 b: "foo"
}); // 42 "foo" [1, 2, 3]

So, the context we use { .. } pairs in entirely determines what they mean, which illustrates the difference
between syntax and grammar. It's very important to understand these nuances to avoid unexpected
interpretations by the JS engine.

else if And Optional Blocks
It's a common misconception that JavaScript has an else if clause, because you can do:

if (a) {
 // ..
}
else if (b) {
 // ..
}
else {
 // ..
}

But there's a hidden characteristic of the JS grammar here: there is no else if. But if and else statements
are allowed to omit the { } around their attached block if they only contain a single statement. You've seen
this many times before, undoubtedly:

if (a) doSomething(a);

Many JS style guides will insist that you always use { } around a single statement block, like:

if (a) { doSomething(a); }

Types and Grammar 91

However, the exact same grammar rule applies to the else clause, so the else if form you've likely always
coded is actually parsed as:

if (a) {
 // ..
}
else {
 if (b) {
 // ..
 }
 else {
 // ..
 }
}

The if (b) { .. } else { .. } is a single statement that follows the else, so you can either put the
surrounding { } in or not. In other words, when you use else if, you're technically breaking that common
style guide rule and just defining your else with a single if statement.

Of course, the else if idiom is extremely common and results in one less level of indentation, so it's
attractive. Whichever way you do it, just call out explicitly in your own style guide/rules and don't assume
things like else if are direct grammar rules.

Operator Precedence
As we covered in Chapter 4, JavaScript's version of && and || are interesting in that they select and return one
of their operands, rather than just resulting in true or false. That's easy to reason about if there are only two
operands and one operator.

var a = 42;
var b = "foo";

a && b; // "foo"
a || b; // 42

But what about when there's two operators involved, and three operands?

var a = 42;
var b = "foo";
var c = [1,2,3];

a && b || c; // ???
a || b && c; // ???

To understand what those expressions result in, we're going to need to understand what rules govern how the
operators are processed when there's more than one present in an expression.

These rules are called "operator precedence."

I bet most readers feel they have a decent grasp on operator precedence. But as with everything else we've
covered in this book series, we're going to poke and prod at that understanding to see just how solid it really
is, and hopefully learn a few new things along the way.

Recall the example from above:

var a = 42, b;
b = (a++, a);

92 Types and Grammar

a; // 43
b; // 43

But what would happen if we remove the ()?

var a = 42, b;
b = a++, a;

a; // 43
b; // 42

Wait! Why did that change the value assigned to b?

Because the , operator has a lower precedence than the = operator. So, b = a++, a is interpreted as (b =
a++), a. Because (as we explained earlier) a++ has after side effects, the assigned value to b is the value 42
before the ++ changes a.

This is just a simple matter of needing to understand operator precedence. If you're going to use , as a
statement-series operator, it's important to know that it actually has the lowest precedence. Every other
operator will more tightly bind than , will.

Now, recall this example from above:

if (str && (matches = str.match(/[aeiou]/g))) {
 // ..
}

We said the () around the assignment is required, but why? Because && has higher precedence than =, so
without the () to force the binding, the expression would instead be treated as (str && matches) =
str.match... But this would be an error, because the result of (str && matches) isn't going to be a
variable, but instead a value (in this case undefined), and so it can't be the left-hand side of an = assignment!

OK, so you probably think you've got this operator precedence thing down.

Let's move on to a more complex example (which we'll carry throughout the next several sections of this
chapter) to really test your understanding:

var a = 42;
var b = "foo";
var c = false;

var d = a && b || c ? c || b ? a : c && b : a;

d; // ??

OK, evil, I admit it. No one would write a string of expressions like that, right? Probably not, but we're going to
use it to examine various issues around chaining multiple operators together, which is a very common task.

The result above is 42. But that's not nearly as interesting as how we can figure out that answer without just
plugging it into a JS program to let JavaScript sort it out.

Let's dig in.

The first question -- it may not have even occurred to you to ask -- is, does the first part (a && b || c)
behave like (a && b) || c or like a && (b || c)? Do you know for certain? Can you even convince
yourself they are actually different?

Types and Grammar 93

(false && true) || true; // true
false && (true || true); // false

So, there's proof they're different. But still, how does false && true || true behave? The answer:

false && true || true; // true
(false && true) || true; // true

So we have our answer. The && operator is evaluated first and the || operator is evaluated second.

But is that just because of left-to-right processing? Let's reverse the order of operators:

true || false && false; // true

(true || false) && false; // false -- nope
true || (false && false); // true -- winner, winner!

Now we've proved that && is evaluated first and then ||, and in this case that was actually counter to generally
expected left-to-right processing.

So what caused the behavior? Operator precedence.

Every language defines its own operator precedence list. It's dismaying, though, just how uncommon it is that
JS developers have read JS's list.

If you knew it well, the above examples wouldn't have tripped you up in the slightest, because you'd already
know that && is more precedent than ||. But I bet a fair amount of readers had to think about it a little bit.

Note: Unfortunately, the JS spec doesn't really have its operator precedence list in a convenient, single
location. You have to parse through and understand all the grammar rules. So we'll try to lay out the more
common and useful bits here in a more convenient format. For a complete list of operator precedence, see
"Operator Precedence" on the MDN site (* https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Operators/Operator_Precedence).

Short Circuited
In Chapter 4, we mentioned in a side note the "short circuiting" nature of operators like && and ||. Let's revisit
that in more detail now.

For both && and || operators, the right-hand operand will not be evaluated if the left-hand operand is
sufficient to determine the outcome of the operation. Hence, the name "short circuited" (in that if possible, it
will take an early shortcut out).

For example, with a && b, b is not evaluated if a is falsy, because the result of the && operand is already
certain, so there's no point in bothering to check b. Likewise, with a || b, if a is truthy, the result of the
operand is already certain, so there's no reason to check b.

This short circuiting can be very helpful and is commonly used:

function doSomething(opts) {
 if (opts && opts.cool) {
 // ..
 }
}

The opts part of the opts && opts.cool test acts as sort of a guard, because if opts is unset (or is not an
object), the expression opts.cool would throw an error. The opts test failing plus the short circuiting
means that opts.cool won't even be evaluated, thus no error!

94 Types and Grammar

Similarly, you can use || short circuiting:

function doSomething(opts) {
 if (opts.cache || primeCache()) {
 // ..
 }
}

Here, we're checking for opts.cache first, and if it's present, we don't call the primeCache() function, thus
avoiding potentially unnecessary work.

Tighter Binding
But let's turn our attention back to that earlier complex statement example with all the chained operators,
specifically the ? : ternary operator parts. Does the ? : operator have more or less precedence than the &&
and || operators?

a && b || c ? c || b ? a : c && b : a

Is that more like this:

a && b || (c ? c || (b ? a : c) && b : a)

or this?

(a && b || c) ? (c || b) ? a : (c && b) : a

The answer is the second one. But why?

Because && is more precedent than ||, and || is more precedent than ? :.

So, the expression (a && b || c) is evaluated first before the ? : it participates in. Another way this is
commonly explained is that && and || "bind more tightly" than ? :. If the reverse was true, then c ? c...
would bind more tightly, and it would behave (as the first choice) like a && b || (c ? c..).

Associativity
So, the && and || operators bind first, then the ? : operator. But what about multiple operators of the same
precedence? Do they always process left-to-right or right-to-left?

In general, operators are either left-associative or right-associative, referring to whether grouping happens
from the left or from the right.

It's important to note that associativity is not the same thing as left-to-right or right-to-left processing.

But why does it matter whether processing is left-to-right or right-to-left? Because expressions can have side
effects, like for instance with function calls:

var a = foo() && bar();

Here, foo() is evaluated first, and then possibly bar() depending on the result of the foo() expression. That
definitely could result in different program behavior than if bar() was called before foo().

But this behavior is just left-to-right processing (the default behavior in JavaScript!) -- it has nothing to do with
the associativity of &&. In that example, since there's only one && and thus no relevant grouping here,
associativity doesn't even come into play.

But with an expression like a && b && c, grouping will happen implicitly, meaning that either a && b or b
&& c will be evaluated first.

Types and Grammar 95

Technically, a && b && c will be handled as (a && b) && c, because && is left-associative (so is ||, by the
way). However, the right-associative alternative a && (b && c) behaves observably the same way. For the
same values, the same expressions are evaluated in the same order.

Note: If hypothetically && was right-associative, it would be processed the same as if you manually used () to
create grouping like a && (b && c). But that still doesn't mean that c would be processed before b. Right-
associativity does not mean right-to-left evaluation, it means right-to-left grouping. Either way, regardless of
the grouping/associativity, the strict ordering of evaluation will be a, then b, then c (aka left-to-right).

So it doesn't really matter that much that && and || are left-associative, other than to be accurate in how we
discuss their definitions.

But that's not always the case. Some operators would behave very differently depending on left-associativity
vs. right-associativity.

Consider the ? : ("ternary" or "conditional") operator:

a ? b : c ? d : e;

? : is right-associative, so which grouping represents how it will be processed?

• a ? b : (c ? d : e)

• (a ? b : c) ? d : e

The answer is a ? b : (c ? d : e). Unlike with && and || above, the right-associativity here actually
matters, as (a ? b : c) ? d : e will behave differently for some (but not all!) combinations of values.

One such example:

true ? false : true ? true : true; // false

true ? false : (true ? true : true); // false
(true ? false : true) ? true : true; // true

Even more nuanced differences lurk with other value combinations, even if the end result is the same.
Consider:

true ? false : true ? true : false; // false

true ? false : (true ? true : false); // false
(true ? false : true) ? true : false; // false

From that scenario, the same end result implies that the grouping is moot. However:

var a = true, b = false, c = true, d = true, e = false;

a ? b : (c ? d : e); // false, evaluates only `a` and `b`
(a ? b : c) ? d : e; // false, evaluates `a`, `b` AND `e`

So, we've clearly proved that ? : is right-associative, and that it actually matters with respect to how the
operator behaves if chained with itself.

Another example of right-associativity (grouping) is the = operator. Recall the chained assignment example
from earlier in the chapter:

var a, b, c;

a = b = c = 42;

96 Types and Grammar

We asserted earlier that a = b = c = 42 is processed by first evaluating the c = 42 assignment, then b =
.., and finally a = ... Why? Because of the right-associativity, which actually treats the statement like this: a
= (b = (c = 42)).

Remember our running complex assignment expression example from earlier in the chapter?

var a = 42;
var b = "foo";
var c = false;

var d = a && b || c ? c || b ? a : c && b : a;

d; // 42

Armed with our knowledge of precedence and associativity, we should now be able to break down the code
into its grouping behavior like this:

((a && b) || c) ? ((c || b) ? a : (c && b)) : a

Or, to present it indented if that's easier to understand:

(
 (a && b)
 ||
 c
)
 ?
(
 (c || b)
 ?
 a
 :
 (c && b)
)
 :
a

Let's solve it now:

1. (a && b) is "foo".

2. "foo" || c is "foo".

3. For the first ? test, "foo" is truthy.

4. (c || b) is "foo".

5. For the second ? test, "foo" is truthy.

6. a is 42.

That's it, we're done! The answer is 42, just as we saw earlier. That actually wasn't so hard, was it?

Disambiguation
You should now have a much better grasp on operator precedence (and associativity) and feel much more
comfortable understanding how code with multiple chained operators will behave.

Types and Grammar 97

But an important question remains: should we all write code understanding and perfectly relying on all the
rules of operator precedence/associativity? Should we only use () manual grouping when it's necessary to
force a different processing binding/order?

Or, on the other hand, should we recognize that even though such rules are in fact learnable, there's enough
gotchas to warrant ignoring automatic precedence/associativity? If so, should we thus always use () manual
grouping and remove all reliance on these automatic behaviors?

This debate is highly subjective, and heavily symmetrical to the debate in Chapter 4 over implicit coercion.
Most developers feel the same way about both debates: either they accept both behaviors and code expecting
them, or they discard both behaviors and stick to manual/explicit idioms.

Of course, I cannot answer this question definitively for the reader here anymore than I could in Chapter 4. But
I've presented you the pros and cons, and hopefully encouraged enough deeper understanding that you can
make informed rather than hype-driven decisions.

In my opinion, there's an important middle ground. We should mix both operator precedence/associativity
and () manual grouping into our programs -- I argue the same way in Chapter 4 for healthy/safe usage of
implicit coercion, but certainly don't endorse it exclusively without bounds.

For example, if (a && b && c) .. is perfectly OK to me, and I wouldn't do if ((a && b) && c) .. just
to explicitly call out the associativity, because I think it's overly verbose.

On the other hand, if I needed to chain two ? : conditional operators together, I'd certainly use () manual
grouping to make it absolutely clear what my intended logic is.

Thus, my advice here is similar to that of Chapter 4: use operator precedence/associativity where it leads to
shorter and cleaner code, but use () manual grouping in places where it helps create clarity and reduce
confusion.

Automatic Semicolons
ASI (Automatic Semicolon Insertion) is when JavaScript assumes a ; in certain places in your JS program even
if you didn't put one there.

Why would it do that? Because if you omit even a single required ; your program would fail. Not very
forgiving. ASI allows JS to be tolerant of certain places where ; aren't commonly thought to be necessary.

It's important to note that ASI will only take effect in the presence of a newline (aka line break). Semicolons
are not inserted in the middle of a line.

Basically, if the JS parser parses a line where a parser error would occur (a missing expected ;), and it can
reasonably insert one, it does so. What's reasonable for insertion? Only if there's nothing but whitespace
and/or comments between the end of some statement and that line's newline/line break.

Consider:

var a = 42, b
c;

Should JS treat the c on the next line as part of the var statement? It certainly would if a , had come anywhere
(even another line) between b and c. But since there isn't one, JS assumes instead that there's an implied ; (at
the newline) after b. Thus, c; is left as a standalone expression statement.

Similarly:

var a = 42, b = "foo";

98 Types and Grammar

a
b // "foo"

That's still a valid program without error, because expression statements also accept ASI.

There's certain places where ASI is helpful, like for instance:

var a = 42;

do {
 // ..
} while (a) // <-- ; expected here!
a;

The grammar requires a ; after a do..while loop, but not after while or for loops. But most developers
don't remember that! So, ASI helpfully steps in and inserts one.

As we said earlier in the chapter, statement blocks do not require ; termination, so ASI isn't necessary:

var a = 42;

while (a) {
 // ..
} // <-- no ; expected here
a;

The other major case where ASI kicks in is with the break, continue, return, and (ES6) yield keywords:

function foo(a) {
 if (!a) return
 a *= 2;
 // ..
}

The return statement doesn't carry across the newline to the a *= 2 expression, as ASI assumes the ;
terminating the return statement. Of course, return statements can easily break across multiple lines, just
not when there's nothing after return but the newline/line break.

function foo(a) {
 return (
 a * 2 + 3 / 12
);
}

Identical reasoning applies to break, continue, and yield.

Error Correction
One of the most hotly contested religious wars in the JS community (besides tabs vs. spaces) is whether to rely
heavily/exclusively on ASI or not.

Most, but not all, semicolons are optional, but the two ;s in the for (..) .. loop header are required.

On the pro side of this debate, many developers believe that ASI is a useful mechanism that allows them to
write more terse (and more "beautiful") code by omitting all but the strictly required ;s (which are very few).
It is often asserted that ASI makes many ;s optional, so a correctly written program without them is no
different than a correctly written program with them.

Types and Grammar 99

On the con side of the debate, many other developers will assert that there are too many places that can be
accidental gotchas, especially for newer, less experienced developers, where unintended ;s being magically
inserted change the meaning. Similarly, some developers will argue that if they omit a semicolon, it's a flat-out
mistake, and they want their tools (linters, etc.) to catch it before the JS engine corrects the mistake under the
covers.

Let me just share my perspective. A strict reading of the spec implies that ASI is an "error correction" routine.
What kind of error, you may ask? Specifically, a parser error. In other words, in an attempt to have the parser
fail less, ASI lets it be more tolerant.

But tolerant of what? In my view, the only way a parser error occurs is if it's given an incorrect/errored
program to parse. So, while ASI is strictly correcting parser errors, the only way it can get such errors is if
there were first program authoring errors -- omitting semicolons where the grammar rules require them.

So, to put it more bluntly, when I hear someone claim that they want to omit "optional semicolons," my brain
translates that claim to "I want to write the most parser-broken program I can that will still work."

I find that to be a ludicrous position to take and the arguments of saving keystrokes and having more
"beautiful code" to be weak at best.

Furthermore, I don't agree that this is the same thing as the spaces vs tabs debate -- that it's purely cosmetic --
but rather I believe it's a fundamental question of writing code that adheres to grammar requirements vs. code
that relies on grammar exceptions to just barely skate through.

Another way of looking at it is that relying on ASI is essentially considering newlines to be significant
"whitespace." Other languages like Python have true significant whitespace. But is it really appropriate to
think of JavaScript as having significant newlines as it stands today?

My take: use semicolons wherever you know they are "required," and limit your assumptions about ASI to a
minimum.

But don't just take my word for it. Back in 2012, creator of JavaScript Brendan Eich said
(http://brendaneich.com/2012/04/the-infernal-semicolon/) the following:

The moral of this story: ASI is (formally speaking) a syntactic error correction procedure. If you start to code as if it were a
universal significant-newline rule, you will get into trouble. .. I wish I had made newlines more significant in JS back in those ten
days in May, 1995. .. Be careful not to use ASI as if it gave JS significant newlines.

Errors
Not only does JavaScript have different subtypes of errors (TypeError, ReferenceError, SyntaxError, etc.),
but also the grammar defines certain errors to be enforced at compile time, as compared to all other errors
that happen during runtime.

In particular, there have long been a number of specific conditions that should be caught and reported as
"early errors" (during compilation). Any straight-up syntax error is an early error (e.g., a = ,), but also the
grammar defines things that are syntactically valid but disallowed nonetheless.

Since execution of your code has not begun yet, these errors are not catchable with try..catch; they will just
fail the parsing/compilation of your program.

Tip: There's no requirement in the spec about exactly how browsers (and developer tools) should report
errors. So you may see variations across browsers in the following error examples, in what specific subtype of
error is reported or what the included error message text will be.

One simple example is with syntax inside a regular expression literal. There's nothing wrong with the JS
syntax here, but the invalid regex will throw an early error:

var a = /+foo/; // Error!

100 Types and Grammar

The target of an assignment must be an identifier (or an ES6 destructuring expression that produces one or
more identifiers), so a value like 42 in that position is illegal and can be reported right away:

var a;
42 = a; // Error!

ES5's strict mode defines even more early errors. For example, in strict mode, function parameter names
cannot be duplicated:

function foo(a,b,a) { } // just fine

function bar(a,b,a) { "use strict"; } // Error!

Another strict mode early error is an object literal having more than one property of the same name:

(function(){
 "use strict";

 var a = {
 b: 42,
 b: 43
 }; // Error!
})();

Note: Semantically speaking, such errors aren't technically syntax errors but more grammar errors -- the
above snippets are syntactically valid. But since there is no GrammarError type, some browsers use
SyntaxError instead.

Using Variables Too Early
ES6 defines a (frankly confusingly named) new concept called the TDZ ("Temporal Dead Zone").

The TDZ refers to places in code where a variable reference cannot yet be made, because it hasn't reached its
required initialization.

The most clear example of this is with ES6 let block-scoping:

{
 a = 2; // ReferenceError!
 let a;
}

The assignment a = 2 is accessing the a variable (which is indeed block-scoped to the { .. } block) before
it's been initialized by the let a declaration, so it's in the TDZ for a and throws an error.

Interestingly, while typeof has an exception to be safe for undeclared variables (see Chapter 1), no such
safety exception is made for TDZ references:

{
 typeof a; // undefined
 typeof b; // ReferenceError! (TDZ)
 let b;
}

Function Arguments
Another example of a TDZ violation can be seen with ES6 default parameter values (see the ES6 & Beyond title
of this series):

Types and Grammar 101

var b = 3;

function foo(a = 42, b = a + b + 5) {
 // ..
}

The b reference in the assignment would happen in the TDZ for the parameter b (not pull in the outer b
reference), so it will throw an error. However, the a in the assignment is fine since by that time it's past the
TDZ for parameter a.

When using ES6's default parameter values, the default value is applied to the parameter if you either omit an
argument, or you pass an undefined value in its place:

function foo(a = 42, b = a + 1) {
 console.log(a, b);
}

foo(); // 42 43
foo(undefined); // 42 43
foo(5); // 5 6
foo(void 0, 7); // 42 7
foo(null); // null 1

Note: null is coerced to a 0 value in the a + 1 expression. See Chapter 4 for more info.

From the ES6 default parameter values perspective, there's no difference between omitting an argument and
passing an undefined value. However, there is a way to detect the difference in some cases:

function foo(a = 42, b = a + 1) {
 console.log(
 arguments.length, a, b,
 arguments[0], arguments[1]
);
}

foo(); // 0 42 43 undefined undefined
foo(10); // 1 10 11 10 undefined
foo(10, undefined); // 2 10 11 10 undefined
foo(10, null); // 2 10 null 10 null

Even though the default parameter values are applied to the a and b parameters, if no arguments were passed
in those slots, the arguments array will not have entries.

Conversely, if you pass an undefined argument explicitly, an entry will exist in the arguments array for that
argument, but it will be undefined and not (necessarily) the same as the default value that was applied to the
named parameter for that same slot.

While ES6 default parameter values can create divergence between the arguments array slot and the
corresponding named parameter variable, this same disjointedness can also occur in tricky ways in ES5:

function foo(a) {
 a = 42;
 console.log(arguments[0]);
}

foo(2); // 42 (linked)
foo(); // undefined (not linked)

102 Types and Grammar

If you pass an argument, the arguments slot and the named parameter are linked to always have the same
value. If you omit the argument, no such linkage occurs.

But in strict mode, the linkage doesn't exist regardless:

function foo(a) {
 "use strict";
 a = 42;
 console.log(arguments[0]);
}

foo(2); // 2 (not linked)
foo(); // undefined (not linked)

It's almost certainly a bad idea to ever rely on any such linkage, and in fact the linkage itself is a leaky
abstraction that's exposing an underlying implementation detail of the engine, rather than a properly designed
feature.

Use of the arguments array has been deprecated (especially in favor of ES6 ... rest parameters -- see the ES6
& Beyond title of this series), but that doesn't mean that it's all bad.

Prior to ES6, arguments is the only way to get an array of all passed arguments to pass along to other
functions, which turns out to be quite useful. You can also mix named parameters with the arguments array
and be safe, as long as you follow one simple rule: never refer to a named parameter and its
corresponding arguments slot at the same time. If you avoid that bad practice, you'll never expose the
leaky linkage behavior.

function foo(a) {
 console.log(a + arguments[1]); // safe!
}

foo(10, 32); // 42

try..finally
You're probably familiar with how the try..catch block works. But have you ever stopped to consider the
finally clause that can be paired with it? In fact, were you aware that try only requires either catch or
finally, though both can be present if needed.

The code in the finally clause always runs (no matter what), and it always runs right after the try (and
catch if present) finish, before any other code runs. In one sense, you can kind of think of the code in a
finally clause as being in a callback function that will always be called regardless of how the rest of the block
behaves.

So what happens if there's a return statement inside a try clause? It obviously will return a value, right? But
does the calling code that receives that value run before or after the finally?

function foo() {
 try {
 return 42;
 }
 finally {
 console.log("Hello");
 }

 console.log("never runs");
}

Types and Grammar 103

console.log(foo());
// Hello
// 42

The return 42 runs right away, which sets up the completion value from the foo() call. This action
completes the try clause and the finally clause immediately runs next. Only then is the foo() function
complete, so that its completion value is returned back for the console.log(..) statement to use.

The exact same behavior is true of a throw inside try:

 function foo() {
 try {
 throw 42;
 }
 finally {
 console.log("Hello");
 }

 console.log("never runs");
}

console.log(foo());
// Hello
// Uncaught Exception: 42

Now, if an exception is thrown (accidentally or intentionally) inside a finally clause, it will override as the
primary completion of that function. If a previous return in the try block had set a completion value for the
function, that value will be abandoned.

function foo() {
 try {
 return 42;
 }
 finally {
 throw "Oops!";
 }

 console.log("never runs");
}

console.log(foo());
// Uncaught Exception: Oops!

It shouldn't be surprising that other nonlinear control statements like continue and break exhibit similar
behavior to return and throw:

for (var i=0; i<10; i++) {
 try {
 continue;
 }
 finally {
 console.log(i);
 }
}
// 0 1 2 3 4 5 6 7 8 9

104 Types and Grammar

The console.log(i) statement runs at the end of the loop iteration, which is caused by the continue
statement. However, it still runs before the i++ iteration update statement, which is why the values printed
are 0..9 instead of 1..10.

Note: ES6 adds a yield statement, in generators (see the Async & Performance title of this series) which in
some ways can be seen as an intermediate return statement. However, unlike a return, a yield isn't
complete until the generator is resumed, which means a try { .. yield .. } has not completed. So an
attached finally clause will not run right after the yield like it does with return.

A return inside a finally has the special ability to override a previous return from the try or catch
clause, but only if return is explicitly called:

function foo() {
 try {
 return 42;
 }
 finally {
 // no `return ..` here, so no override
 }
}

function bar() {
 try {
 return 42;
 }
 finally {
 // override previous `return 42`
 return;
 }
}

function baz() {
 try {
 return 42;
 }
 finally {
 // override previous `return 42`
 return "Hello";
 }
}

foo(); // 42
bar(); // undefined
baz(); // "Hello"

Normally, the omission of return in a function is the same as return; or even return undefined;, but
inside a finally block the omission of return does not act like an overriding return undefined; it just lets
the previous return stand.

In fact, we can really up the craziness if we combine finally with labeled break (discussed earlier in the
chapter):

function foo() {
 bar: {
 try {
 return 42;

Types and Grammar 105

 }
 finally {
 // break out of `bar` labeled block
 break bar;
 }
 }

 console.log("Crazy");

 return "Hello";
}

console.log(foo());
// Crazy
// Hello

But... don't do this. Seriously. Using a finally + labeled break to effectively cancel a return is doing your
best to create the most confusing code possible. I'd wager no amount of comments will redeem this code.

switch
Let's briefly explore the switch statement, a sort-of syntactic shorthand for an if..else if..else..
statement chain.

switch (a) {
 case 2:
 // do something
 break;
 case 42:
 // do another thing
 break;
 default:
 // fallback to here
}

As you can see, it evaluates a once, then matches the resulting value to each case expression (just simple
value expressions here). If a match is found, execution will begin in that matched case, and will either go until
a break is encountered or until the end of the switch block is found.

That much may not surprise you, but there are several quirks about switch you may not have noticed before.

First, the matching that occurs between the a expression and each case expression is identical to the ===
algorithm (see Chapter 4). Often times switches are used with absolute values in case statements, as shown
above, so strict matching is appropriate.

However, you may wish to allow coercive equality (aka ==, see Chapter 4), and to do so you'll need to sort of
"hack" the switch statement a bit:

var a = "42";

switch (true) {
 case a == 10:
 console.log("10 or '10'");
 break;
 case a == 42:
 console.log("42 or '42'");
 break;

106 Types and Grammar

 default:
 // never gets here
}
// 42 or '42'

This works because the case clause can have any expression (not just simple values), which means it will
strictly match that expression's result to the test expression (true). Since a == 42 results in true here, the
match is made.

Despite ==, the switch matching itself is still strict, between true and true here. If the case expression
resulted in something that was truthy but not strictly true (see Chapter 4), it wouldn't work. This can bite you
if you're for instance using a "logical operator" like || or && in your expression:

var a = "hello world";
var b = 10;

switch (true) {
 case (a || b == 10):
 // never gets here
 break;
 default:
 console.log("Oops");
}
// Oops

Since the result of (a || b == 10) is "hello world" and not true, the strict match fails. In this case, the
fix is to force the expression explicitly to be a true or false, such as case !!(a || b == 10): (see
Chapter 4).

Lastly, the default clause is optional, and it doesn't necessarily have to come at the end (although that's the
strong convention). Even in the default clause, the same rules apply about encountering a break or not:

var a = 10;

switch (a) {
 case 1:
 case 2:
 // never gets here
 default:
 console.log("default");
 case 3:
 console.log("3");
 break;
 case 4:
 console.log("4");
}
// default
// 3

Note: As discussed previously about labeled breaks, the break inside a case clause can also be labeled.

The way this snippet processes is that it passes through all the case clause matching first, finds no match, then
goes back up to the default clause and starts executing. Since there's no break there, it continues executing
in the already skipped over case 3 block, before stopping once it hits that break.

Types and Grammar 107

While this sort of round-about logic is clearly possible in JavaScript, there's almost no chance that it's going to
make for reasonable or understandable code. Be very skeptical if you find yourself wanting to create such
circular logic flow, and if you really do, make sure you include plenty of code comments to explain what you're
up to!

Review
JavaScript grammar has plenty of nuance that we as developers should spend a little more time paying closer
attention to than we typically do. A little bit of effort goes a long way to solidifying your deeper knowledge of
the language.

Statements and expressions have analogs in English language -- statements are like sentences and expressions
are like phrases. Expressions can be pure/self-contained, or they can have side effects.

The JavaScript grammar layers semantic usage rules (aka context) on top of the pure syntax. For example, { }
pairs used in various places in your program can mean statement blocks, object literals, (ES6) destructuring
assignments, or (ES6) named function arguments.

JavaScript operators all have well-defined rules for precedence (which ones bind first before others) and
associativity (how multiple operator expressions are implicitly grouped). Once you learn these rules, it's up to
you to decide if precedence/associativity are too implicit for their own good, or if they will aid in writing
shorter, clearer code.

ASI (Automatic Semicolon Insertion) is a parser-error-correction mechanism built into the JS engine, which
allows it under certain circumstances to insert an assumed ; in places where it is required, was omitted, and
where insertion fixes the parser error. The debate rages over whether this behavior implies that most ; are
optional (and can/should be omitted for cleaner code) or whether it means that omitting them is making
mistakes that the JS engine merely cleans up for you.

JavaScript has several types of errors, but it's less known that it has two classifications for errors: "early"
(compiler thrown, uncatchable) and "runtime" (try..catchable). All syntax errors are obviously early errors
that stop the program before it runs, but there are others, too.

Function arguments have an interesting relationship to their formal declared named parameters. Specifically,
the arguments array has a number of gotchas of leaky abstraction behavior if you're not careful. Avoid
arguments if you can, but if you must use it, by all means avoid using the positional slot in arguments at the
same time as using a named parameter for that same argument.

The finally clause attached to a try (or try..catch) offers some very interesting quirks in terms of
execution processing order. Some of these quirks can be helpful, but it's possible to create lots of confusion,
especially if combined with labeled blocks. As always, use finally to make code better and clearer, not more
clever or confusing.

The switch offers some nice shorthand for if..else if.. statements, but beware of many common
simplifying assumptions about its behavior. There are several quirks that can trip you up if you're not careful,
but there's also some neat hidden tricks that switch has up its sleeve!

108 Types and Grammar

Types and Grammar 109

Appendix A: Mixed Environment JavaScript
Beyond the core language mechanics we've fully explored in this book, there are several ways that your JS
code can behave differently when it runs in the real world. If JS was executing purely inside an engine, it'd be
entirely predictable based on nothing but the black-and-white of the spec. But JS pretty much always runs in
the context of a hosting environment, which exposes your code to some degree of unpredictability.

For example, when your code runs alongside code from other sources, or when your code runs in different
types of JS engines (not just browsers), there are some things that may behave differently.

We'll briefly explore some of these concerns.

Annex B (ECMAScript)
It's a little known fact that the official name of the language is ECMAScript (referring to the ECMA standards
body that manages it). What then is "JavaScript"? JavaScript is the common tradename of the language, of
course, but more appropriately, JavaScript is basically the browser implementation of the spec.

The official ECMAScript specification includes "Annex B," which discusses specific deviations from the official
spec for the purposes of JS compatibility in browsers.

The proper way to consider these deviations is that they are only reliably present/valid if your code is running
in a browser. If your code always runs in browsers, you won't see any observable difference. If not (like if it
can run in node.js, Rhino, etc.), or you're not sure, tread carefully.

The main compatibility differences:

• Octal number literals are allowed, such as 0123 (decimal 83) in non-strict mode.

• window.escape(..) and window.unescape(..) allow you to escape or unescape strings with %-
delimited hexadecimal escape sequences. For example: window.escape("?foo=97%&bar=3%")
produces "%3Ffoo%3D97%25%26bar%3D3%25".

• String.prototype.substr is quite similar to String.prototype.substring, except that instead of
the second parameter being the ending index (noninclusive), the second parameter is the length
(number of characters to include).

Web ECMAScript
The Web ECMAScript specification (http://javascript.spec.whatwg.org/) covers the differences between the
official ECMAScript specification and the current JavaScript implementations in browsers.

In other words, these items are "required" of browsers (to be compatible with each other) but are not (as of
the time of writing) listed in the "Annex B" section of the official spec:

 <!-- and --> are valid single-line comment delimiters.
 String.prototype additions for returning HTML-formatted strings: anchor(..), big(..),

blink(..), bold(..), fixed(..), fontcolor(..), fontsize(..), italics(..), link(..),
small(..), strike(..), and sub(..). Note: These are very rarely used in practice, and are
generally discouraged in favor of other built-in DOM APIs or user-defined utilities.

 RegExp extensions: RegExp.$1 .. RegExp.$9 (match-groups) and
RegExp.lastMatch/RegExp["$&"] (most recent match).

 Function.prototype additions: Function.prototype.arguments (aliases internal arguments
object) and Function.caller (aliases internal arguments.caller). Note: arguments and thus
arguments.caller are deprecated, so you should avoid using them if possible. That goes doubly so
for these aliases -- don't use them!

110 Types and Grammar

Note: Some other minor and rarely used deviations are not included in our list here. See the external "Annex
B" and "Web ECMAScript" documents for more detailed information as needed.

Generally speaking, all these differences are rarely used, so the deviations from the specification are not
significant concerns. Just be careful if you rely on any of them.

Host Objects
The well-covered rules for how variables behave in JS have exceptions to them when it comes to variables that
are auto-defined, or otherwise created and provided to JS by the environment that hosts your code (browser,
etc.) -- so called, "host objects" (which include both built-in objects and functions).

For example:

var a = document.createElement("div");

typeof a; // "object" -- as expected
Object.prototype.toString.call(a); // "[object HTMLDivElement]"

a.tagName; // "DIV"

a is not just an object, but a special host object because it's a DOM element. It has a different internal
[[Class]] value ("HTMLDivElement") and comes with predefined (and often unchangeable) properties.

Another such quirk has already been covered, in the "Falsy Objects" section in Chapter 4: some objects can
exist but when coerced to boolean they (confoundingly) will coerce to false instead of the expected true.

Other behavior variations with host objects to be aware of can include:

 not having access to normal object built-ins like toString()
 not being overwritable
 having certain predefined read-only properties
 having methods that cannot be this-overriden to other objects
 and more...

Host objects are critical to making our JS code work with its surrounding environment. But it's important to
note when you're interacting with a host object and be careful assuming its behaviors, as they will quite often
not conform to regular JS objects.

One notable example of a host object that you probably interact with regularly is the console object and its
various functions (log(..), error(..), etc.). The console object is provided by the hosting environment
specifically so your code can interact with it for various development-related output tasks.

In browsers, console hooks up to the developer tools' console display, whereas in node.js and other server-
side JS environments, console is generally connected to the standard-output (stdout) and standard-error
(stderr) streams of the JavaScript environment system process.

Global DOM Variables
You're probably aware that declaring a variable in the global scope (with or without var) creates not only a
global variable, but also its mirror: a property of the same name on the global object (window in the
browser).

But what may be less common knowledge is that (because of legacy browser behavior) creating DOM
elements with id attributes creates global variables of those same names. For example:

<div id="foo"></div>

Types and Grammar 111

And:

if (typeof foo == "undefined") {
 foo = 42; // will never run
}

console.log(foo); // HTML element

You're perhaps used to managing global variable tests (using typeof or .. in window checks) under the
assumption that only JS code creates such variables, but as you can see, the contents of your hosting HTML
page can also create them, which can easily throw off your existence check logic if you're not careful.

This is yet one more reason why you should, if at all possible, avoid using global variables, and if you have to,
use variables with unique names that won't likely collide. But you also need to make sure not to collide with
the HTML content as well as any other code.

Native Prototypes
One of the most widely known and classic pieces of JavaScript best practice wisdom is: never extend native
prototypes.

Whatever method or property name you come up with to add to Array.prototype that doesn't (yet) exist, if
it's a useful addition and well-designed, and properly named, there's a strong chance it could eventually end
up being added to the spec -- in which case your extension is now in conflict.

Here's a real example that actually happened to me that illustrates this point well.

I was building an embeddable widget for other websites, and my widget relied on jQuery (though pretty much
any framework would have suffered this gotcha). It worked on almost every site, but we ran across one where
it was totally broken.

After almost a week of analysis/debugging, I found that the site in question had, buried deep in one of its
legacy files, code that looked like this:

// Netscape 4 doesn't have Array.push
Array.prototype.push = function(item) {
 this[this.length] = item;
};

Aside from the crazy comment (who cares about Netscape 4 anymore!?), this looks reasonable, right?

The problem is, Array.prototype.push was added to the spec sometime subsequent to this Netscape 4 era
coding, but what was added is not compatible with this code. The standard push(..) allows multiple items to
be pushed at once. This hacked one ignores the subsequent items.

Basically all JS frameworks have code that relies on push(..) with multiple elements. In my case, it was code
around the CSS selector engine that was completely busted. But there could conceivably be dozens of other
places susceptible.

The developer who originally wrote that push(..) hack had the right instinct to call it push, but didn't
foresee pushing multiple elements. They were certainly acting in good faith, but they created a landmine that
didn't go off until almost 10 years later when I unwittingly came along.

There's multiple lessons to take away on all sides.

First, don't extend the natives unless you're absolutely sure your code is the only code that will ever run in
that environment. If you can't say that 100%, then extending the natives is dangerous. You must weigh the
risks.

112 Types and Grammar

Next, don't unconditionally define extensions (because you can overwrite natives accidentally). In this
particular example, had the code said this:

if (!Array.prototype.push) {
 // Netscape 4 doesn't have Array.push
 Array.prototype.push = function(item) {
 this[this.length] = item;
 };
}

The if statement guard would have only defined this hacked push() for JS environments where it didn't exist.
In my case, that probably would have been OK. But even this approach is not without risk:

1. If the site's code (for some crazy reason!) was relying on a push(..) that ignored multiple items, that
code would have been broken years ago when the standard push(..) was rolled out.

2. If any other library had come in and hacked in a push(..) ahead of this if guard, and it did so in an
incompatible way, that would have broken the site at that time.

What that highlights is an interesting question that, frankly, doesn't get enough attention from JS developers:
Should you EVER rely on native built-in behavior if your code is running in any environment where it's not
the only code present?

The strict answer is no, but that's awfully impractical. Your code usually can't redefine its own private
untouchable versions of all built-in behavior relied on. Even if you could, that's pretty wasteful.

So, should you feature-test for the built-in behavior as well as compliance-testing that it does what you expect?
And what if that test fails -- should your code just refuse to run?

// don't trust Array.prototype.push
(function(){
 if (Array.prototype.push) {
 var a = [];
 a.push(1,2);
 if (a[0] === 1 && a[1] === 2) {
 // tests passed, safe to use!
 return;
 }
 }

 throw Error(
 "Array#push() is missing/broken!"
);
})();

In theory, that sounds plausible, but it's also pretty impractical to design tests for every single built-in method.

So, what should we do? Should we trust but verify (feature- and compliance-test) everything? Should we just
assume existence is compliance and let breakage (caused by others) bubble up as it will?

There's no great answer. The only fact that can be observed is that extending native prototypes is the only way
these things bite you.

If you don't do it, and no one else does in the code in your application, you're safe. Otherwise, you should build
in at least a little bit of skepticism, pessimism, and expectation of possible breakage.

Types and Grammar 113

Having a full set of unit/regression tests of your code that runs in all known environments is one way to
surface some of these issues earlier, but it doesn't do anything to actually protect you from these conflicts.

Shims/Polyfills
It's usually said that the only safe place to extend a native is in an older (non-spec-compliant) environment,
since that's unlikely to ever change -- new browsers with new spec features replace older browsers rather
than amending them.

If you could see into the future, and know for sure what a future standard was going to be, like for
Array.prototype.foobar, it'd be totally safe to make your own compatible version of it to use now, right?

if (!Array.prototype.foobar) {
 // silly, silly
 Array.prototype.foobar = function() {
 this.push("foo", "bar");
 };
}

If there's already a spec for Array.prototype.foobar, and the specified behavior is equal to this logic,
you're pretty safe in defining such a snippet, and in that case it's generally called a "polyfill" (or "shim").

Such code is very useful to include in your code base to "patch" older browser environments that aren't
updated to the newest specs. Using polyfills is a great way to create predictable code across all your supported
environments.

Tip: ES5-Shim (https://github.com/es-shims/es5-shim) is a comprehensive collection of shims/polyfills for
bringing a project up to ES5 baseline, and similarly, ES6-Shim (https://github.com/es-shims/es6-shim)
provides shims for new APIs added as of ES6. While APIs can be shimmed/polyfilled, new syntax generally
cannot. To bridge the syntactic divide, you'll want to also use an ES6-to-ES5 transpiler like Traceur
(https://github.com/google/traceur-compiler/wiki/Getting-Started).

If there's likely a coming standard, and most discussions agree what it's going to be called and how it will
operate, creating the ahead-of-time polyfill for future-facing standards compliance is called "prollyfill"
(probably-fill).

The real catch is if some new standard behavior can't be (fully) polyfilled/prollyfilled.

There's debate in the community if a partial-polyfill for the common cases is acceptable (documenting the
parts that cannot be polyfilled), or if a polyfill should be avoided if it purely can't be 100% compliant to the
spec.

Many developers at least accept some common partial polyfills (like for instance Object.create(..)),
because the parts that aren't covered are not parts they intend to use anyway.

Some developers believe that the if guard around a polyfill/shim should include some form of conformance
test, replacing the existing method either if it's absent or fails the tests. This extra layer of compliance testing
is sometimes used to distinguish "shim" (compliance tested) from "polyfill" (existence checked).

The only absolute take-away is that there is no absolute right answer here. Extending natives, even when done
"safely" in older environments, is not 100% safe. The same goes for relying upon (possibly extended) natives
in the presence of others' code.

Either should always be done with caution, defensive code, and lots of obvious documentation about the risks.

114 Types and Grammar

<script>s
Most browser-viewed websites/applications have more than one file that contains their code, and it's common
to have a few or several <script src=..></script> elements in the page that load these files separately,
and even a few inline-code <script> .. </script> elements as well.

But do these separate files/code snippets constitute separate programs or are they collectively one JS
program?

The (perhaps surprising) reality is they act more like independent JS programs in most, but not all, respects.

The one thing they share is the single global object (window in the browser), which means multiple files can
append their code to that shared namespace and they can all interact.

So, if one script element defines a global function foo(), when a second script later runs, it can access and
call foo() just as if it had defined the function itself.

But global variable scope hoisting (see the Scope & Closures title of this series) does not occur across these
boundaries, so the following code would not work (because foo()'s declaration isn't yet declared), regardless
of if they are (as shown) inline <script> .. </script> elements or externally loaded <script
src=..></script> files:

<script>foo();</script>

<script>
 function foo() { .. }
</script>

But either of these would work instead:

<script>
 foo();
 function foo() { .. }
</script>

Or:

<script>
 function foo() { .. }
</script>

<script>foo();</script>

Also, if an error occurs in a script element (inline or external), as a separate standalone JS program it will fail
and stop, but any subsequent scripts will run (still with the shared global) unimpeded.

You can create script elements dynamically from your code, and inject them into the DOM of the page, and
the code in them will behave basically as if loaded normally in a separate file:

var greeting = "Hello World";

var el = document.createElement("script");

el.text = "function foo(){ alert(greeting);\
 } setTimeout(foo, 1000);";

document.body.appendChild(el);

Types and Grammar 115

Note: Of course, if you tried the above snippet but set el.src to some file URL instead of setting el.text to
the code contents, you'd be dynamically creating an externally loaded <script src=..></script> element.

One difference between code in an inline code block and that same code in an external file is that in the inline
code block, the sequence of characters </script> cannot appear together, as (regardless of where it appears)
it would be interpreted as the end of the code block. So, beware of code like:

<script>
 var code = "<script>alert('Hello World')</script>";
</script>

It looks harmless, but the </script> appearing inside the string literal will terminate the script block
abnormally, causing an error. The most common workaround is:

"</sc" + "ript>";

Also, beware that code inside an external file will be interpreted in the character set (UTF-8, ISO-8859-8, etc.)
the file is served with (or the default), but that same code in an inline script element in your HTML page will
be interpreted by the character set of the page (or its default).

Warning: The charset attribute will not work on inline script elements.

Another deprecated practice with inline script elements is including HTML-style or X(HT)ML-style
comments around inline code, like:

<script>
<!--
alert("Hello");
//-->
</script>

<script>
<!--//--><![CDATA[//><!--
alert("World");
//--><!]]>
</script>

Both of these are totally unnecessary now, so if you're still doing that, stop it!

Note: Both <!-- and --> (HTML-style comments) are actually specified as valid single-line comment
delimiters (var x = 2; <!-- valid comment and --> another valid line comment) in JavaScript
(see the "Web ECMAScript" section earlier), purely because of this old technique. But never use them.

Reserved Words
The ES5 spec defines a set of "reserved words" in Section 7.6.1 that cannot be used as standalone variable
names. Technically, there are four categories: "keywords", "future reserved words", the null literal, and the
true / false boolean literals.

Keywords are the obvious ones like function and switch. Future reserved words include things like enum,
though many of the rest of them (class, extends, etc.) are all now actually used by ES6; there are other
strict-mode only reserved words like interface.

StackOverflow user "art4theSould" creatively worked all these reserved words into a fun little poem
(http://stackoverflow.com/questions/26255/reserved-keywords-in-javascript/12114140#12114140):

Let this long package float, Goto private class if short. While protected with debugger case, Continue volatile interface.
Instanceof super synchronized throw, Extends final export throws.

116 Types and Grammar

Try import double enum?

• False, boolean, abstract function, Implements typeof transient break! Void static, default do, Switch int native new. Else,
delete null public var In return for const, true, char …Finally catch byte.

Note: This poem includes words that were reserved in ES3 (byte, long, etc.) that are no longer reserved as of
ES5.

Prior to ES5, the reserved words also could not be property names or keys in object literals, but that
restriction no longer exists.

So, this is not allowed:

var import = "42";

But this is allowed:

var obj = { import: "42" };
console.log(obj.import);

You should be aware though that some older browser versions (mainly older IE) weren't completely
consistent on applying these rules, so there are places where using reserved words in object property name
locations can still cause issues. Carefully test all supported browser environments.

Implementation Limits
The JavaScript spec does not place arbitrary limits on things such as the number of arguments to a function or
the length of a string literal, but these limits exist nonetheless, because of implementation details in different
engines.

For example:

function addAll() {
 var sum = 0;
 for (var i=0; i < arguments.length; i++) {
 sum += arguments[i];
 }
 return sum;
}

var nums = [];
for (var i=1; i < 100000; i++) {
 nums.push(i);
}

addAll(2, 4, 6); // 12
addAll.apply(null, nums); // should be: 499950000

In some JS engines, you'll get the correct 499950000 answer, but in others (like Safari 6.x), you'll get the error:
"RangeError: Maximum call stack size exceeded."

Examples of other limits known to exist:

 maximum number of characters allowed in a string literal (not just a string value)
 size (bytes) of data that can be sent in arguments to a function call (aka stack size)
 number of parameters in a function declaration
 maximum depth of non-optimized call stack (i.e., with recursion): how long a chain of function calls

from one to the other can be
 number of seconds a JS program can run continuously blocking the browser

Types and Grammar 117

 maximum length allowed for a variable name
 ...

It's not very common at all to run into these limits, but you should be aware that limits can and do exist, and
importantly that they vary between engines.

Review
We know and can rely upon the fact that the JS language itself has one standard and is predictably
implemented by all the modern browsers/engines. This is a very good thing!

But JavaScript rarely runs in isolation. It runs in an environment mixed in with code from third-party libraries,
and sometimes it even runs in engines/environments that differ from those found in browsers.

Paying close attention to these issues improves the reliability and robustness of your code.

