O'REILLY" ., . _
When you sftrive to comprehend your code, you create better

work and become better at what you do. The code isn't just
your job anymore, it's your craft. This is why | fove Up & Going”
~JENN LUKAS, frontend consultant

KYLE SIMPSON

UP &
GOING

Table of Contents

Chapter 1: INTO ProgramINiNg ... siusesssssessssssasssssssssssssssssssssasssssssssssssssssssssssssssssssssssssessssasssssssisssssssssssssas s s s ssssasassssnsseses 1
COA @ttt ettt et a et R R AR R SRR AR R £ LR E AR AR AR LR AR SRR AR AR AR 1
) 2= L) 1= PSP 1
D04 0]) (0] PP 2
oL L0 oY= 0T 4 = o P 2
TP T Y OUISEIE ..ottt ettt £ s R s R AR bR AR Rt a b 2
0 0 LSNP 3
0] 0] LT 4
00 =) L0 TSP 5
VALUES & TYPES coureeureemseemseerrerssensseesseeseesssesssesssessssesssesssesssesssessssssssssssessseesseesssesssessseesseesssssssesssesssessseesssesssessseesssesssesssesssesssesssessssesssessseeeas 6
Converting BEtWEEN TYPES .. s b 7
COAE COIMIMEINLS wouvvuserseeserseesseesseseseesssesssesssessseesssesssasssasssessssesssesssesssnesssesssessseessessssesssesssesssessssesssesssesssessssesssesssesssnssssesssesssessssssssesasesanes 8
VATTADIES. ...ttt s et e es s bbb s RS R £ ER £ AR R R £ ER AR AR R R R AR AR R e R 9
BLOCKS woueuitriuteuet et teset ettt e as bbb bR R £ AR R AR R AR AR R R R EAe e R 11
(000 0o 11 U0 1 | L3 PP SPTPPTON 11
LLOOPS curerireureeeriusessseusesssesses e s s AR AR AR AR R AR AR AR AR R 12
D0 L 0) 0 1P 14
N 0) PP 15

20 = U1 0 (o 16
2 C A 1= 18
Chapter 2: INTO JAVASCIIPT .o sssssssssssss s asas s SRR AR AR RS 19
VALUES & TYPES courreuremseerseersreesseesseesseesssessseessessseesssesssesssessseesssssssssssesseesssesssessseessessssesasesssessseesssesssessseesseesssesssesssesssessssesssessseessessasesaessses 19
00 =T o 3PP 20
BUIIE-IN TYPE METNOAS ...ttt ecs e s es s ss s s AR AR 22
COMPATINE VAIUES ..oovceeeemresseeseereesreesseesseesseesssessseessessssesssesssesssesssessssesssssssessseesssesssessseesseesssesasesssessseessessssesssessseesssesasesssesssasssessanees 23

[T U Lo (=P PP 26
FUNCLION SCOPES .ot ssss s s s s s e e e e et 26
(000 06 L [0 2 | £ S0 T PO T O PO 28
SETICE MOAE c.oueeetreeeetceeiect sttt s bbb s s bR R E £ A £ £ A s bbbt 29
FUNCHIONS AS VAIUES..... oottt sessesse s ss s ss s s sse s s £ R s R s Rt 30
Immediately Invoked Function EXpressions (IIFES) ...t sseessesssessesssessessssssssssesns 31
CLOSUT ce.vucerereeseeaeseesseesse s ssesss e s ssesse s s s eSS 4RSS E AR bbb s 32

Ll R (o U3 0 1 (=) oo P O STOPTOPTOPTT 34
0074 011N 35
O & NEW ..ceeeetreeeieeeeeeet et ese et es e es s s b s R £ ER £ AR R £ R4 £ AR AR AR R EA s R R Rt 36
POIY I covvvevueeeeeeseeeetessees sttt es et e s 8RR AR AR R e 36
00 V015314 PP 37
A0 4B 2N Yol o PPN 38
2 C A 1= PP 39
(081 B Y 01 i L L0304 D U, 41
SCOPE & CLOSUIES...eurreuserserserueeseesseesseesssesssessseesseesssesssesssesssessssssssesssesssessse s sssees s E s AR SRR LR R AR RS E e E AR bR e R 41
L0 0D R] o) (=T o o0 074 0= PSP 41
074 LTI 0 = 0011 0= P 42
ASYNC & PETTOITNIANICE ..cvuveeerreeseeseersensreesseesseesseesssesssssssess s sssesssess s sss s s8R E R R R R AR R R e 42
DTSRRI 2=) o TP TP 43
2 C A 1= PP 44

Up and Going i

ii

Up and Going

Chapter 1: Into Programming
Welcome to the You Don't Know JS (YDK]S) series.

Up & Going is an introduction to several basic concepts of programming -- of course we lean toward JavaScript
(often abbreviated]S) specifically -- and how to approach and understand the rest of the titles in this series.
Especially if you're just getting into programming and/or JavaScript, this book will briefly explore what you
need to get up and going.

This book starts off explaining the basic principles of programming at a very high level. It's mostly intended if
you are starting YDK]JS with little to no prior programming experience, and are looking to these books to help
get you started along a path to understanding programming through the lens of JavaScript.

Chapter 1 should be approached as a quick overview of the things you'll want to learn more about and practice
to get into programming. There are also many other fantastic programming introduction resources that can
help you dig into these topics further, and I encourage you to learn from them in addition to this chapter.

Once you feel comfortable with general programming basics, Chapter 2 will help guide you to a familiarity
with JavaScript's flavor of programming. Chapter 2 introduces what JavaScript is about, but again, it's not a
comprehensive guide -- that's what the rest of the YDKJS books are for!

If you're already fairly comfortable with JavaScript, first check out Chapter 3 as a brief glimpse of what to
expect from YDK]JS, then jump right in!

Code

Let's start from the beginning.

A program, often referred to as source code or just code, is a set of special instructions to tell the computer
what tasks to perform. Usually code is saved in a text file, although with JavaScript you can also type code
directly into a developer console in a browser, which we'll cover shortly.

The rules for valid format and combinations of instructions is called a computer language, sometimes referred
to as its syntax, much the same as English tells you how to spell words and how to create valid sentences using
words and punctuation.

Statements
In a computer language, a group of words, numbers, and operators that performs a specific task is a statement.
In JavaScript, a statement might look as follows:

a=>b* 2;

The characters a and b are called variables (see "Variables"), which are like simple boxes you can store any of
your stuff in. In programs, variables hold values (like the number 42) to be used by the program. Think of
them as symbolic placeholders for the values themselves.

By contrast, the 2 is just a value itself, called a literal value, because it stands alone without being stored in a
variable.

The = and * characters are operators (see "Operators") -- they perform actions with the values and variables
such as assignment and mathematic multiplication.

Most statements in JavaScript conclude with a semicolon (;) at the end.

The statementa = b * 2; tells the computer, roughly, to get the current value stored in the variable b,
multiply that value by 2, then store the result back into another variable we call a.

Up and Going 1

Programs are just collections of many such statements, which together describe all the steps that it takes to
perform your program's purpose.

Expressions
Statements are made up of one or more expressions. An expression is any reference to a variable or value, or a
set of variable(s) and value(s) combined with operators.

For example:
a=>b* 2;
This statement has four expressions in it:

2 is a literal value expression

b is a variable expression, which means to retrieve its current value

b * 2isan arithmetic expression, which means to do the multiplication

a = b * 2isan assignment expression, which means to assign the result of the b * 2 expression to the
variable a (more on assignments later)

A general expression that stands alone is also called an expression statement, such as the following:
b * 2;

This flavor of expression statement is not very common or useful, as generally it wouldn't have any effect on
the running of the program -- it would retrieve the value of b and multiply it by 2, but then wouldn't do
anything with that result.

A more common expression statement is a call expression statement (see "Functions"), as the entire statement
is the function call expression itself:

alert(a);

Executing a Program
How do those collections of programming statements tell the computer what to do? The program needs to be
executed, also referred to as running the program.

Statements likea = b * 2 are helpful for developers when reading and writing, but are not actually in a form
the computer can directly understand. So a special utility on the computer (either an interpreter or a compiler)
is used to translate the code you write into commands a computer can understand.

For some computer languages, this translation of commands is typically done from top to bottom, line by line,
every time the program is run, which is usually called interpreting the code.

For other languages, the translation is done ahead of time, called compiling the code, so when the program
runs later, what's running is actually the already compiled computer instructions ready to go.

It's typically asserted that JavaScript is interpreted, because your JavaScript source code is processed each
time it's run. But that's not entirely accurate. The JavaScript engine actually compiles the program on the fly
and then immediately runs the compiled code.

Note: For more information on JavaScript compiling, see the first two chapters of the Scope & Closures title of
this series.

Try It Yourself
This chapter is going to introduce each programming concept with simple snippets of code, all written in
JavaScript (obviously!).

2 Up and Going

It cannot be emphasized enough: while you go through this chapter -- and you may need to spend the time to
go over it several times -- you should practice each of these concepts by typing the code yourself. The easiest
way to do that is to open up the developer tools console in your nearest browser (Firefox, Chrome, IE, etc.).

Tip: Typically, you can launch the developer console with a keyboard shortcut or from a menu item. For more
detailed information about launching and using the console in your favorite browser, see "Mastering The
Developer Tools Console" (http://blog.teamtreehouse.com/mastering-developer-tools-console). To type
multiple lines into the console at once, use <shift> + <enter> to move to the next new line. Once you hit
<enter> by itself, the console will run everything you've just typed.

Let's get familiar with the process of running code in the console. First, I suggest opening up an empty tab in
your browser. I prefer to do this by typing about :blank into the address bar. Then, make sure your
developer console is open, as we just mentioned.

Now, type this code and see how it runs:
a = 21;

b

a * 2;
console.log(b);

Typing the preceding code into the console in Chrome should produce something like the following:

Q [] Elements Network Sources » = ﬁ- = x

A

© W <topframe> v Preserve log
a = 21;

b=ax*x 2;

console.log(b);
42 VM855:6
undefined

> |

Go on, try it. The best way to learn programming is to start coding!

Output

In the previous code snippet, we used console.log(..). Briefly, let's look at what that line of code is all
about.

You may have guessed, but that's exactly how we print text (aka output to the user) in the developer console.
There are two characteristics of that statement that we should explain.

First, the log(b) partis referred to as a function call (see "Functions"). What's happening is we're handing
the b variable to that function, which asks it to take the value of b and print it to the console.

Second, the console. partis an object reference where the 1og(. .) function is located. We cover objects and
their properties in more detail in Chapter 2.

Another way of creating output that you can see is to run an alert(..) statement. For example:

Up and Going 3

alert(b);

If you run that, you'll notice that instead of printing the output to the console, it shows a popup "OK" box with
the contents of the b variable. However, using console.log(..) is generally going to make learning about
coding and running your programs in the console easier than using alert(..), because you can output many
values at once without interrupting the browser interface.

For this book, we'll use console.log(..) for output.

Input
While we're discussing output, you may also wonder about input (i.e., receiving information from the user).

The most common way that happens is for the HTML page to show form elements (like text boxes) to a user
that they can type into, and then using JS to read those values into your program's variables.

But there's an easier way to get input for simple learning and demonstration purposes such as what you'll be
doing throughout this book. Use the prompt(. .) function:

age = prompt("Please tell me your age:");
console.log(age);

As you may have guessed, the message you pass to prompt(..) -- in this case, "Please tell me your
age:" -- is printed into the popup.

This should look similar to the following:

Q [] Elements Network Sources » >x= £ =, x
© W <topframe> v Preserve log

> age = prompt("Please tell me your age:");

console.log(age);
> |

JavaScript

\ Please tell me your age:

35| |
| Cancel I[oK]

Once you submit the input text by clicking "OK," you'll observe that the value you typed is stored in the age
variable, which we then output with console.log(..):

4 Up and Going

Q [] Elements Network Sources » = # =, x

© W <topframe> v [Preserve log

age = prompt("Please tell me your age:");

console.log(age);
35 VM848:4
undefined

> |

To keep things simple while we're learning basic programming concepts, the examples in this book will not
require input. But now that you've seen how to use prompt (. .), if you want to challenge yourself you can try
to use input in your explorations of the examples.

Operators

Operators are how we perform actions on variables and values. We've already seen two JavaScript operators,
the = and the *.

The * operator performs mathematic multiplication. Simple enough, right?

The = equals operator is used for assignment -- we first calculate the value on the right-hand side (source
value) of the = and then put it into the variable that we specify on the left-hand side (target variable).

Warning: This may seem like a strange reverse order to specify assignment. Instead of a = 42, some might
prefer to flip the order so the source value is on the left and the target variable is on the right, like 42 -> a
(this is not valid JavaScript!). Unfortunately, the a = 42 ordered form, and similar variations, is quite
prevalent in modern programming languages. If it feels unnatural, just spend some time rehearsing that
ordering in your mind to get accustomed to it.

Consider:
a = 2;
b=a+1;

Here, we assign the 2 value to the a variable. Then, we get the value of the a variable (still 2), add 1 to it
resulting in the value 3, then store that value in the b variable.

While not technically an operator, you'll need the keyword var in every program, as it's the primary way you
declare (aka create) variables (see "Variables").

You should always declare the variable by name before you use it. But you only need to declare a variable once
for each scope (see "Scope"); it can be used as many times after that as needed. For example:

var a = 20;

a =a 1;
a=a*2;

+

console.log(a); // 42

Here are some of the most common operators in JavaScript:

Up and Going 5

. Assignment: =asina = 2.

. Math: + (addition), - (subtraction), * (multiplication), and / (division),asina * 3.

. Compound Assignment: +=, -=, *=, and /= are compound operators that combine a math operation with
assignment,asina += 2 (sameasa = a + 2).

. Increment/Decrement: ++ (increment), - - (decrement), as in a++ (similartoa = a + 1).

e Object Property Access: . as in console.log().

Objects are values that hold other values at specific named locations called properties. obj.a means an
object value called obj with a property of the name a. Properties can alternatively be accessed as
obj["a"]. See Chapter 2.

Equality: == (loose-equals), === (strict-equals), ! = (loose not-equals), ! == (strict not-equals), asina ==
b.

See "Values & Types" and Chapter 2.

. Comparison: < (less than), > (greater than), <= (less than or loose-equals), >= (greater than or loose-
equals),asina<=b.

See "Values & Types" and Chapter 2.
. Logical: && (and), || (or), as in a || b that selects either a or b.

These operators are used to express compound conditionals (see "Conditionals"), like if either a or b is
true.

Note: For much more detail, and coverage of operators not mentioned here, see the Mozilla Developer
Network (MDN)'s "Expressions and Operators" (https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Guide/ExpressionsandOperators).

Values & Types

If you ask an employee at a phone store how much a certain phone costs, and they say "ninety-nine, ninety-
nine" (i.e,, $99.99), they're giving you an actual numeric dollar figure that represents what you'll need to pay
(plus taxes) to buy it. If you want to buy two of those phones, you can easily do the mental math to double that
value to get $199.98 for your base cost.

If that same employee picks up another similar phone but says it's "free" (perhaps with air quotes), they're not
giving you a number, but instead another kind of representation of your expected cost ($0.00) -- the word
"free."

When you later ask if the phone includes a charger, that answer could only have been either "yes" or "no."

In very similar ways, when you express values in a program, you choose different representations for those
values based on what you plan to do with them.

These different representations for values are called types in programming terminology. JavaScript has built-in
types for each of these so called primitive values:

¢ When you need to do math, you want a number.

¢ When you need to print a value on the screen, you need a string (one or more characters, words,
sentences).

¢ When you need to make a decision in your program, you need a boolean (true or false).

Values that are included directly in the source code are called literals. string literals are surrounded by
double quotes "..." orsingle quotes (' ... ") -- the only difference is stylistic preference. number and
boolean literals are just presented as is (i.e., 42, true, etc.).

6 Up and Going

Consider:

"I am a string";
'I am also a string';

42;

true;
false;

Beyond string/number/boolean value types, it's common for programming languages to provide arrays,
objects, functions, and more. We'll cover much more about values and types throughout this chapter and the
next.

Converting Between Types

If you have a number but need to print it on the screen, you need to convert the value to a string, and in
JavaScript this conversion is called "coercion."” Similarly, if someone enters a series of numeric characters into
a form on an ecommerce page, that's a string, but if you need to then use that value to do math operations,
you need to coerce it to a number.

JavaScript provides several different facilities for forcibly coercing between types. For example:

var a = "42";
var b = Number(a);

console.log(a);
console.log(b);

Using Number (. .) (a built-in function) as shown is an explicit coercion from any other type to the number
type. That should be pretty straightforward.

But a controversial topic is what happens when you try to compare two values that are not already of the same
type, which would require implicit coercion.

When comparing the string "99.99" to the number 99. 99, most people would agree they are equivalent. But
they're not exactly the same, are they? It's the same value in two different representations, two different types.
You could say they're "loosely equal,” couldn't you?

To help you out in these common situations, JavaScript will sometimes kick in and implicitly coerce values to
the matching types.

So if you use the == loose equals operator to make the comparison "99.99" == 99.99, JavaScript will
convert the left-hand side "99.99" to its number equivalent 99.99. The comparison then becomes 99.99 ==
99.99, which is of course true.

While designed to help you, implicit coercion can create confusion if you haven't taken the time to learn the
rules that govern its behavior. Most JS developers never have, so the common feeling is that implicit coercion
is confusing and harms programs with unexpected bugs, and should thus be avoided. It's even sometimes
called a flaw in the design of the language.

However, implicit coercion is a mechanism that can be learned, and moreover should be learned by anyone
wishing to take JavaScript programming seriously. Not only is it not confusing once you learn the rules, it can
actually make your programs better! The effort is well worth it.

Note: For more information on coercion, see Chapter 2 of this title and Chapter 4 of the Types & Grammar title
of this series.

Up and Going 7

Code Comments

The phone store employee might jot down some notes on the features of a newly released phone or on the
new plans her company offers. These notes are only for the employee -- they're not for customers to read.
Nevertheless, these notes help the employee do her job better by documenting the hows and whys of what she
should tell customers.

One of the most important lessons you can learn about writing code is that it's not just for the computer. Code
is every bit as much, if not more, for the developer as it is for the compiler.

Your computer only cares about machine code, a series of binary 0s and 1s, that comes from compilation.
There's a nearly infinite number of programs you could write that yield the same series of 0s and 1s. The
choices you make about how to write your program matter -- not only to you, but to your other team members
and even to your future self.

You should strive not just to write programs that work correctly, but programs that make sense when
examined. You can go a long way in that effort by choosing good names for your variables (see "Variables")
and functions (see "Functions").

But another important part is code comments. These are bits of text in your program that are inserted purely
to explain things to a human. The interpreter/compiler will always ignore these comments.

There are lots of opinions on what makes well-commented code; we can't really define absolute universal
rules. But some observations and guidelines are quite useful:

¢ Code without comments is suboptimal.
¢ Too many comments (one per line, for example) is probably a sign of poorly written code.
. Comments should explain why, not what. They can optionally explain how if that's particularly confusing.

In JavaScript, there are two types of comments possible: a single-line comment and a multiline comment.

Consider:

The // single-line comment is appropriate if you're going to put a comment right above a single statement, or
even at the end of a line. Everything on the line after the // is treated as the comment (and thus ignored by the
compiler), all the way to the end of the line. There's no restriction to what can appear inside a single-line
comment.

Consider:
var a = 42;

The /* .. */ multiline comment is appropriate if you have several lines worth of explanation to make in
your comment.

Here's a common usage of multiline comments:

var a = 42;

8 Up and Going

It can also appear anywhere on a line, even in the middle of a line, because the */ ends it. For example:
var a = 42,
console.log(a);

The only thing that cannot appear inside a multiline comment is a */, because that would be interpreted to
end the comment.

You will definitely want to begin your learning of programming by starting off with the habit of commenting
code. Throughout the rest of this chapter, you'll see I use comments to explain things, so do the same in your
own practice. Trust me, everyone who reads your code will thank you!

Variables

Most useful programs need to track a value as it changes over the course of the program, undergoing different
operations as called for by your program's intended tasks.

The easiest way to go about that in your program is to assign a value to a symbolic container, called a variable -
- so called because the value in this container can vary over time as needed.

In some programming languages, you declare a variable (container) to hold a specific type of value, such as
number or string. Static typing, otherwise known as type enforcement, is typically cited as a benefit for
program correctness by preventing unintended value conversions.

Other languages emphasize types for values instead of variables. Weak typing, otherwise known as dynamic
typing, allows a variable to hold any type of value at any time. It's typically cited as a benefit for program
flexibility by allowing a single variable to represent a value no matter what type form that value may take at
any given moment in the program's logic flow.

JavaScript uses the latter approach, dynamic typing, meaning variables can hold values of any type without any
type enforcement.

As mentioned earlier, we declare a variable using the var statement -- notice there's no other type information
in the declaration. Consider this simple program:

var amount = 99.99;
amount = amount * 2;

console.log(amount);

amount = "$" + String(amount);

console.log(amount);

The amount variable starts out holding the number 99.99, and then holds the number result of amount * 2,
which is 199.98.

The first console.log(..) command has to implicitly coerce that number value to a string to print it out.

Then the statement amount = "$" + String(amount) explicitly coerces the 199.98 value to a string and
adds a "$" character to the beginning. At this point, amount now holds the string value "$199.98", so the
second console.log(..) statement doesn't need to do any coercion to print it out.

Up and Going 9

JavaScript developers will note the flexibility of using the amount variable for each of the 99.99,199.98, and
the "$199.98" values. Static-typing enthusiasts would prefer a separate variable like amountStr to hold the
final "$199.98" representation of the value, because it's a different type.

Either way, you'll note that amount holds a running value that changes over the course of the program,
illustrating the primary purpose of variables: managing program state.

In other words, state is tracking the changes to values as your program runs.

Another common usage of variables is for centralizing value setting. This is more typically called constants,
when you declare a variable with a value and intend for that value to not change throughout the program.

You declare these constants, often at the top of a program, so that it's convenient for you to have one place to
go to alter a value if you need to. By convention, JavaScript variables as constants are usually capitalized, with
underscores _ between multiple words.

Here's a silly example:

var TAX_RATE = 0.08;
var amount = 99.99;
amount = amount * 2;

amount

amount + (amount * TAX_RATE);

console.log(amount);
console.log(amount.toFixed(2));

Note: Similar to how console.log(..) is afunction log(..) accessed as an object property on the console
value, toFixed(..) here is a function that can be accessed on number values. JavaScript numbers aren't
automatically formatted for dollars -- the engine doesn't know what your intent is and there's no type for
currency. toFixed(..) lets us specify how many decimal places we'd like the number rounded to, and it
produces the string as necessary.

The TAX_RATE variable is only constant by convention -- there's nothing special in this program that prevents
it from being changed. But if the city raises the sales tax rate to 9%, we can still easily update our program by
setting the TAX_RATE assigned value to ©.09 in one place, instead of finding many occurrences of the value
0.08 strewn throughout the program and updating all of them.

The newest version of JavaScript at the time of this writing (commonly called "ES6") includes a new way to
declare constants, by using const instead of var:

const TAX_RATE = 0.08;

var amount = 99.99;

Constants are useful just like variables with unchanged values, except that constants also prevent accidentally
changing value somewhere else after the initial setting. If you tried to assign any different value to TAX_RATE
after that first declaration, your program would reject the change (and in strict mode, fail with an error -- see
"Strict Mode" in Chapter 2).

By the way, that kind of "protection” against mistakes is similar to the static-typing type enforcement, so you
can see why static types in other languages can be attractive!

10 Up and Going

Note: For more information about how different values in variables can be used in your programs, see the
Types & Grammar title of this series.

Blocks

The phone store employee must go through a series of steps to complete the checkout as you buy your new
phone.

Similarly, in code we often need to group a series of statements together, which we often call a block. In
JavaScript, a block is defined by wrapping one or more statements inside a curly-brace pair { .. }.Consider:

var amount = 99.99;

// a general block
{

amount = amount * 2;
console.log(amount); // 199.98

}

This kind of standalone { .. } general block is valid, but isn't as commonly seen in]S programs. Typically,
blocks are attached to some other control statement, such as an if statement (see "Conditionals") or a loop
(see "Loops"). For example:

var amount = 99.99;

// 1s amount big enough?

if (amount > 10) { // <-- block attached to “1if"
amount = amount * 2;
console.log(amount); // 199.98

}

We'll explain if statements in the next section, but as you can see, the { .. } block with its two statements is
attached to if (amount > 10); the statements inside the block will only be processed if the conditional
passes.

Note: Unlike most other statements like console.log(amount);, a block statement does not need a
semicolon (;) to conclude it.

Conditionals

"Do you want to add on the extra screen protectors to your purchase, for $9.99?" The helpful phone store
employee has asked you to make a decision. And you may need to first consult the current state of your wallet
or bank account to answer that question. But obviously, this is just a simple "yes or no" question.

There are quite a few ways we can express conditionals (aka decisions) in our programs.

The most common one is the if statement. Essentially, you're saying, "If this condition is true, do the
following...". For example:

var bank_balance = 302.13;
var amount = 99.99;

if (amount < bank_balance) {
console.log("I want to buy this phone!™);

}

Up and Going 11

The if statement requires an expression in between the parentheses () that can be treated as either true or
false. In this program, we provided the expression amount < bank_balance, which indeed will either
evaluate to true or false depending on the amount in the bank_balance variable.

You can even provide an alternative if the condition isn't true, called an else clause. Consider:

const ACCESSORY_PRICE = 9.99;

var bank_balance = 302.13;
var amount = 99.99;

amount = amount * 2;

if (amount < bank_balance) {
console.log("I'll take the accessory!");
amount = amount + ACCESSORY_PRICE;

}

else {
console.log("No, thanks.");
}

Here, if amount < bank_balanceis true, we'll printout "I'11l take the accessory!" and add the 9.99
to our amount variable. Otherwise, the else clause says we'll just politely respond with "No, thanks." and
leave amount unchanged.

As we discussed in "Values & Types" earlier, values that aren't already of an expected type are often coerced to
that type. The if statement expects a boolean, but if you pass it something that's not already boolean,
coercion will occur.

JavaScript defines a list of specific values that are considered "falsy" because when coerced to a boolean, they
become false -- these include values like @ and "". Any other value not on the "falsy" list is automatically
"truthy" -- when coerced to a boolean they become true. Truthy values include things like 99.99 and
"free". See "Truthy & Falsy" in Chapter 2 for more information.

Conditionals exist in other forms besides the if. For example, the switch statement can be used as a
shorthand for a series of if. .else statements (see Chapter 2). Loops (see "Loops") use a conditional to
determine if the loop should keep going or stop.

Note: For deeper information about the coercions that can occur implicitly in the test expressions of
conditionals, see Chapter 4 of the Types & Grammar title of this series.

Loops
During busy times, there's a waiting list for customers who need to speak to the phone store employee. While
there's still people on that list, she just needs to keep serving the next customer.

Repeating a set of actions until a certain condition fails -- in other words, repeating only while the condition
holds -- is the job of programming loops; loops can take different forms, but they all satisfy this basic behavior.

Aloop includes the test condition as well as a block (typicallyas { .. }).Each time the loop block executes,
that's called an iteration.

For example, the while loop and the do. .while loop forms illustrate the concept of repeating a block of
statements until a condition no longer evaluates to true:

12 Up and Going

while (numOfCustomers > 0) {
console.log("How may I help you?");

// help the customer...

numOfCustomers = numOfCustomers - 1;

}

// versus:

do {
console.log("How may I help you?");

// help the customer...

numOfCustomers = numOfCustomers - 1;
} while (numOfCustomers > 0);

The only practical difference between these loops is whether the conditional is tested before the first iteration
(while) or after the first iteration (do. .while).

In either form, if the conditional tests as false, the next iteration will not run. That means if the condition is
initially false, awhile loop will never run, buta do. .while loop will run just the first time.

Sometimes you are looping for the intended purpose of counting a certain set of numbers, like from @ to 9 (ten
numbers). You can do that by setting a loop iteration variable like i at value @ and incrementing it by 1 each
iteration.

Warning: For a variety of historical reasons, programming languages almost always count things in a zero-
based fashion, meaning starting with @ instead of 1. If you're not familiar with that mode of thinking, it can be
quite confusing at first. Take some time to practice counting starting with @ to become more comfortable with
it!

The conditional is tested on each iteration, much as if there is an implied if statement inside the loop.

We can use JavaScript's break statement to stop a loop. Also, we can observe that it's awfully easy to create a
loop that would otherwise run forever without a breaking mechanism.

Let's illustrate:
var i = 9;

// a “while..true® Loop would run forever, right?
while (true) {
// stop the Lloop?
if ((i <= 9) === false) {
break;

}

console.log(i);
i=1+1;

}

// 0123456789

Warning: This is not necessarily a practical form you'd want to use for your loops. It's presented here for
illustration purposes only.

Up and Going 13

While awhile (or do. .while) can accomplish the task manually, there's another syntactic form called a for
loop for just that purpose:

for (var i = 90; 1 <=9; i=1+ 1) {
console.log(i);

}
// 06123456789

As you can see, in both cases the conditional i <= 9 is true for the first 10 iterations (i of values @ through 9)
of either loop form, but becomes false once i is value 10.

The for loop has three clauses: the initialization clause (var 1i=0), the conditional test clause (i <= 9), and
the update clause (i = i + 1).Soif you're going to do counting with your loop iterations, for is a more
compact and often easier form to understand and write.

There are other specialized loop forms that are intended to iterate over specific values, such as the properties
of an object (see Chapter 2) where the implied conditional test is just whether all the properties have been
processed. The "loop until a condition fails" concept holds no matter what the form of the loop.

Functions

The phone store employee probably doesn't carry around a calculator to figure out the taxes and final
purchase amount. That's a task she needs to define once and reuse over and over again. Odds are, the company
has a checkout register (computer, tablet, etc.) with those "functions” built in.

Similarly, your program will almost certainly want to break up the code's tasks into reusable pieces, instead of
repeatedly repeating yourself repetitiously (pun intended!). The way to do this is to define a function.

A function is generally a named section of code that can be "called" by name, and the code inside it will be run
each time. Consider:

function printAmount() {
console.log(amount.toFixed(2));

}

var amount = 99.99;
printAmount(); // "99.99"
amount = amount * 2;

printAmount(); // "199.98"

Functions can optionally take arguments (aka parameters) -- values you pass in. And they can also optionally
return a value back.

function printAmount(amt) {
console.log(amt.toFixed(2));
}

function formatAmount() {
return "$" + amount.toFixed(2);

}

var amount = 99.99;

printAmount(amount * 2); // "199.98"
14 Up and Going

amount = formatAmount();
console.log(amount); // "$99.99"

The function printAmount (. .) takes a parameter that we call amt. The function formatAmount () returns a
value. Of course, you can also combine those two techniques in the same function.

Functions are often used for code that you plan to call multiple times, but they can also be useful just to
organize related bits of code into named collections, even if you only plan to call them once.

Consider:

const TAX_RATE = 0.08;

function calculateFinalPurchaseAmount(amt) {
// calculate the new amount with the tax
amt = amt + (amt * TAX_RATE);

// return the new amount
return amt;

}

var amount = 99.99;
amount = calculateFinalPurchaseAmount(amount);

console.log(amount.toFixed(2)); // "107.99"

Although calculateFinalPurchaseAmount(..) is only called once, organizing its behavior into a separate
named function makes the code that uses its logic (the amount = calculateFinal... statement) cleaner. If
the function had more statements in it, the benefits would be even more pronounced.

Scope

If you ask the phone store employee for a phone model that her store doesn't carry, she will not be able to sell
you the phone you want. She only has access to the phones in her store's inventory. You'll have to try another
store to see if you can find the phone you're looking for.

Programming has a term for this concept: scope (technically called lexical scope). In JavaScript, each function
gets its own scope. Scope is basically a collection of variables as well as the rules for how those variables are
accessed by name. Only code inside that function can access that function's scoped variables.

A variable name has to be unique within the same scope -- there can't be two different a variables sitting right
next to each other. But the same variable name a could appear in different scopes.

function one() {
// this “a’ only belongs to the “one()” function
var a = 1;
console.log(a);

}

function two() {
// this “a” only belongs to the "two() function
var a = 2;
console.log(a);

Up and Going 15

one(); // 1
two(); // 2

Also, a scope can be nested inside another scope, just like if a clown at a birthday party blows up one balloon
inside another balloon. If one scope is nested inside another, code inside the innermost scope can access
variables from either scope.

Consider

function outer() {
var a = 1;

function inner() {
var b = 2;

// we can access both "a and b here
console.log(a + b), // 3
}

inner();

// we can only access “a here
console.log(a); // 1

}

outer();

Lexical scope rules say that code in one scope can access variables of either that scope or any scope outside of
it.

So, code inside the inner () function has access to both variables a and b, but code in outer() has access only
to a -- it cannot access b because that variable is only inside inner().

Recall this code snippet from earlier:

const TAX_RATE = 0.08;

function calculateFinalPurchaseAmount(amt) {
// calculate the new amount with the tax
amt = amt + (amt * TAX_RATE);

// return the new amount
return amt;

}

The TAX_RATE constant (variable) is accessible from inside the calculateFinalPurchaseAmount(..)
function, even though we didn't pass it in, because of lexical scope.

Note: For more information about lexical scope, see the first three chapters of the Scope & Closures title of this
series.

Practice

There is absolutely no substitute for practice in learning programming. No amount of articulate writing on my
part is alone going to make you a programmer.

16 Up and Going

With that in mind, let's try practicing some of the concepts we learned here in this chapter. I'll give the
"requirements," and you try it first. Then consult the code listing below to see how I approached it.

Write a program to calculate the total price of your phone purchase. You will keep purchasing phones
(hint: loop!) until you run out of money in your bank account. You'll also buy accessories for each phone
as long as your purchase amount is below your mental spending threshold.

After you've calculated your purchase amount, add in the tax, then print out the calculated purchase
amount, properly formatted.

Finally, check the amount against your bank account balance to see if you can afford it or not.

You should set up some constants for the "tax rate,” "phone price," "accessory price," and "spending
threshold," as well as a variable for your "bank account balance.""

You should define functions for calculating the tax and for formatting the price with a "$" and rounding to
two decimal places.

Bonus Challenge: Try to incorporate input into this program, perhaps with the prompt (. .) covered in
"Input” earlier. You may prompt the user for their bank account balance, for example. Have fun and be

nn

creative!

OK, go ahead. Try it. Don't peek at my code listing until you've given it a shot yourself!

Note: Because this is a JavaScript book, I'm obviously going to solve the practice exercise in JavaScript. But you

can do it in another language for now if you feel more comfortable.
Here's my JavaScript solution for this exercise:

const SPENDING_THRESHOLD = 200;
const TAX_RATE = 0.08;

const PHONE_PRICE = 99.99;
const ACCESSORY_PRICE = 9.99;

var bank balance = 303.91;
var amount = 0;

function calculateTax(amount) {
return amount * TAX_ RATE;

}

function formatAmount(amount) {
return "$" + amount.toFixed(2);

}

// keep buying phones while you still have money
while (amount < bank_balance) {

// buy a new phone!

amount = amount + PHONE_PRICE;

// can we afford the accessory?
if (amount < SPENDING_THRESHOLD) {
amount = amount + ACCESSORY_PRICE;

}
}

// don't forget to pay the government, too
amount = amount + calculateTax(amount);

console.log(
"Your purchase:

+ formatAmount(amount)

Up and Going

17

)5

if (amount > bank_balance) {
console.log(
"You can't afford this purchase. :("

)5

Note: The simplest way to run this JavaScript program is to type it into the developer console of your nearest
browser.

How did you do? It wouldn't hurt to try it again now that you've seen my code. And play around with changing
some of the constants to see how the program runs with different values.

Review

Learning programming doesn't have to be a complex and overwhelming process. There are just a few basic
concepts you need to wrap your head around.

These act like building blocks. To build a tall tower, you start first by putting block on top of block on top of
block. The same goes with programming. Here are some of the essential programming building blocks:

¢ You need operators to perform actions on values.

¢ You need values and types to perform different kinds of actions like math on numbers or output with
strings.

¢ You need variables to store data (aka state) during your program's execution.
¢ You need conditionals like if statements to make decisions.

* You need loops to repeat tasks until a condition stops being true.

e You need functions to organize your code into logical and reusable chunks.

Code comments are one effective way to write more readable code, which makes your program easier to
understand, maintain, and fix later if there are problems.

Finally, don't neglect the power of practice. The best way to learn how to write code is to write code.

['m excited you're well on your way to learning how to code, now! Keep it up. Don't forget to check out other
beginner programming resources (books, blogs, online training, etc.). This chapter and this book are a great
start, but they're just a brief introduction.

The next chapter will review many of the concepts from this chapter, but from a more JavaScript-specific
perspective, which will highlight most of the major topics that are addressed in deeper detail throughout the
rest of the series.

18 Up and Going

Chapter 2: Into JavaScript

In the previous chapter, [introduced the basic building blocks of programming, such as variables, loops,
conditionals, and functions. Of course, all the code shown has been in JavaScript. But in this chapter, we want
to focus specifically on things you need to know about JavaScript to get up and going as a]S developer.

We will introduce quite a few concepts in this chapter that will not be fully explored until subsequent YDKJS
books. You can think of this chapter as an overview of the topics covered in detail throughout the rest of this
series.

Especially if you're new to JavaScript, you should expect to spend quite a bit of time reviewing the concepts
and code examples here multiple times. Any good foundation is laid brick by brick, so don't expect that you'll
immediately understand it all the first pass through.

Your journey to deeply learn JavaScript starts here.

Note: As [said in Chapter 1, you should definitely try all this code yourself as you read and work through this
chapter. Be aware that some of the code here assumes capabilities introduced in the newest version of
JavaScript at the time of this writing (commonly referred to as "ES6" for the 6th edition of ECMAScript -- the
official name of the JS specification). If you happen to be using an older, pre-ES6 browser, the code may not
work. A recent update of a modern browser (like Chrome, Firefox, or IE) should be used.

Values & Types

As we asserted in Chapter 1, JavaScript has typed values, not typed variables. The following built-in types are
available:

. string

. number

. boolean

. null and undefined
. object

. symbol (new to ES6)

JavaScript provides a typeof operator that can examine a value and tell you what type it is:

var a;

typeof a; // "undefined"

a = "hello world";

typeof a; // "string"

a = 42,

typeof a; // "number"

a = true;

typeof a; // "boolean"

a = null;

typeof a; // "object" -- weird, bug

a = undefined;
typeof a; // "undefined"

a=4{b: "c" };
typeof a; // "object"”

Up and Going 19

The return value from the typeof operator is always one of six (seven as of ES6! - the "symbol" type) string
values. That is, typeof "abc" returns "string", not string.

Notice how in this snippet the a variable holds every different type of value, and that despite appearances,
typeof ais notasking for the "type of a", but rather for the "type of the value currently in a." Only values
have types in JavaScript; variables are just simple containers for those values.

typeof null is an interesting case, because it errantly returns "object", when you'd expect it to return
"null".

Warning: This is a long-standing bug in]S, but one that is likely never going to be fixed. Too much code on the
Web relies on the bug and thus fixing it would cause a lot more bugs!

Also, note a = undefined. We're explicitly setting a to the undefined value, but that is behaviorally no
different from a variable that has no value set yet, like with the var a; line at the top of the snippet. A variable
can get to this "undefined" value state in several different ways, including functions that return no values and
usage of the void operator.

Objects

The object type refers to a compound value where you can set properties (named locations) that each hold
their own values of any type. This is perhaps one of the most useful value types in all of JavaScript.

var obj = {
a: "hello world",

b: 42,
c: true
s
obj.a;
obj.b;
obj.c;
obj["a"];
obj["b"];
obj["c"];

It may be helpful to think of this obj value visually:

obj

b: :
"hello world" 42 © true

Properties can either be accessed with dot notation (i.e., obj.a) or bracket notation (i.e, obj["a"]). Dot
notation is shorter and generally easier to read, and is thus preferred when possible.

Bracket notation is useful if you have a property name that has special characters in it, like obj["hello
world!"] -- such properties are often referred to as keys when accessed via bracket notation. The []
notation requires either a variable (explained next) or a string literal (which needs to be wrapped in "
or' .. ")

20 Up and Going

Of course, bracket notation is also useful if you want to access a property/key but the name is stored in
another variable, such as:

var obj = {
a: "hello world",

b: 42
}s
var b = "a";
obj[b];
obj["b"1;

Note: For more information on JavaScript objects, see the this & Object Prototypes title of this series,
specifically Chapter 3.

There are a couple of other value types that you will commonly interact with in JavaScript programs: array
and function. But rather than being proper built-in types, these should be thought of more like subtypes --
specialized versions of the object type.

Arrays
An array is an object that holds values (of any type) not particularly in named properties/keys, but rather in
numerically indexed positions. For example:

var arr = [
"hello world",
42,
true

1

arr[@];

arr[1];

arr[2];
arr.length;

typeof arr;
Note: Languages that start counting at zero, like JS does, use 0 as the index of the first element in the array.

It may be helpful to think of arr visually:

afr

1: 2
"hello world" 42 true

Because arrays are special objects (as typeof implies), they can also have properties, including the
automatically updated length property.

You theoretically could use an array as a normal object with your own named properties, or you could use an
object but only give it numeric properties (0, 1, etc.) similar to an array. However, this would generally be
considered improper usage of the respective types.

Up and Going 21

The best and most natural approach is to use arrays for numerically positioned values and use objects for
named properties.

Functions
The other object subtype you'll use all over your]S programs is a function:

function foo() {

return 42;
}
foo.bar = "hello world";
typeof foo; // "function"
typeof foo(); // "number"
typeof foo.bar; // "string"

Again, functions are a subtype of objects -- typeof returns "function", which implies that a functionisa
main type -- and can thus have properties, but you typically will only use function object properties (like
foo.bar) in limited cases.

Note: For more information on JS values and their types, see the first two chapters of the Types & Grammar
title of this series.

Built-In Type Methods

The built-in types and subtypes we've just discussed have behaviors exposed as properties and methods that
are quite powerful and useful.

For example:

var a = "hello world";

var b = 3.14159;

a.length; // 11
a.toUpperCase(); // "HELLO WORLD"
b.toFixed(4); // "3.1416"

The "how" behind being able to call a.toUpperCase() is more complicated than just that method existing on
the value.

Briefly, there is a String (capital S) object wrapper form, typically called a "native," that pairs with the
primitive string type; it's this object wrapper that defines the toUpperCase() method on its prototype.

When you use a primitive value like "hello world" as an object by referencing a property or method (e.g.,
a.toUpperCase() in the previous snippet),]S automatically "boxes" the value to its object wrapper
counterpart (hidden under the covers).

A string value can be wrapped by a String object, a number can be wrapped by a Number object, and a
boolean can be wrapped by a Boolean object. For the most part, you don't need to worry about or directly
use these object wrapper forms of the values -- prefer the primitive value forms in practically all cases and
JavaScript will take care of the rest for you.

Note: For more information on JS natives and "boxing," see Chapter 3 of the Types & Grammar title of this
series. To better understand the prototype of an object, see Chapter 5 of the this & Object Prototypes title of
this series.

22 Up and Going

Comparing Values

There are two main types of value comparison that you will need to make in your |S programs: equality and
inequality. The result of any comparison is a strictly boolean value (true or false), regardless of what value
types are compared.

Coercion
We talked briefly about coercion in Chapter 1, but let's revisit it here.

Coercion comes in two forms in JavaScript: explicit and implicit. Explicit coercion is simply that you can see
obviously from the code that a conversion from one type to another will occur, whereas implicit coercion is
when the type conversion can happen as more of a non-obvious side effect of some other operation.

You've probably heard sentiments like "coercion is evil" drawn from the fact that there are clearly places
where coercion can produce some surprising results. Perhaps nothing evokes frustration from developers
more than when the language surprises them.

Coercion is not evil, nor does it have to be surprising. In fact, the majority of cases you can construct with type
coercion are quite sensible and understandable, and can even be used to improve the readability of your code.
But we won't go much further into that debate -- Chapter 4 of the Types & Grammar title of this series covers
all sides.

Here's an example of explicit coercion:

var a = "42";

var b = Number(a);
a;

b;

And here's an example of implicit coercion:

l|42||3

var a
var b = a * 1;

a;
b;

Truthy & Falsy
In Chapter 1, we briefly mentioned the "truthy" and "falsy" nature of values: when a non-boolean value is
coerced to a boolean, does it become true or false, respectively?

The specific list of "falsy” values in JavaScript is as follows:

(empty string)

9, -9, NaN (invalid number)
null, undefined

false

Any value that's not on this "falsy" list is "truthy." Here are some examples of those:

. "hello"
. 42
. true

e [1L[1, "2", 3](arrays)
Up and Going 23

. { },{ a: 42 } (objects)
. function foo() { .. } (functions)

It's important to remember that a non-boolean value only follows this "truthy" /"falsy" coercion if it's actually
coerced to a boolean. It's not all that difficult to confuse yourself with a situation that seems like it's coercing
a value to a boolean when it's not.

Equality

versions of their counterparts; non-equality should not be confused with inequality.

The difference between == and === is usually characterized that == checks for value equality and === checks
for both value and type equality. However, this is inaccurate. The proper way to characterize them is that ==
checks for value equality with coercion allowed, and === checks for value equality without allowing coercion;
=== is often called "strict equality” for this reason.

Consider the implicit coercion that's allowed by the == loose-equality comparison and not allowed with the
=== strict-equality:

var a = "42";

var b = 42;

a == b;

a === b;

Inthe a == b comparison,]S notices that the types do not match, so it goes through an ordered series of steps

to coerce one or both values to a different type until the types match, where then a simple value equality can
be checked.

If you think about it, there's two possible ways a == b could give true via coercion. Either the comparison
could end up as 42 == 42 oritcould be "42" == "42".So which is it?
The answer: "42" becomes 42, to make the comparison 42 == 42.In such a simple example, it doesn't really

seem to matter which way that process goes, as the end result is the same. There are more complex cases
where it matters not just what the end result of the comparison is, but how you get there.

The a === b produces false, because the coercion is not allowed, so the simple value comparison obviously
fails. Many developers feel that === is more predictable, so they advocate always using that form and staying
away from ==. [think this view is very shortsighted. I believe == is a powerful tool that helps your program, if
you take the time to learn how it works.

We're not going to cover all the nitty-gritty details of how the coercion in == comparisons works here. Much of
it is pretty sensible, but there are some important corner cases to be careful of. You can read section 11.9.3 of
the ES5 specification (http://www.ecma-international.org/ecma-262/5.1/) to see the exact rules, and you'll
be surprised at just how straightforward this mechanism is, compared to all the negative hype surrounding it.

To boil down a whole lot of details to a few simple takeaways, and help you know whether to use == or ===in
various situations, here are my simple rules:

o [feither value (aka side) in a comparison could be the true or false value, avoid == and use ===.

o [feither value in a comparison could be one of these specific values (0, " ", or [] -- empty array), avoid
== and use ===.

e In all other cases, you're safe to use ==. Not only is it safe, but in many cases it simplifies your code in a
way that improves readability.

24 Up and Going

What these rules boil down to is requiring you to think critically about your code and about what kinds of
values can come through variables that get compared for equality. If you can be certain about the values, and
== is safe, use it! If you can't be certain about the values, use ===. It's that simple.

The ! = non-equality form pairs with ==, and the ! == form pairs with ===. All the rules and observations we
just discussed hold symmetrically for these non-equality comparisons.

You should take special note of the == and === comparison rules if you're comparing two non-primitive
values, like objects (including function and array). Because those values are actually held by reference,
both == and === comparisons will simply check whether the references match, not anything about the
underlying values.

For example, arrays are by default coerced to strings by simply joining all the values with commas (,) in
between. You might think that two arrays with the same contents would be == equal, but they're not:

var a = [1,2,3];

var b = [1,2,3];
var ¢ = "1,2,3";
a == C;
b == c;
a == b;

Note: For more information about the == equality comparison rules, see the ES5 specification (section 11.9.3)
and also consult Chapter 4 of the Types & Grammar title of this series; see Chapter 2 for more information
about values versus references.

Inequality

The <, >, <=, and >= operators are used for inequality, referred to in the specification as "relational
comparison." Typically they will be used with ordinally comparable values like numbers. It's easy to
understand that 3 < 4.

But JavaScript string values can also be compared for inequality, using typical alphabetic rules ("bar" <
"foo").

What about coercion? Similar rules as == comparison (though not exactly identical!) apply to the inequality
operators. Notably, there are no "strict inequality” operators that would disallow coercion the same way ===
"strict equality” does.

Consider:

var a = 41;
var b = "42";
var c = "43";

a < b;

b < c;

What happens here? In section 11.8.5 of the ES5 specification, it says that if both values in the < comparison
are strings, asitis withb < c, the comparison is made lexicographically (aka alphabetically like a
dictionary). But if one or both is nota string, as itis with a < b, then both values are coerced to be numbers,

and a typical numeric comparison occurs.

The biggest gotcha you may run into here with comparisons between potentially different value types --
remember, there are no "strict inequality” forms to use -- is when one of the values cannot be made into a
valid number, such as:

Up and Going 25

var a = 42;

var b = "foo";

a < b; // false
a > b; // false
a == b; // false

Wait, how can all three of those comparisons be false? Because the b value is being coerced to the "invalid
number value" NaN in the < and > comparisons, and the specification says that NaN is neither greater-than nor
less-than any other value.

The == comparison fails for a different reason. a == b could fail if it's interpreted either as 42 == NaN or
"42" == "foo" -- as we explained earlier, the former is the case.

Note: For more information about the inequality comparison rules, see section 11.8.5 of the ES5 specification
and also consult Chapter 4 of the Types & Grammar title of this series.

Variables

In JavaScript, variable names (including function names) must be valid identifiers. The strict and complete
rules for valid characters in identifiers are a little complex when you consider nontraditional characters such
as Unicode. If you only consider typical ASCII alphanumeric characters though, the rules are simple.

An identifier must start with a-z, A-Z, $, or _. It can then contain any of those characters plus the numerals 0-9.

Generally, the same rules apply to a property name as to a variable identifier. However, certain words cannot
be used as variables, but are OK as property names. These words are called "reserved words," and include the
JS keywords (for, in, if, etc.) as well as null, true, and false.

Note: For more information about reserved words, see Appendix A of the Types & Grammar title of this series.

Function Scopes
You use the var keyword to declare a variable that will belong to the current function scope, or the global
scope if at the top level outside of any function.

Hoisting
Wherever a var appears inside a scope, that declaration is taken to belong to the entire scope and accessible
everywhere throughout.

Metaphorically, this behavior is called hoisting, when a var declaration is conceptually "moved" to the top of
its enclosing scope. Technically, this process is more accurately explained by how code is compiled, but we can
skip over those details for now.

Consider:

var a = 2;

foo(); // works because “foo()"
// declaration 1s "hoisted"

function foo() {
a = 3;

console.log(a); // 3

var a; // declaration 1s "hoisted"
// to the top of “foo()

26 Up and Going

}

console.log(a); // 2

Warning: It's not common or a good idea to rely on variable hoisting to use a variable earlier in its scope than
its var declaration appears; it can be quite confusing. It's much more common and accepted to use hoisted
function declarations, as we do with the foo() call appearing before its formal declaration.

Nested Scopes
When you declare a variable, it is available anywhere in that scope, as well as any lower/inner scopes. For
example:

function foo() {
var a = 1;

function bar() {
var b = 2;

function baz() {
var c = 3;

console.log(a, b, ¢); // 1 2 3

¥
baz();
console.log(a, b); // 12
}
bar();
console.log(a); // 1
}
foo();

Notice that c is not available inside of bar (), because it's declared only inside the inner baz () scope, and that
b is not available to foo () for the same reason.

If you try to access a variable's value in a scope where it's not available, you'll get a ReferenceError thrown.
If you try to set a variable that hasn't been declared, you'll either end up creating a variable in the top-level
global scope (bad!) or getting an error, depending on "strict mode" (see "Strict Mode"). Let's take a look:

function foo() {

a=1; // ~a not formally declared
}
foo();
a; // 1 -- oops, auto global variable :(

This is a very bad practice. Don't do it! Always formally declare your variables.

In addition to creating declarations for variables at the function level, ES6 lets you declare variables to belong
to individual blocks (pairsof { .. }), using the 1let keyword. Besides some nuanced details, the scoping
rules will behave roughly the same as we just saw with functions:

function foo() {
var a = 1;

Up and Going 27

if (a >=1) {
let b = 2;

while (b < 5) {
let c = b * 2;
b++;

console.log(a + ¢);

}

foo();
// 579

Because of using let instead of var, b will belong only to the if statement and thus not to the whole foo()
function's scope. Similarly, c belongs only to the while loop. Block scoping is very useful for managing your
variable scopes in a more fine-grained fashion, which can make your code much easier to maintain over time.

Note: For more information about scope, see the Scope & Closures title of this series. See the ES6 & Beyond title
of this series for more information about let block scoping.

Conditionals

In addition to the if statement we introduced briefly in Chapter 1, JavaScript provides a few other
conditionals mechanisms that we should take a look at.

Sometimes you may find yourself writing a series of if. .else. .if statements like this:

if (a == 2) {
// do something
}
else if (a == 10) {
// do another thing
}
else if (a == 42) {
// do yet another thing
}
else {
// fallback to here

}

This structure works, but it's a little verbose because you need to specify the a test for each case. Here's
another option, the switch statement:

switch (a) {

case 2:
// do something
break;

case 10:
// do another thing
break;

case 42:
// do yet another thing
break;

default:

28 Up and Going

// fallback to here
}

The break is important if you want only the statement(s) in one case to run. If you omit break from a case,
and that case matches or runs, execution will continue with the next case's statements regardless of that
case matching. This so called "fall through" is sometimes useful /desired:

switch (a) {

case 2:

case 10:
// some cool stuff
break;

case 42:
// other stuff
break;

default:
// fallback

}

Here, if a is either 2 or 19, it will execute the "some cool stuff” code statements.

Another form of conditional in JavaScript is the "conditional operator,” often called the "ternary operator." It's
like a more concise form of a single if. .else statement, such as:

var a = 42;

var b (a > 41) ? "hello" : "world";

// similar to:

// if (a > 41) |
// b= "hello";

/7 }

// else {

// b = "world";
/7 }

If the test expression (a > 41 here) evaluates as true, the first clause ("hello") results, otherwise the
second clause ("world") results, and whatever the result is then gets assigned to b.

The conditional operator doesn't have to be used in an assignment, but that's definitely the most common
usage.

Note: For more information about testing conditions and other patterns for switch and ? :, see the Types &
Grammar title of this series.

Strict Mode

ES5 added a "strict mode" to the language, which tightens the rules for certain behaviors. Generally, these
restrictions are seen as keeping the code to a safer and more appropriate set of guidelines. Also, adhering to
strict mode makes your code generally more optimizable by the engine. Strict mode is a big win for code, and
you should use it for all your programs.

You can opt in to strict mode for an individual function, or an entire file, depending on where you put the strict
mode pragma:

function foo() {
"use strict";

Up and Going 29

// this code 1s strict mode

function bar() {
// this code 1s strict mode

}
}

// this code 1s not strict mode
Compare that to:

"use strict";

function foo() {
// this code 1is strict mode

function bar() {
// this code 1s strict mode

}
}

// this code 1s strict mode

One key difference (improvement!) with strict mode is disallowing the implicit auto-global variable
declaration from omitting the var:

function foo() {
"use strict"; // turn on strict mode
a=1; // “var missing, ReferenceError

¥
foo();

If you turn on strict mode in your code, and you get errors, or code starts behaving buggy, your temptation
might be to avoid strict mode. But that instinct would be a bad idea to indulge. If strict mode causes issues in
your program, almost certainly it's a sign that you have things in your program you should fix.

Not only will strict mode keep your code to a safer path, and not only will it make your code more optimizable,
but it also represents the future direction of the language. It'd be easier on you to get used to strict mode now
than to keep putting it off -- it'll only get harder to convert later!

Note: For more information about strict mode, see the Chapter 5 of the Types & Grammar title of this series.

Functions As Values

So far, we've discussed functions as the primary mechanism of scope in JavaScript. You recall typical function
declaration syntax as follows:

function foo() {
// ..
}

Though it may not seem obvious from that syntax, foo is basically just a variable in the outer enclosing scope
that's given a reference to the function being declared. That is, the function itselfis a value, just like 42 or
[1,2,3] would be.

30 Up and Going

This may sound like a strange concept at first, so take a moment to ponder it. Not only can you pass a value
(argument) to a function, but a function itself can be a value that's assigned to variables, or passed to or
returned from other functions.

As such, a function value should be thought of as an expression, much like any other value or expression.
Consider:

var foo = function() {
// ..
}s

var x = function bar(){
}s

The first function expression assigned to the foo variable is called anonymous because it has no name.

The second function expression is named (bar), even as a reference to it is also assigned to the x variable.
Named function expressions are generally more preferable, though anonymous function expressions are still
extremely common.

For more information, see the Scope & Closures title of this series.

Immediately Invoked Function Expressions (lIFEs)
In the previous snippet, neither of the function expressions are executed -- we could if we had included foo()
or x(), for instance.

There's another way to execute a function expression, which is typically referred to as an immediately invoked
function expression (1IFE):

(function IIFE(){
console.log("Hello!");

O
// "Hello!"

The outer (..) thatsurrounds the (function IIFE(){ .. }) function expression isjustanuance of JS
grammar needed to prevent it from being treated as a normal function declaration.

The final () on the end of the expression -- the }) () ; line -- is what actually executes the function expression
referenced immediately before it.

That may seem strange, but it's not as foreign as first glance. Consider the similarities between foo and IIFE
here:

function foo() { .. }

// ~foo function reference expression,
// then " () executes it
foo();

// "IIFE" function expression,
// then " () executes it
(function IIFEQ(){ .. })();

As you can see, listing the (function IIFE(){ .. }) before its executing () is essentially the same as
including foo before its executing (); in both cases, the function reference is executed with () immediately
after it.

Up and Going 31

Because an IIFE is just a function, and functions create variable scope, using an IIFE in this fashion is often
used to declare variables that won't affect the surrounding code outside the IIFE:

var a = 42;

(function IIFE(){
var a = 10;
console.log(a); // 10
IDIOK

console.log(a); // 42
IIFEs can also have return values:

var x = (function IIFE(){
return 42;

NO;
X; // 42

The 42 value gets returned from the IIFE-named function being executed, and is then assigned to x.

Closure

Closure is one of the most important, and often least understood, concepts in JavaScript. won't cover it in
deep detail here, and instead refer you to the Scope & Closures title of this series. But I want to say a few things
about it so you understand the general concept. It will be one of the most important techniques in your JS
skillset.

You can think of closure as a way to "remember" and continue to access a function's scope (its variables) even
once the function has finished running.

Consider:

function makeAdder(x) {
// parameter “x 1s an 1inner variable

// inner function “add() uses “x°, so
// 1t has a "closure" over 1it
function add(y) {

return y + X;

s

return add;

}

The reference to the inner add(. .) function that gets returned with each call to the outer makeAdder(..) is
able to remember whatever x value was passed in to makeAdder(..). Now, let's use makeAdder(..):

// “plusOne” gets a reference to the inner “add(..)’
// function with closure over the “x parameter of
// the outer “makeAdder(..)’

var plusOne = makeAdder(1);

// “plusTen gets a reference to the inner “add(..)"
// function with closure over the “x parameter of
// the outer “makeAdder(..)’

32 Up and Going

var plusTen = makeAdder(10);

plusOne(3); // 4 <--1+ 3
plusOne(41); // 42 <-- 1 + 41
plusTen(13); // 23 <-- 10 + 13

More on how this code works:

1. When we call makeAdder (1), we get back a reference to its inner add(. .) that remembers x as 1. We
call this function reference plusOne(..).

2. When we call makeAdder(10), we get back another reference to its inner add (. .) that remembers x
as 10. We call this function reference plusTen(..).

3. When we call plusOne(3), it adds 3 (its inner y) to the 1 (remembered by x), and we get 4 as the
result.

4. When we call plusTen(13), it adds 13 (its inner y) to the 10 (remembered by x), and we get 23 as the
result.

Don't worry if this seems strange and confusing at first -- it can be! It'll take lots of practice to understand it
fully.

But trust me, once you do, it's one of the most powerful and useful techniques in all of programming. It's
definitely worth the effort to let your brain simmer on closures for a bit. In the next section, we'll get a little
more practice with closure.

Modules

The most common usage of closure in JavaScript is the module pattern. Modules let you define private
implementation details (variables, functions) that are hidden from the outside world, as well as a public API
that is accessible from the outside.

Consider:

function User(){
var username, password;

function dolLogin(user,pw) {
username = user;
password = pw;

// do the rest of the Llogin work
}

var publicAPI = {
login: doLogin

}s

return publicAPI;
}

// create a “User module instance
var fred = User();

fred.login("fred", "12Battery34!");

Up and Going 33

The User () function serves as an outer scope that holds the variables username and password, as well as the
inner doLogin () function; these are all private inner details of this User module that cannot be accessed from
the outside world.

Warning: We are not calling new User() here, on purpose, despite the fact that probably seems more
common to most readers. User() is just a function, not a class to be instantiated, so it's just called normally.
Using new would be inappropriate and actually waste resources.

Executing User () creates an instance of the User module -- a whole new scope is created, and thus a whole
new copy of each of these inner variables/functions. We assign this instance to fred. If we run User () again,
we'd get a new instance entirely separate from fred.

The inner doLogin () function has a closure over username and password, meaning it will retain its access to
them even after the User () function finishes running.

publicAPI is an object with one property/method on it, login, which is a reference to the inner doLogin()
function. When we return publicAPI from User(), it becomes the instance we call fred.

At this point, the outer User () function has finished executing. Normally, you'd think the inner variables like
username and password have gone away. But here they have not, because there's a closure in the login()
function keeping them alive.

That's why we can call fred.login(..) -- the same as calling the inner doLogin(. .) -- and it can still access
username and password inner variables.

There's a good chance that with just this brief glimpse at closure and the module pattern, some of it is still a bit
confusing. That's OK! It takes some work to wrap your brain around it.

From here, go read the Scope & Closures title of this series for a much more in-depth exploration.

this ldentifier

Another very commonly misunderstood concept in JavaScript is the this identifier. Again, there's a couple of
chapters on it in the this & Object Prototypes title of this series, so here we'll just briefly introduce the concept.

While it may often seem that this is related to "object-oriented patterns,” in JS this is a different mechanism.

If a function has a this reference inside it, that this reference usually points to an object. But which object
it points to depends on how the function was called.

It's important to realize that this does not refer to the function itself, as is the most common misconception.
Here's a quick illustration:

function foo() {
console.log(this.bar);

}
var bar = "global";
var objl = {
bar: "obj1",
foo: foo
s

var obj2 = {
bar: "obj2"
¥
34 Up and Going

foo(); // "global"
objl.foo(); // "obj1"
foo.call(obj2); // "obj2"

new foo(); // undefined

There are four rules for how this gets set, and they're shown in those last four lines of that snippet.

1. foo() ends up setting this to the global object in non-strict mode -- in strict mode, this would be
undefined and you'd get an error in accessing the bar property -- so "global" is the value found for
this.bar.

2. objl.foo() sets this to the obj1 object.

3. foo.call(obj2) sets this to the obj2 object.

4. new foo() sets this to a brand new empty object.

Bottom line: to understand what this points to, you have to examine how the function in question was called.
It will be one of those four ways just shown, and that will then answer what this is.

Note: For more information about this, see Chapters 1 and 2 of the this & Object Prototypes title of this series.

Prototypes

The prototype mechanism in JavaScript is quite complicated. We will only glance at it here. You will want to
spend plenty of time reviewing Chapters 4-6 of the this & Object Prototypes title of this series for all the details.

When you reference a property on an object, if that property doesn't exist, JavaScript will automatically use
that object's internal prototype reference to find another object to look for the property on. You could think of
this almost as a fallback if the property is missing.

The internal prototype reference linkage from one object to its fallback happens at the time the object is
created. The simplest way to illustrate it is with a built-in utility called Object.create(..).

Consider:

var foo = {
a: 42
}s

// create “bar® and Llink it to “foo"
var bar = Object.create(foo);

bar.b = "hello world";

bar.b; // "hello world"
bar.a; // 42 <-- delegated to "foo"

It may help to visualize the foo and bar objects and their relationship:

Up and Going 35

foo

a- 42

prototype link

bar

b: "hello world"

The a property doesn't actually exist on the bar object, but because bar is prototype-linked to foo, JavaScript
automatically falls back to looking for a on the foo object, where it's found.

This linkage may seem like a strange feature of the language. The most common way this feature is used -- and
[would argue, abused -- is to try to emulate/fake a "class" mechanism with "inheritance.”

But a more natural way of applying prototypes is a pattern called "behavior delegation,” where you
intentionally design your linked objects to be able to delegate from one to the other for parts of the needed
behavior.

Note: For more information about prototypes and behavior delegation, see Chapters 4-6 of the this & Object
Prototypes title of this series.

Old & New

Some of the]S features we've already covered, and certainly many of the features covered in the rest of this
series, are newer additions and will not necessarily be available in older browsers. In fact, some of the newest
features in the specification aren't even implemented in any stable browsers yet.

So, what do you do with the new stuff? Do you just have to wait around for years or decades for all the old
browsers to fade into obscurity?

That's how many people think about the situation, but it's really not a healthy approach to JS.

There are two main techniques you can use to "bring" the newer JavaScript stuff to the older browsers:
polyfilling and transpiling.

Polyfilling

The word "polyfill" is an invented term (by Remy Sharp) (https://remysharp.com/2010/10/08/what-is-a-
polyfill) used to refer to taking the definition of a newer feature and producing a piece of code that's
equivalent to the behavior, but is able to run in older JS environments.

For example, ES6 defines a utility called Number.isNaN(. .) to provide an accurate non-buggy check for NaN
values, deprecating the original isNaN(. .) utility. But it's easy to polyfill that utility so that you can start
using it in your code regardless of whether the end user is in an ES6 browser or not.

Consider:

36 Up and Going

Number.isNaN
return

if (!Number.isNaN) {
= function isNaN(x) {
X l== x;
s
}

The if statement guards against applying the polyfill definition in ES6 browsers where it will already exist. If
it's not already present, we define Number.isNaN(..).

Note: The check we do here takes advantage of a quirk with NaN values, which is that they're the only value in
the whole language that is not equal to itself. So the NaN value is the only one that would make x !== xbe
true.

Not all new features are fully polyfillable. Sometimes most of the behavior can be polyfilled, but there are still
small deviations. You should be really, really careful in implementing a polyfill yourself, to make sure you are
adhering to the specification as strictly as possible.

Or better yet, use an already vetted set of polyfills that you can trust, such as those provided by ES5-Shim
(https://github.com/es-shims/es5-shim) and ES6-Shim (https://github.com/es-shims/es6-shim).

Transpiling
There's no way to polyfill new syntax that has been added to the language. The new syntax would throw an
error in the old JS engine as unrecognized/invalid.

So the better option is to use a tool that converts your newer code into older code equivalents. This process is
commonly called "transpiling,”" a term for transforming + compiling.

Essentially, your source code is authored in the new syntax form, but what you deploy to the browser is the
transpiled code in old syntax form. You typically insert the transpiler into your build process, similar to your
code linter or your minifier.

You might wonder why you'd go to the trouble to write new syntax only to have it transpiled away to older
code -- why not just write the older code directly?

There are several important reasons you should care about transpiling:

. The new syntax added to the language is designed to make your code more readable and maintainable.
The older equivalents are often much more convoluted. You should prefer writing newer and cleaner
syntax, not only for yourself but for all other members of the development team.

e Ifyou transpile only for older browsers, but serve the new syntax to the newest browsers, you get to take
advantage of browser performance optimizations with the new syntax. This also lets browser makers
have more real-world code to test their implementations and optimizations on.

. Using the new syntax earlier allows it to be tested more robustly in the real world, which provides earlier
feedback to the JavaScript committee (TC39). If issues are found early enough, they can be changed/fixed
before those language design mistakes become permanent.

Here's a quick example of transpiling. ES6 adds a feature called "default parameter values." It looks like this:

function foo(a = 2) {
console.log(a);

}

foo();
foo(42);

Up and Going 37

Simple, right? Helpful, too! But it's new syntax that's invalid in pre-ES6 engines. So what will a transpiler do
with that code to make it run in older environments?

function foo() {
var a = arguments[0] !== (void @) ? arguments[@] : 2;
console.log(a);

}

As you can see, it checks to see if the arguments[0] value is void 0 (aka undefined), and if so provides the
2 default value; otherwise, it assigns whatever was passed.

In addition to being able to now use the nicer syntax even in older browsers, looking at the transpiled code
actually explains the intended behavior more clearly.

You may not have realized just from looking at the ES6 version that undefined is the only value that can't get
explicitly passed in for a default-value parameter, but the transpiled code makes that much more clear.

The last important detail to emphasize about transpilers is that they should now be thought of as a standard
part of the]S development ecosystem and process. JS is going to continue to evolve, much more quickly than
before, so every few months new syntax and new features will be added.

If you use a transpiler by default, you'll always be able to make that switch to newer syntax whenever you find
it useful, rather than always waiting for years for today's browsers to phase out.

There are quite a few great transpilers for you to choose from. Here are some good options at the time of this
writing:

e Babel (https://babeljs.io) (formerly 6to5): Transpiles ES6+ into ES5
e Traceur (https://github.com/google/traceur-compiler): Transpiles ES6, ES7, and beyond into ES5

Non-JavaScript

So far, the only things we've covered are in the]S language itself. The reality is that most JS is written to run in
and interact with environments like browsers. A good chunk of the stuff that you write in your code is, strictly
speaking, not directly controlled by JavaScript. That probably sounds a little strange.

The most common non-JavaScript JavaScript you'll encounter is the DOM API. For example:
var el = document.getElementById("foo");

The document variable exists as a global variable when your code is running in a browser. It's not provided by
the]S engine, nor is it particularly controlled by the JavaScript specification. It takes the form of something
that looks an awful lot like a normal]JS object, but it's not really exactly that. It's a special object, often
called a "host object.”

Moreover, the getElementById(..) method on document looks like a normal JS function, but it's just a
thinly exposed interface to a built-in method provided by the DOM from your browser. In some (newer-
generation) browsers, this layer may also be in S, but traditionally the DOM and its behavior is implemented
in something more like C/C++.

Another example is with input/output (I/0).

Everyone's favorite alert (. .) pops up a message box in the user's browser window. alert(..) is provided
to your JS program by the browser, not by the]S engine itself. The call you make sends the message to the
browser internals and it handles drawing and displaying the message box.

The same goes with console.log(..); your browser provides such mechanisms and hooks them up to the
developer tools.

38 Up and Going

This book, and this whole series, focuses on JavaScript the language. That's why you don't see any substantial
coverage of these non-JavaScript JavaScript mechanisms. Nevertheless, you need to be aware of them, as
they'll be in every JS program you write!

Review

The first step to learning JavaScript's flavor of programming is to get a basic understanding of its core
mechanisms like values, types, function closures, this, and prototypes.

Of course, each of these topics deserves much greater coverage than you've seen here, but that's why they
have chapters and books dedicated to them throughout the rest of this series. After you feel pretty comfortable
with the concepts and code samples in this chapter, the rest of the series awaits you to really dig in and get to
know the language deeply.

The final chapter of this book will briefly summarize each of the other titles in the series and the other
concepts they cover besides what we've already explored.

Up and Going 39

40

Up and Going

Chapter 3: Into YDKIS

What is this series all about? Put simply, it's about taking seriously the task of learning all parts of JavaScript,
not just some subset of the language that someone called "the good parts," and not just whatever minimal
amount you need to get your job done at work.

Serious developers in other languages expect to put in the effort to learn most or all of the language(s) they
primarily write in, but JS developers seem to stand out from the crowd in the sense of typically not learning
very much of the language. This is not a good thing, and it's not something we should continue to allow to be
the norm.

The You Don't Know JS (YDK]S) series stands in stark contrast to the typical approaches to learning JS, and is
unlike almost any other]S books you will read. It challenges you to go beyond your comfort zone and to ask
the deeper "why" questions for every single behavior you encounter. Are you up for that challenge?

I'm going to use this final chapter to briefly summarize what to expect from the rest of the books in the series,
and how to most effectively go about building a foundation of JS learning on top of YDKJS.

Scope & Closures

Perhaps one of the most fundamental things you'll need to quickly come to terms with is how scoping of
variables really works in JavaScript. It's not enough to have anecdotal fuzzy beliefs about scope.

The Scope & Closures title starts by debunking the common misconception that]S is an "interpreted language"
and therefore not compiled. Nope.

The]S engine compiles your code right before (and sometimes during!) execution. So we use some deeper
understanding of the compiler's approach to our code to understand how it finds and deals with variable and
function declarations. Along the way, we see the typical metaphor for JS variable scope management,
"Hoisting."

This critical understanding of "lexical scope" is what we then base our exploration of closure on for the last
chapter of the book. Closure is perhaps the single most important concept in all of JS, but if you haven't first
grasped firmly how scope works, closure will likely remain beyond your grasp.

One important application of closure is the module pattern, as we briefly introduced in this book in Chapter 2.
The module pattern is perhaps the most prevalent code organization pattern in all of JavaScript; deep
understanding of it should be one of your highest priorities.

this & Object Prototypes

Perhaps one of the most widespread and persistent mistruths about JavaScript is that the this keyword
refers to the function it appears in. Terribly mistaken.

The this keyword is dynamically bound based on how the function in question is executed, and it turns out
there are four simple rules to understand and fully determine this binding.

Closely related to the this keyword is the object prototype mechanism, which is a look-up chain for
properties, similar to how lexical scope variables are found. But wrapped up in the prototypes is the other
huge miscue about JS: the idea of emulating (fake) classes and (so-called "prototypal") inheritance.

Unfortunately, the desire to bring class and inheritance design pattern thinking to JavaScript is just about the
worst thing you could try to do, because while the syntax may trick you into thinking there's something like
classes present, in fact the prototype mechanism is fundamentally opposite in its behavior.

What's at issue is whether it's better to ignore the mismatch and pretend that what you're implementing is
"inheritance,” or whether it's more appropriate to learn and embrace how the object prototype system
actually works. The latter is more appropriately named "behavior delegation.”

Up and Going 41

This is more than syntactic preference. Delegation is an entirely different, and more powerful, design pattern,
one that replaces the need to design with classes and inheritance. But these assertions will absolutely fly in the
face of nearly every other blog post, book, and conference talk on the subject for the entirety of JavaScript's
lifetime.

The claims | make regarding delegation versus inheritance come not from a dislike of the language and its
syntax, but from the desire to see the true capability of the language properly leveraged and the endless
confusion and frustration wiped away.

But the case [make regarding prototypes and delegation is a much more involved one than what I will indulge
here. If you're ready to reconsider everything you think you know about JavaScript "classes" and
"inheritance," I offer you the chance to "take the red pill" (Matrix 1999) and check out Chapters 4-6 of the this
& Object Prototypes title of this series.

Types & Grammar

The third title in this series primarily focuses on tackling yet another highly controversial topic: type coercion.
Perhaps no topic causes more frustration with JS developers than when you talk about the confusions
surrounding implicit coercion.

By far, the conventional wisdom is that implicit coercion is a "bad part" of the language and should be avoided
at all costs. In fact, some have gone so far as to call it a "flaw" in the design of the language. Indeed, there are
tools whose entire job is to do nothing but scan your code and complain if you're doing anything even
remotely like coercion.

But is coercion really so confusing, so bad, so treacherous, that your code is doomed from the start if you use
it?

[say no. After having built up an understanding of how types and values really work in Chapters 1-3, Chapter
4 takes on this debate and fully explains how coercion works, in all its nooks and crevices. We see just what
parts of coercion really are surprising and what parts actually make complete sense if given the time to learn.

But I'm not merely suggesting that coercion is sensible and learnable, I'm asserting that coercion is an
incredibly useful and totally underestimated tool that you should be using in your code. I'm saying that
coercion, when used properly, not only works, but makes your code better. All the naysayers and doubters will
surely scoff at such a position, but [believe it's one of the main keys to upping your JS game.

Do you want to just keep following what the crowd says, or are you willing to set all the assumptions aside and
look at coercion with a fresh perspective? The Types & Grammar title of this series will coerce your thinking.

Async & Performance

The first three titles of this series focus on the core mechanics of the language, but the fourth title branches out
slightly to cover patterns on top of the language mechanics for managing asynchronous programming.
Asynchrony is not only critical to the performance of our applications, it's increasingly becoming the critical
factor in writability and maintainability.

The book starts first by clearing up a lot of terminology and concept confusion around things like "async,"
"parallel,” and "concurrent,” and explains in depth how such things do and do not apply to JS.

Then we move into examining callbacks as the primary method of enabling asynchrony. But it's here that we
quickly see that the callback alone is hopelessly insufficient for the modern demands of asynchronous
programming. We identify two major deficiencies of callbacks-only coding: Inversion of Control (10C) trust loss
and lack of linear reason-ability.

To address these two major deficiencies, ES6 introduces two new mechanisms (and indeed, patterns):
promises and generators.

42 Up and Going

Promises are a time-independent wrapper around a "future value,” which lets you reason about and compose
them regardless of if the value is ready or not yet. Moreover, they effectively solve the loC trust issues by
routing callbacks through a trustable and composable promise mechanism.

Generators introduce a new mode of execution for JS functions, whereby the generator can be paused at
yield points and be resumed asynchronously later. The pause-and-resume capability enables synchronous,
sequential looking code in the generator to be processed asynchronously behind the scenes. By doing so, we
address the non-linear, non-local-jump confusions of callbacks and thereby make our asynchronous code
sync-looking so as to be more reason-able.

But it's the combination of promises and generators that "yields" our most effective asynchronous coding
pattern to date in JavaScript. In fact, much of the future sophistication of asynchrony coming in ES7 and later
will certainly be built on this foundation. To be serious about programming effectively in an async world,
you're going to need to get really comfortable with combining promises and generators.

If promises and generators are about expressing patterns that let our programs run more concurrently and
thus get more processing accomplished in a shorter period, JS has many other facets of performance
optimization worth exploring.

Chapter 5 delves into topics like program parallelism with Web Workers and data parallelism with SIMD, as
well as low-level optimization techniques like ASM.js. Chapter 6 takes a look at performance optimization
from the perspective of proper benchmarking techniques, including what kinds of performance to worry
about and what to ignore.

Writing JavaScript effectively means writing code that can break the constraint barriers of being run
dynamically in a wide range of browsers and other environments. It requires a lot of intricate and detailed
planning and effort on our parts to take a program from "it works" to "it works well."

The Async & Performance title is designed to give you all the tools and skills you need to write reasonable and
performant JavaScript code.

ES6 & Beyond

No matter how much you feel you've mastered JavaScript to this point, the truth is that JavaScript is never
going to stop evolving, and moreover, the rate of evolution is increasing rapidly. This fact is almost a metaphor
for the spirit of this series, to embrace that we'll never fully know every part of |S, because as soon as you
master it all, there's going to be new stuff coming down the line that you'll need to learn.

This title is dedicated to both the short- and mid-term visions of where the language is headed, not just the
known stuff like ES6 but the likely stuff beyond.

While all the titles of this series embrace the state of JavaScript at the time of this writing, which is mid-way
through ES6 adoption, the primary focus in the series has been more on ES5. Now, we want to turn our
attention to ES6, ES7, and ...

Since ES6 is nearly complete at the time of this writing, ES6 & Beyond starts by dividing up the concrete stuff
from the ES6 landscape into several key categories, including new syntax, new data structures (collections),
and new processing capabilities and APIs. We cover each of these new ES6 features, in varying levels of detail,
including reviewing details that are touched on in other books of this series.

Some exciting ES6 things to look forward to reading about: destructuring, default parameter values, symbols,
concise methods, computed properties, arrow functions, block scoping, promises, generators, iterators,
modules, proxies, weakmaps, and much, much more! Phew, ES6 packs quite a punch!

The first part of the book is a roadmap for all the stuff you need to learn to get ready for the new and improved
JavaScript you'll be writing and exploring over the next couple of years.

Up and Going 43

The latter part of the book turns attention to briefly glance at things that we can likely expect to see in the near
future of JavaScript. The most important realization here is that post-ES6, S is likely going to evolve feature by
feature rather than version by version, which means we can expect to see these near-future things coming
much sooner than you might imagine.

The future for JavaScript is bright. Isn't it time we start learning it!?

Review

The YDKJS series is dedicated to the proposition that all |S developers can and should learn all of the parts of
this great language. No person's opinion, no framework's assumptions, and no project's deadline should be the
excuse for why you never learn and deeply understand JavaScript.

We take each important area of focus in the language and dedicate a short but very dense book to fully explore
all the parts of it that you perhaps thought you knew but probably didn't fully.

"You Don't Know JS" isn't a criticism or an insult. It's a realization that all of us, myself included, must come to
terms with. Learning JavaScript isn't an end goal but a process. We don't know JavaScript, yet. But we will!

44 Up and Going

