
3/30/2018 HTTP: The Protocol Every Web Developer Must Know - Part 2

https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155 1/18

Advertisement

CODE > TOOLS & TIPS

HTTP: The Protocol Every Web Developer
Must Know - Part 2
by Pavan Podila 29 Apr 2013

Di�culty: Intermediate Length: Long Languages: English

Tools & Tips Web Development HTTP

In my previous article, we covered some of HTTP's basics, such as the URL scheme, status
codes and request/response headers. With that as our foundation, we will look at the �ner
aspects of HTTP, like connection handling, authentication and HTTP caching. These topics
are fairly extensive, but we'll cover the most important bits.

HTTP Connections

A connection must be established between the client and server before they can
communicate with each other, and HTTP uses the reliable TCP transport protocol to make





https://tutsplus.com/
http://googleads.g.doubleclick.net/pcs/click?xai=AKAOjssnEfvNJmFuR7MTBQwz1XGXX9GAU3Hl4H8oy3wydqSj1DMMZYFbfq3UCj3K8TFCM-yLoiVVwAS5dxFBquWdh9v2ARlqp3duP0e-AgSMT-L3IQtLLb4-TY0gsISMQetytF7oa9dp_1AUP6-uU51eQlsCLX3_kCh-KZ17_QE-CwNHklQ5-gbz0NDkHlPcFSMQtszH1i9YXqDu62_ngWORhYoho8Hvp-wZKyVFiW5swPoAHUZrdpW4Y0qRMuy1IZW_cGqfPYy-&sig=Cg0ArKJSzInNwyvT6nXc&adurl=http://m.amazonappservices.com/developers-guide%3Fcmp%3DUS_2017-00_ACH-Developer-Guide%26ch%3Dpai%26chlast%3Dpai%26pub%3Dsof%26publast%3Dsof%26type%3Dpai%26typelast%3Dpai&nm=1
https://code.tutsplus.com/tutorials
https://code.tutsplus.com/categories/tools-tips
https://tutsplus.com/authors/pavan-podila
https://code.tutsplus.com/categories/tools-tips
https://code.tutsplus.com/categories/web-development
https://code.tutsplus.com/categories/http
javascript:
http://net.tutsplus.com/tutorials/tools-and-tips/http-the-protocol-every-web-developer-must-know-part-1/
javascript:

3/30/2018 HTTP: The Protocol Every Web Developer Must Know - Part 2

https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155 2/18

this connection. By default, web tra�c uses TCP port 80. A TCP stream is broken into IP
packets, and it ensures that those packets always arrive in the correct order without fail.
HTTP is an application layer protocol over TCP, which is over IP.

HTTPS is a secure version of HTTP, inserting an additional layer between HTTP and TCP
called TLS or SSL (Transport Layer Security or Secure Sockets Layer, respectively). HTTPS
communicates over port 443 by default, and we will look at HTTPS later in this article.

An HTTP connection is identi�ed by <source-IP, source-port> and <destination-IP,
destination-port> . On a client, an HTTP application is identi�ed by a <IP, port> tuple.
Establishing a connection between two endpoints is a multi-step process and involves the
following:

resolve IP address from host name via DNS
establish a connection with the server

3/30/2018 HTTP: The Protocol Every Web Developer Must Know - Part 2

https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155 3/18

send a request
wait for a response
close connection

The server is responsible for always responding with the correct
headers and responses.

In HTTP/1.0, all connections were closed after a single transaction. So, if a client wanted
to request three separate images from the same server, it made three separate
connections to the remote host. As you can see from the above diagram, this can
introduce lot of network delays, resulting in a sub-optimal user experience.

To reduce connection-establishment delays, HTTP/1.1 introduced persistent connections,
long-lived connections that stay open until the client closes them. Persistent connections
are default in HTTP/1.1, and making a single transaction connection requires the client to
set the Connection: close request header. This tells the server to close the connection
after sending the response.

In addition to persistent connections, browsers/clients also employ a technique, called
parallel connections, to minimize network delays. The age-old concept of parallel
connections involves creating a pool of connections (generally capped at six connections).
If there are six assets that the client needs to download from a website, the client makes
six parallel connections to download those assets, resulting in a faster turnaround. This is
a huge improvement over serial connections where the client only downloads an asset
after completing the download for a previous asset.

Parallel connections, in combination with persistent connections, is today's answer to
minimizing network delays and creating a smooth experience on the client. For an in-depth
treatment of HTTP connections, refer to the Connections section of the HTTP spec.

Server-side Connection Handling
The server mostly listens for incoming connections and processes them when it receives a
request. The operations involve:

establishing a socket to start listening on port 80 (or some other port)

http://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html#sec8

3/30/2018 HTTP: The Protocol Every Web Developer Must Know - Part 2

https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155 4/18

receiving the request and parsing the message
processing the response
setting response headers
sending the response to the client
close the connection if a Connection: close request header was found

Of course, this is not an exhaustive list of operations. Most applications/websites need to
know who makes a request in order to create more customized responses. This is the
realm of identi�cation and authentication.

Identi�cation and Authentication

HTTP is an application layer protocol over TCP, which is over IP.

It is almost mandatory to know who connects to a server for tracking an app's or site's
usage and the general interaction patterns of users. The premise of identi�cation is to
tailor the response in order to provide a personalized experience; naturally, the server must
know who a user is in order to provide that functionality.

There are a few different ways a server can collect this information, and most websites
use a hybrid of these approaches:

Request headers: From , Referer , User-Agent - We saw these headers in Part 1.
Client-IP - the IP address of the client
Fat Urls - storing state of the current user by modifying the URL and redirecting to a
different URL on each click; each click essentially accumulates state.
Cookies - the most popular and non-intrusive approach.

Cookies allow the server to attach arbitrary information for outgoing responses via the
Set-Cookie response header. A cookie is set with one or more name=value pairs

separated by semicolon (;), as in Set-Cookie: session-id=12345ABC; username=nettuts .

A server can also restrict the cookies to a speci�c domain and path , and it can make
them persistent with an expires value. Cookies are automatically sent by the browser for

http://net.tutsplus.com/tutorials/tools-and-tips/http-the-protocol-every-web-developer-must-know-part-1/

3/30/2018 HTTP: The Protocol Every Web Developer Must Know - Part 2

https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155 5/18

each request made to a server, and the browser ensures that only the domain - and path -
speci�c cookies are sent in the request. The request header Cookie: name=value [;
name2=value2] is used to send these cookies to the server.

The best way to identify a user is to require them to sign up and
log in, but implementing this feature requires some effort by the
developer, as well as the user.

Techniques like OAuth simplify this type of feature, but it still requires user consent in
order to work properly. Authentication plays a large role here, and it is probably the only
way to identify and verify the user.

Authentication
HTTP does support a rudimentary form of authentication called Basic Authentication, as
well as the more secure Digest Authentication.

In Basic Authentication, the server initially denies the client's request with a WWW-
Authenticate response header and a 401 Unauthorized status code. On seeing this
header, the browser displays a login dialog, prompting for a username and password. This
information is sent in a base-64 encoded format in the Authentication request header.
The server can now validate the request and allow access if the credentials are valid.
Some servers might also send an Authentication-Info header containing additional
authentication details.

http://oauth.net/

3/30/2018 HTTP: The Protocol Every Web Developer Must Know - Part 2

https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155 6/18

A corollary to Basic-Authentication is Proxy Authentication. Instead of a web server, the
authetication challenge is requested by an intermediate proxy. The proxy sends a Proxy-
Authenticate header with a 407 Unauthorized status code. In return, the client is
supposed to send the credentials via the Proxy-Authorization request header.

Digest Authentication is similar to Basic and uses the same handshake technique with the
WWW-Authenticate and Authorization headers, but Digest uses a more secure hashing

function to encrypt the username and password (commonly with MD5 or KD digest
functions). Although Digest Authentication is supposed to be more secure than Basic,
websites typically use Basic Authentication because of its simplicty. To mitigate the
security concerns, Basic Auth is used in conjunction with SSL.

Secure HTTP

The HTTPS protocol provides a secure connection on the web. The easiest way to know if
you are using HTTPS is to check the browser's address bar. HTTPs' secure component
involves inserting a layer of encryption/decryption between HTTP and TCP. This is the
Secure Sockets Layer (SSL) or the improved Transport Layer Security (TLS).

SSL uses a powerful form of encryption using RSA and public-key cryptography. Because
secure transactions are so important on the web, a ubiquitous standards-based Public-Key
Infrastructure (PKI) effort has been underway for quite sometime.

3/30/2018 HTTP: The Protocol Every Web Developer Must Know - Part 2

https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155 7/18

Existing clients/servers do not have to change the way they handle messages because
most of the hard work happens in the SSL layer. Thus, you can develop your web
application using Basic Authentication and automatially reap the bene�ts of SSL by
switching to the https:// protocol. However, to make the web application work over
HTTPS, you need to have a working digital certi�cate deployed on the server.

Certi�cates

Just as you need ID cards to show your identity, a web server needs a digital certi�cate to
identify itself. Certi�cates (or "certs") are issued by a Certi�cate Authority (CA) and vouch
for your identity on the web. The CAs are the guardians of the PKI. The most common
form of certi�cates is the X.509 v3 standard, which contains information, such as:

the certi�cate issuer
the algorithm used for the certi�cate
the subject name or organization for whom this cert is created
the public key information for the subject
the Certi�cation Authority Signature, using the speci�ed signing algorithm

When a client makes a request over HTTPS, it �rst tries to locate a certi�cate on the
server. If the cert is found, it attempts to ver�y it against its known list of CAs. If its not one
of the listed CAs, it might show a dialog to the user warning about the website's cert�cate.

Once the certi�cate is veri�ed, the SSL handshake is complete and secure transmission is
in effect.

HTTP Caching

It is generally agreed that doing the same work twice is wasteful. This is the guiding
principle around the concept of HTTP caching, a fundamental pillar of the HTTP Network
Infrastructure. Because most of the operations are over a network, a cache helps save
time, cost and bandwidth, as well as provide an improved experience on the web.

Caches are used at several places in the network infrastructure, from the browser to the
origin server. Depending on where it is located, a cache can be categorized as:

http://www.ietf.org/rfc/rfc2459.txt

3/30/2018 HTTP: The Protocol Every Web Developer Must Know - Part 2

https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155 8/18

Private: within a browser, caches usernames, passwords, URLs, browsing history and
web content. They are generally small and speci�c to a user.
Public: deployed as caching proxies between the server and client. These are much
larger because they serve multiple users. A common practice is to keep multiple
caching proxies between the client and the origin-server. This helps to serve
frequently accessed content, while still allowing a trip to the server for infrequently
needed content.

Cache Processing
Regardless of where a cache is located, the process of maintaining a cache is quite
similar:

Receive request message.
Parse the URL and headers.

3/30/2018 HTTP: The Protocol Every Web Developer Must Know - Part 2

https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155 9/18

Lookup a local copy; otherwise, fetch and store locally
Do a freshness check to determine the age of the content in the cache; make a
request to refresh the content only if necessary.
Create the response from the cached body and updated headers.
Send the response back to client.
Optionally, log the transaction.

Of course, the server is responsible for always responding with the correct headers and
responses. If a document hasn't changed, the server should respond with a 304 Not
Modified . If the cached copy has expired, it should generate a new response with updated
response headers and return with a 200 OK . If the resource is deleted, it should come back
with 404 Not Found . These responses help tune the cache and ensure that stale content is
not kept for too long.

Cache Control Headers

Parallel connections, in combination with persistent connections,
is today’s answer to minimizing network delays.

Now that we have a sense of how a cache works, it's time to look at the request and
response headers that enable the caching infrastructure. Keeping the content fresh and
up-to-date is one of the primary responsibilities of the cache. To keep the cached copy
consistent with the server, HTTP provides some simple mechanisms, namely Document
Expiration and Server Revalidation.

Document Expiration

HTTP allows an origin-server to attach an expiration date to each document using the
Cache-Control and Expires response headers. This helps the client and other cache

servers know how long a document is valid and fresh. The cache can serve the copy as
long as the age of the document is within the expiration date. Once a document expires,
the cache must check with the server for a newer copy and update its local copy
accordingly.

Expires is an older HTTP/1.0 response header that speci�es the value as an absolute
date. This is only useful if the server clocks are in sync with the client, which is a terrible

3/30/2018 HTTP: The Protocol Every Web Developer Must Know - Part 2

https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155 10/18

assumption to make. This header is less useful compared to the newer Cache-Control:
max-age=<s> header introduced in HTTP/1.1. Here, max-age is a relative age, speci�ed in
seconds, from the time the response was created. Thus if a document should expire after
one day, the expiration header should be Cache-Control: max-age=86400 .

Server Revalidation

Once a cached document expires, the cache must revalidate with the server to check if the
document has changed. This is called server revalidation and serves as a querying
mechanism for the stale-ness of a document. Just because a cached copy has expired
doesn't mean that the server actually has newer content. Revalidation is just a means of
ensuring that the cache stays fresh. Because of the expiration time (as speci�ed in a
previous server response), the cache doesn't have to check with the server for every single
request, thus saving bandwidth, time and reducing the network tra�c.

The combination of document expiration and server revalidation
is a very effective mechanism, it and allows distributed systems
to maintain copies with an expiration date.

If the content is known to frequently change, the expiration time can be reduced—allowing
the systems to re-sync more frequently.

The revalidation step can be accomplished with two kinds of request-headers: If-
Modified-Since and If-None-Match . The former is for date-based validation while the latter
uses Entity-Tags (ETags), a hash of the content. These headers use date or ETag values
obtained from a previous server response. In case of If-Modified-Since , the Last-
Modified response header is used; for If-None-Match , it is the ETag response header.

Controlling the Cachability

The validity period for a document should be de�ned by the server generating the
document. If it's a newspaper website, the homepage should expire after a day (or
sometimes even every hour!). HTTP provides the Cache-Control and Expires response
headers to set the expiration on documents. As mentioned earlier, Expires is based on
absolute dates and not a reliable solution for controlling cache.

3/30/2018 HTTP: The Protocol Every Web Developer Must Know - Part 2

https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155 11/18

The Cache-Control header is far more useful and has a few different values to constrain
how clients should be caching the response:

Cache-Control: no-cache: the client is allowed to store the document; however, it
must revalidate with the server on every request. There is a HTTP/1.0 compatibility
header called Pragma: no-cache, which works the same way.
Cache-Control: no-store: this is a stronger directive to the client to not store the
document at all.
Cache-Control: must-revalidate: this tells the client to bypass its freshness
calculation and always revalidate with the server. It is not allowed to serve the cached
response in case the server is unavailable.
Cache-Control: max-age: this sets a relative expiration time (in seconds) from the
time the response is generated.

As an aside, if the server does not send any Cache-Control headers, the client is free to
use its own heuristic expiration algorithm to determine freshness.

Constraining Freshness from the Client

Cachability is not just limited to the server. It can also be speci�ed from the client. This
allows the client to impose constraints on what it is willing to accept. This is possible via
the same Cache-Control header, albeit with a few different values:

Cache-Control: min-fresh=<s>: the document must be fresh for at least <s> seconds.
Cache-Control: max-stale or Cache-Control: max-stale=<s>: the document cannot be
served from the cache if it has been stale for longer than <s> seconds.
Cache-Control: max-age=<s>: the cache cannot return a document that has been
cached longer than <s> seconds.
Cache-Control: no-cache or Pragma: no-cache: the client will not accept a cached
resource unless it has been revalidated.

HTTP Caching is actually a very interesting topic, and there are some very sophisticated
algorithms to manage cached content. For a deeper look into this topic, refer to the
Caching section of the HTTP spec.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html

3/30/2018 HTTP: The Protocol Every Web Developer Must Know - Part 2

https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155 12/18

Advertisement

Summary

Our tour of HTTP began with the foundation of URL schemes, status codes and
request/response headers. Building upon those concepts, we looked at some of the �ner
areas of HTTP, such as connection handling, identi�cation and authentication and caching.
I am hopeful that this tour has given you a good taste for the breadth of HTTP and enough
pointers to further explore this protocol.

References
RFC 2616, HTTP speci�cation
HTTP De�nitive Guide

Advertisement

https://www.googleadservices.com/pagead/aclk?sa=L&ai=C4A_Wf0e-WoetJYTWkgPo3JDQAqvjhv9QrJ-c9PkGwbGJlBUQASDF36YiYMmGgIDopIwYoAGI2p_wA8gBAuACAKgDAcgDmQSqBMICT9D17og73UH5A8TPt0hxGcwyEtbGFTFSrkg9VjGBixiiS6VIbbKMdPff4wWmlbnsUyiVKtx1ryQ_Pa8RbEmgKPKmIQAGpo4e4oSH3GCsxyP8ZutNSOdkMdppKNBHzf6Ui-IqKjZx7G9sU8aaXJO1ylG6937JmJx85e3sNW05Qz-Xf8V3ZVtFJEbeO8_xMNcTARwv7UUTmRE37-RuHOhCFuX7Zhjm2tZPUNtAYj9E-f1jTNKxdbUH5UK-6yyGnTaUqxJL3y3yE7vxJpWDPYqit4I0F04KZXXo9OzXHbZ5DYDhMA2B88igh_p4XEPgGU6km89bAycWLTzkZPV3YIsT308UEwzQSsFIPJ8C42QvjDq_wE8x-Kmn8wt0PsXiPEWyd-k2QD1aZaEDmMgl6XisSd1Ct2dWdTi5XjDW0FmFQXKkCuAEAaAGAoAH4KXgD6gHjs4bqAfVyRuoB6a-G9gHAdIIBwiAYRABGAGxCUcxZgBlkQDngAoD2BMK&num=1&cid=CAASEuRomTFNEZt-VJl30XSzoh_WXw&sig=AOD64_0Usvd95SSgSlRQO0CV8ylpqTXUjA&client=ca-pub-3558870564527416&adurl=https://www.gigamon.com/resources/resource-library/analyst-industry-reports/ar-2018-cyberthreat-defense-report.html%3Futm_source%3Dpaidsearch%26utm_medium%3Djm-gdn%26utm_campaign%3Ddemand-fy18q1%26utm_term%3Dna%26utm_content%3Dcyberthreat
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.amazon.com/HTTP-Definitive-Guide-David-Gourley/dp/1565925092

3/30/2018 HTTP: The Protocol Every Web Developer Must Know - Part 2

https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155 13/18

Pavan Podila
Web Developer, New York

I am a �nancial technologist specializing in front-end development, mostly for
trading and analytics applications. I have worked on a wide variety of UI technologies
in the past, ranging from Java Swing, Eclipse SWT, and Nokia Qt to Cocoa on
OSX/iOS, .Net WPF, and HTML5. I am the author of WPF Control Development
Unleashed with Addison/Wesley-SAMS. I am also the creator of QuickLens, a Mac
App targeted at UI Designers and Developers.

pavanpodila

FEED LIKE FOLLOW FOLLOW

Weekly email summary

Subscribe below and we’ll send you a weekly email summary of all new Code tutorials. Never miss out on
learning about the next big thing.

Email Address

Update me weekly



   

https://tutsplus.com/authors/pavan-podila
https://twitter.com/pavanpodila
https://code.tutsplus.com/categories/tools-tips.atom
http://facebook.com/nettutsplus
http://twitter.com/TutsPlusCode
https://plus.google.com/100395074731712398322

3/30/2018 HTTP: The Protocol Every Web Developer Must Know - Part 2

https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155 14/18

25 Comments Nettuts+ Login1

 Share⤤ Sort by Best

LOG IN WITH OR SIGN UP WITH DISQUS

Name

 Join the discussion…

?

 • Reply •

ajay • 5 years ago

I learned a lot from this article
10△ ▽

 • Reply •

Борис Хрипко • 2 years ago

Thank you wery match for this article!
7△ ▽

Johan CHOUQUET • 5 years ago

Thank you for this 2nd part! Great article.

 Recommend  10

Share ›

Share ›

G l D d Vi
Advertisement

Translations

Envato Tuts+ tutorials are translated into other languages by our community members—you can be involved too!

Translate this post

Powered by

https://disqus.com/home/forums/nettuts/
https://disqus.com/home/inbox/
https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155#comment-880155109
https://disqus.com/by/disqus_EeQIDC72JW/
https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155#comment-2352395461
https://disqus.com/by/johanchouquet/
https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155#comment-880301773
https://disqus.com/by/disqus_EeQIDC72JW/
https://disqus.com/by/johanchouquet/
https://getnative.me/?ref=tutsplus&lang=en&url=https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155&title=HTTP%3A%20The%20Protocol%20Every%20Web%20Developer%20Must%20Know%20-%20Part%202&splitMode=1

3/30/2018 HTTP: The Protocol Every Web Developer Must Know - Part 2

https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155 15/18

 • Reply •
y p

7△ ▽

 • Reply •

Raj Kumar Singh • 5 years ago

Awesome article
4△ ▽

 • Reply •

Nott Responding • 5 years ago

best and Helpfull Article
3△ ▽

 • Reply •

Siebe Hiemstra • 5 years ago

Great post. Interesting stuff about caching!
2△ ▽

 • Reply •

Nguyễn Văn Ánh • 5 years ago

Helpful! thank for writer!
2△ ▽

 • Reply •

Haim • 2 years ago

Thanks. I cached what I could from it. When my cache will expire I will visit again.
1△ ▽

 • Reply •

Erika Dike • 2 years ago

Very helpful and insightful article.

I would like to point out though, that TCP ensures that packets are packaged in the correct order
on arrival at destination host by giving each packet a sequence number. TCP does not currently
"ensure that those packets arrive in the correct order without fail," as pointed out in the article.

Since packets typically take different routes of varying latencies to reach the destination, it is
difficult (if not impossible) to guarantee that one packet must arrive before the other.
1△ ▽

 • Reply •

Mygmarsuren Sedjav • 4 years ago

learned a lot. Thanks for this article
1△ ▽

 • Reply •

Aminu Ibrahim Abubakar • 4 months ago

What a priceless article.. Thanks a lot!!
△ ▽

Eric Lind • 2 years ago

In the second paragraph in the Authentication section you mention the "Authentication" request
header: "This information is sent in a base-64 encoded format in the Authentication request
header." I think this should be the "Authorization" request header. Would also be nice to get an
example of the content of an Authorization header and maybe a link to the Wikipedia page on

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

https://disqus.com/by/rajkumar9788/
https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155#comment-880189139
https://disqus.com/by/tahirsada/
https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155#comment-880078483
https://disqus.com/by/siebehiemstra/
https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155#comment-882565045
https://disqus.com/by/facebook-100003968613931/
https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155#comment-879648072
https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155#comment-2911897639
https://disqus.com/by/erikadike/
https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155#comment-2696077452
https://disqus.com/by/mygmarsurensedjav/
https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155#comment-1152468140
https://disqus.com/by/aminuibrahimabubakar/
https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155#comment-3634226626
https://disqus.com/by/disqus_G5RndmFyrT/
https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155#comment-2923798202
https://disqus.com/by/johanchouquet/
https://disqus.com/by/rajkumar9788/
https://disqus.com/by/tahirsada/
https://disqus.com/by/siebehiemstra/
https://disqus.com/by/facebook-100003968613931/
https://disqus.com/by/erikadike/
https://disqus.com/by/mygmarsurensedjav/
https://disqus.com/by/aminuibrahimabubakar/
https://disqus.com/by/disqus_G5RndmFyrT/

3/30/2018 HTTP: The Protocol Every Web Developer Must Know - Part 2

https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155 16/18

 • Reply •

example of the content of an Authorization header and maybe a link to the Wikipedia page on
base64 encoding as it's pretty confusing to those who haven't encountered it before.
△ ▽

 • Reply •

kheteshwar borawat • 2 years ago

Keep writing such articles.

Thanks..
△ ▽

 • Reply •

Kirti Raman • 2 years ago

Excellent and very helpful!
△ ▽

 • Reply •

Steven • 2 years ago

Good!
△ ▽

 • Reply •

Gabriel Godoy • 3 years ago

Great dude, wonderful job and explanation!
△ ▽

 • Reply •

s.shivasurya • 3 years ago

great article
△ ▽

 • Reply •

johnlabarge • 3 years ago

You sir are a very good writer. You should probably write a book if you have yet to do so.
△ ▽

 • Reply •

Drew • 3 years ago

Thanks!
△ ▽

 • Reply •

nk • 4 years ago

it is a bit hard for me to understand all the technical terms.
△ ▽

 • Reply •

Sauls • 5 years ago

thanks, amazing article
△ ▽

Reply

CT Web Design • 5 years ago

The throughput of the system is defined as the the ratio of total number of bytes sent by the
source to the time taken
△ ▽

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

https://disqus.com/by/kheteshwarborawat/
https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155#comment-2638298815
https://disqus.com/by/kirtiraman/
https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155#comment-2579354883
https://disqus.com/by/StevenQin/
https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155#comment-2419268211
https://disqus.com/by/gabrielgodoy/
https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155#comment-2257440214
https://disqus.com/by/shivasurya/
https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155#comment-2243635700
https://disqus.com/by/johnlabarge/
https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155#comment-1819684626
https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155#comment-1657868701
https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155#comment-1340181387
https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155#comment-1063376679
https://disqus.com/by/disqus_QQUMDQdju2/
https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155#comment-965238432
https://disqus.com/by/kheteshwarborawat/
https://disqus.com/by/kirtiraman/
https://disqus.com/by/StevenQin/
https://disqus.com/by/gabrielgodoy/
https://disqus.com/by/shivasurya/
https://disqus.com/by/johnlabarge/
https://disqus.com/by/disqus_QQUMDQdju2/

3/30/2018 HTTP: The Protocol Every Web Developer Must Know - Part 2

https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155 17/18

QUICK LINKS

 • Reply •△ ▽

 • Reply •

Hoang Vuong • 5 years ago

Thank you, great article.
△ ▽

 • Reply •

Khurram Ali • 5 years ago

Am facing same issue in website . Now I think this issue will be resolve.
Hosted Zimbra
△ ▽

 • Reply •

John Rockson • 5 years ago

Thanks for this awesome article specially for web developers. They must know the things
mentioned above.
△ ▽

Share ›

Share ›

Share ›

Share ›

Advertisement

 - Explore popular categories

ENVATO TUTS+ 

JOIN OUR COMMUNITY 

HELP 

https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155#comment-892509107
https://disqus.com/by/disqus_i4imtmGVfC/
https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155#comment-886459765
http://disq.us/url?url=http%3A%2F%2Fwww.secure-iss.com%3AUtOJbDsmuaajQB4Kwx8RN-jIrmM&cuid=1883935
https://disqus.com/by/seocompanieskanpur/
https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155#comment-886392251
http://disq.us/url?url=http%3A%2F%2Fwww.xpertwebinfotech.com%2Fwebdevelopment.php%3AFLvNRh6g7_D2Ui3ZYjGqHU16cBE&cuid=1883935
https://disqus.com/by/disqus_i4imtmGVfC/
https://disqus.com/by/seocompanieskanpur/
https://www.googleadservices.com/pagead/aclk?sa=L&ai=CEWCQf0e-WuW3Ksev-QPr_4yAA6GHoPJQupKDuJsHwI23ARABIMXfpiJgyYaAgOikjBigAfa19MoDyAEC4AIAqAMByAOZBKoEiwJP0HKc2yrMjgtdhGngCn5eWnMNp2wqdRxIKQTDUXNbgep12d5S0hcv8xsZiuOER2kaYNPaO46ngcDEkUNciiUu0HAXfI6_MrPvsKxTfaTQvyEsEJofA2DrGjcWxi4KeSj9fkuMSmgNaKHz2ppVxGA_OKgH8cTEjwOe9fUVRF_UDHQ202GWvXzwW2EmFvXjhfOOrWyPl4ppHXl4jbOkGYPhKJsrqIgDGHJYRJgR5uHOp9xQ_SPos6SQhQbgDbiKkNjDuHxsjE7sJkZ-SZentnNw3f_bD0XWVM4im3j6mmbF742_Pj5ME7wByWXYG8hwl35QtqajY3LJGqkhRGggWbo5vWbmgT3Q0c5RlBbgBAGgBgKAB_LJizWoB47OG6gH1ckbqAemvhvYBwHSCAcIgGEQARgBsQlTWoTzZZHCE4AKA9gTDA&num=1&cid=CAASEuRo-uQ66auZcMx4UamgRdkE7A&sig=AOD64_02bE2auP_8DVD_7TNIgKaIb2h8og&client=ca-pub-3558870564527416&adurl=https://www.microsoft.com/en-us/store/d/razer-blade-stealth-133-qhd-touchscreen-ultrabook-gunmetal-grey/8mdmzt0kqw5z/3QMB%3Factivetab%3Dpivot:overviewtab
javascript:void(0);
javascript:void(0);
javascript:void(0);

3/30/2018 HTTP: The Protocol Every Web Developer Must Know - Part 2

https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155 18/18

25,653
Tutorials

1,114
Courses

21,710
Translations

Follow Envato Tuts+

Envato.com Our products Careers Sitemap

© 2018 Envato Pty Ltd. Trademarks and brands are the property of their respective owners.

https://www.facebook.com/tutsplus
https://twitter.com/tutsplus
https://plus.google.com/108971748263060947124/posts
https://www.pinterest.com/tutsplus/
https://envato.com/
https://envato.com/#products
https://envato.com/careers
https://envato.com/sitemap

