Head First

Design Patterns

e Learn why everything
Avoid those ﬁﬁd\ your friends know about Factory

embarrassing | fo pattern is
probably wrong

Load the patterns
that matter straight

! \! '\ into your brain
) 32

e ¥
Discover the secrets
of the Patterns Guru

See why Jim's

L~ | love life improved
=/ when he cut down

8/ | his inheritance

Find out how _
Starbuzz Coffee doubled ™

their stock price with

the Decorator pattern

® Eric F:feeman & Elisabeth Freeman
O REILLY

with Kathy Sierra & Bert Bates

Head First Design Patterns

“I received the book yesterday and
started to read it... and I couldn't
stop. This is trés “cool.” It is fun, but
they cover a lot of ground and they
are right to the point. I'm really
impressed.”

—LFErich Gamma,
IBM Distinguished Engineer, and
coauthor of Design Patterns

“I feel like a thousand pounds of books
have just been lifted off of my head.”
—Ward Cunningham,
inventor of the Wiki and
Sfounder of the Hillside Group

“This book is close to perfect,
because of the way it combines
expertise and readability. It speaks
with authority and it reads
beautifully.”

—David Gelernter, Professor of
L] . s

Computer Science, Yale Universily

“One of the funniest and smartest
books on software design I've ever

read.”
—Aaron LaBerge,
VP Technology, ESPN.com
www.oreilly.com
US $44.95 CAN $65.95

ISBN-10: 0-596-00712-4
ISBN-13: 978-0-596-00712-6

54495
1 00O OO

780596"007126

9

Software Development/Java

You know you don’t want to reinvent the wheel (or worse, a flat tire), so
you look to design patterns—the lessons learned by those who've faced
the same software design problems. With design patterns, you get to take
advantage of the best practices and experience of others, so that you

can spend your time on...something else. Something more challenging.

Something more complex. Something more fun. You want to learn:
e The patterns that maltler

e When to use them, and why

* How to apply them to your own designs, right now

e When not to use them (how to avoid pattern fever)

* OO design principles on which patterns are based

Most importantly, you want to learn design patterns in a way that won't put
you to sleep. If you've read a Head First book, you know what to expect—
a visually rich format designed for the way your brain works. Using the latest
research in neurobiology, cognitive science, and learning theory, Head
First Design Patterns will load patterns into your brain in a way that sticks.
In a way that makes you better at solving software design problems, and
better at speaking the language of patterns with others on your team.

Eric Freeman and Elisabeth Freeman are authors, educators, and tech-
nology innovators. After four years leading digital media and Internet
efforts at the Walt Disney Company, they're applying some of that

pixie dust to their own media, including this book. Eric and Elisabeth
both hold computer science degrees from Yale

University: Elisabeth holds an M.S. degree and
Eric a Ph.D.

Kathy Sierra (founder of javaranch.com) and

Bert Bates are the creators of the best-selling 1

Head First series and developers of Sun \

Microsystems Java developer certification

exams. r
/

O’REILLY"

Praise for Head First Design Patterns

“I received the book yesterday and started to read it on the way home... and I couldn’t stop. I took it to the
gym and I expect people saw me smiling a lot while I was exercising and reading. This is tres ‘cool’. It is
fun but they cover a lot of ground and they are right to the point. I'm really impressed.”

— Erich Gamma, IBM Distinguished Engineer,
and co-author of Design Patterns

“‘Head First Design Patterns’ manages to mix fun, belly-laughs, insight, technical depth and great practical
advice in one entertaining and thought provoking read. Whether you are new to design patterns, or have
been using them for years, you are sure to get something from visiting Objectville.”

— Richard Helm, coauthor of “Design Patterns” with rest of the
Gang of Four - Erich Gamma, Ralph Johnson and John Vlissides

“I feel like a thousand pounds of books have just been lifted off of my head.”

— Ward Cunningham, inventor of the Wiki
and founder of the Hillside Group

“This book is close to perfect, because of the way it combines expertise and readability. It speaks with
authority and it reads beautifully. It’s one of the very few software books I've ever read that strikes me as
indispensable. (I'd put maybe 10 books in this category, at the outside.)”

— David Gelernter, Professor of Computer Science,
Yale University and author of “Mirror Worlds” and “Machine Beauty”

‘A Nose Dive into the realm of patterns, a land where complex things become simple, but where simple
things can also become complex. I can think of no better tour guides than the Freemans.”

— Miko Matsumura, Industry Analyst, The Middleware Company
Former Chief Java Evangelist, Sun Microsystems

“I laughed, I cried, it moved me.”

— Daniel Steinberg, Editor-in-Chief, java.net

“My first reaction was to roll on the floor laughing. After I picked myself up, I realized that not only is the
book technically accurate, it is the easiest to understand introduction to design patterns that I have seen.”

— Dr. Timothy A. Budd, Associate Professor of Computer Science at
Oregon State University and author of more than a dozen books,
including “C++ for Java Programmers”

“Jerry Rice runs patterns better than any receiver in the NFL, but the Freemans have out run him.
Seriously...this is one of the funniest and smartest books on software design I've ever read.”

— Aaron LaBerge, VP Technology, ESPN.com

Download at WoweBook.Com

More Praise for Head First Design Patterns

“Great code design is, first and foremost, great information design. A code designer is teaching a com-
puter how to do something, and it is no surprise that a great teacher of computers should turn out to be
a great teacher of programmers. This book’s admirable clarity, humor and substantial doses of clever
make it the sort of book that helps even non-programmers think well about problem-solving,.”

— CGory Doctorow, co-editor of Boing Boing
and author of “Down and Out in the Magic Kingdom”
and “Someone Comes to Town, Someone Leaves Town”

“There’s an old saying in the computer and videogame business — well, it can’t be that old because the
discipline is not all that old — and it goes something like this: Design is Life. What’s particularly curious
about this phrase is that even today almost no one who works at the craft of creating electronic games
can agree on what it means to “design” a game. Is the designer a software engineer? An art director?
A storyteller? An architect or a builder? A pitch person or a visionary? Can an individual indeed be in
part all of these? And most importantly, who the %§!#&* cares?

It has been said that the “designed by” credit in interactive entertainment is akin to the “directed by”
credit in filmmaking, which in fact allows it to share DNA with perhaps the single most controversial,
overstated, and too often entirely lacking in humility credit grab ever propagated on commercial art.
Good company, eh? Yet if Design is Life, then perhaps it is time we spent some quality cycles thinking
about what it is.

Eric and Elisabeth Freeman have intrepidly volunteered to look behind the code curtain for us in
“Head First Design Patterns.” I’'m not sure either of them cares all that much about the PlayStation
or X-Box, nor should they. Yet they do address the notion of design at a significantly honest level such
that anyone looking for ego reinforcement of his or her own brilliant auteurship is best advised not to
go digging here where truth is stunningly revealed. Sophists and circus barkers need not apply. Next
generation literati please come equipped with a pencil.”

— Ken Goldstein, Executive Vice President & Managing Director,
Disney Online

“Just the right tone for the geeked-out, casual-cool guru coder in all of us. The right reference for
practical development strategies—gets my brain going without having to slog through a bunch of tired,
stale professor-speak.”

— Travis Kalanick, Founder of Scour and Red Swoosh
Member of the MIT TR100

“This book combines good humors, great examples, and in-depth knowledge of Design Patterns in
such a way that makes learning fun. Being in the entertainment technology industry, I am intrigued
by the Hollywood Principle and the home theater Facade Pattern, to name a few. The understanding
of Design Patterns not only helps us create reusable and maintainable quality software, but also helps
sharpen our problem-solving skills across all problem domains. This book is a must read for all com-
puter professionals and students.”

— Newton Lee, Founder and Editor-in-Chief, Association for Computing
Machinery’s (ACM) Computers in Entertainment (acmcie.org)

Download at WoweBook.Com

More Praise for Head First Design Patterns

“If there’s one subject that needs to be taught better, needs to be more fun to learn, it’s design patterns.
Thank goodness for Head First Design Patterns.

From the awesome Head First Java folks, this book uses every conceivable trick to help you understand
and remember. Not just loads of pictures: pictures of humans, which tend to interest other humans.
Surprises everywhere. Stories, because humans love narrative. (Stories about things like pizza and
chocolate. Need we say more?) Plus, it’s darned funny:.

It also covers an enormous swath of concepts and techniques, including nearly all the patterns you’ll
use most (observer, decorator, factory, singleton, command, adapter, facade, template method, iterator,
composite, state, proxy). Read it, and those won’t be ‘just words’: they’ll be memories that tickle you,
and tools you own.”

— Bill Camarda, READ ONLY

“After using Head First Java to teach our freshman how to start programming, I was eagerly waiting to
see the next book in the series. Head First Design Patterns is that book and I am delighted. I am sure
it will quickly become the standard first design patterns book to read, and is already the book I am
recommending to students.”

— Ben Bederson, Associate Professor of Computer Science & Director of the
Human-Computer Interaction Lab, University of Maryland

“Usually when reading through a book or article on design patterns I'd have to occasionally stick myself in
the eye with something just to make sure I was paying attention. Not with this book. Odd as it may sound,
this book makes learning about design patterns fun.

While other books on design patterns are saying, ‘Buehler... Buehler... Buehler...” this book is on the float
belting out ‘Shake it up, baby!™”

— Eric Wuehler

“I literally love this book. In fact, I kissed this book in front of my wife.”

— Satish Kumar

Praise for the Head First approach

“Java technology is everywhere—in mobile phones, cars, cameras, printers, games, PDAs, ATMs, smart
cards, gas pumps, sports stadiums, medical devices, Web cams, servers, you name it. If you develop
software and haven’t learned Java, it’s definitely time to dive in—Head First.”

— Scott McNealy, Sun Microsystems Chairman, President and CEO

“It’s fast, irreverent, fun, and engaging. Be careful—you might actually learn something!”

— Ken Arnold, former Senior Engineer at Sun Microsystems
Co-author (with James Gosling, creator of Java),
“The Java Programming Language”

Download at WoweBook.Com

Other related books from O’Reilly
Learning Java
Java in a Nutshell
Java Enterprise in a Nutshell
Java Examples in a Nutshell
Java Cookbook
J2EE Design Patterns

Other books in O'Reilly’'s Head First series

Head First Java

Head First EJB

Head First Servlets & JSP

Head First Object-Oriented Analysis & Design
Head First HTML with CSS & XHTML

Head Rush Ajax

Head First PMP

Head First SQL (2007)

Head First C# (2007)

Head First Software Development (2007)
Head First JavaScript (2007)

Be watching for more books in the Head First series!

Download at WoweBook.Com

Head First Design Patterns

Wouldn't it be dreamy if
there was a Design Patterns
book that was more fun than going
to the dentist, and more revealing
than an IRS form? It's probably
just a fantasy...

Eric Freeman
Elisabeth Freeman

with
Kathy Sierra
Bert Bates

O’REILLY"

Beijing « Cambridge * Kéin * Paris « Sebastopol * Taipei * Tokyo

Download at WoweBook.Com

Head First Design Patterns

by Eric Freeman, Elisabeth Freeman, Kathy Sierra, and Bert Bates

Copyright © 2004 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (safari.oreilly.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides

Cover Designer: Ellie Volckhausen

Pattern Wranglers: Eric Freeman, Elisabeth Freeman
Facade Decoration: Elisabeth Freeman
Strategy: Kathy Sierra and Bert Bates

Observer: Oliver

Printing History:
October 2004: First Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Java and all Java-based trademarks and logos
are trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and other countries.
O’Reilly Media, Inc. is independent of Sun Microsystems.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks.

Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

In other words, if you use anything in Head First Design Fatterns to, say, run a nuclear power plant, you’re on your
own. We do, however, encourage you to use the D] View app.

No ducks were harmed in the making of this book.

The original GoF agreed to have their photos in this book. Yes, they really are that good-looking.

ISBN-10: 0-596-00712-4 ISBN-13: 978-0-596-00712-6
[M] [7/07]

Download at WoweBook.Com

To the Gang of Four, whose insight and expertise in capturing
and communicating Design Patterns has changed the face of

software design forever, and bettered the lives of developers
throughout the world.

But seriously, when are we going to see a second edition? After all,
it’s been only ten years!

Download at WoweBook.Com

the authors

Authors/Developers of Head First Design Patterns

Elisabeth is an author, software developer and
digital artist. She’s been involved with the Internet
since the early days, having co-founded The Ada
Project (TAP), an award winning web site for women
in computing now adopted by the ACM. More
recently Elisabeth lead research and development
efforts in digital media at the Walt Disney Company
where she co-invented Motion, a content system that
delivers terabytes of video every day to Disney, ESPN
and Movies.com users.

Elisabeth is a computer scientist at heart and holds
graduate degrees in Computer Science from Yale
University and Indiana University. She’s worked in

a variety of areas including visual languages, RSS
syndication and Internet systems. She’s also been an
active advocate for women in computing, developing
programs that encourage woman to enter the field.
These days you’ll find her sipping some Java or Cocoa
on her Mac, although she dreams of a day when the
whole world is using Scheme.

Elisabeth has loved hiking and the outdoors since her
days growing up in Scotland. When she’s outdoors
her camera is never far. She’s also an avid cyclist,
vegetarian and animal lover.

You can send her email at beth@wickedlysmart.com

viii

Erie Freeman

Eric is a computer scientist with a passion for media and
software architectures. He just wrapped up four years at

a dream job — directing Internet broadband and wireless
efforts at Disney — and is now back to writing, creating cool
software and hacking Java and Macs.

Eric spent a lot of the ‘90s working on alternatives to the
desktop metaphor with David Gelernter (and they’re

both still asking the question “why do I have to give a file
aname?”). Based on this work, Eric landed a Ph.D. at
Yale University in ‘97. He also co-founded Mirror Worlds
Technologies (now acquired) to create a commercial
version of his thesis work, Lifestreams.

In a previous life, Eric built software for networks and
supercomputers. You might know him from such books as
JavaSpaces Principles Patterns and Practice. Eric has fond
memories of implementing tuple-space systems on
Thinking Machine CM-5s and creating some of the first
Internet information systems for NASA in the late 80s.

Eric is currently living in the high desert near Santa

Fe. When he’s not writing text or code you’ll find him
spending more time tweaking than watching his home
theater and trying to restoring a circa 1980s Dragon’s Lair
video game. He also wouldn’t mind moonlighting as an
electronica D]J.

Write to him at eric@wickedlysmart.com or visit his blog
at http://www.ericfreeman.com

Download at WoweBook.Com

Creators of the Head First series
(and co-conspirators on this book)

Kathy Siervd XI

Kathy has been interested in [€arning theory since
her days as a game designer (she wrote games for Virgin,
MGM, and Amblin’). She developed much of the Head
First format while teaching New Media Authoring for
UCLA Extension’s Entertainment Studies program.
More recently, she’s been a master trainer for Sun
Microsystems, teaching Sun’s Java instructors how to
teach the latest Java technologies, and developing several
of Sun’s certification exams. Together with Bert Bates,
she has been actively using the Head First concepts to
teach throusands of developers. Kathy is the founder of
javaranch.com, which won a 2003 and 2004 Software
Development magazine Jolt Cola Productivity Award.
You might catch her teaching Java on the Java Jam Geek
Cruise (geekcruises.com).

She recently moved from California to Colorado, where
she’s had to learn new words like, “ice scraper” and
“fleece”, but the lightning there is fantastic.

Likes: runing, skiing, skateboarding, playing with her
Icelandic horse, and weird science. Dislikes: entropy.

You can find her on javaranch, or occasionally blogging
on java.net. Write to her at kathy@wickedlysmart.com.

Bert is a long-time software developer and architect,
but a decade-long stint in artificial intelligence drove
his interest in learning theory and technology-based
training. He’s been helping clients becoming better
programmers ever since. Recently, he’s been heading
up the development team for several of Sun’s Java
Certification exams.

He spent the first decade of his software career
travelling the world to help broadcast clients like
Radio New Zealand, the Weather Channel, and the
Arts & Entertainment Network (A & E). One of his
all-time favorite projects was building a full rail system
simulation for Union Pacific Railroad.

Bert is a long-time, hopelessly addicted go player, and
has been working on a go program for way too long.
He’s a fair guitar player and is now trying his hand at
banjo.

Look for him on javaranch, on the IGS go server, or
you can write to him at terrapin@wickedlysmart.com.

Download at WoweBook.Com

table of contents

Table of Contents (summary)

Intro XXV
1 Welcome to Design Patterns: an introduction 1
2 Keeping your Objects in the know: the Observer Pattern 37
3 Decorating Objects: the Decorator Pattern 79
4 Baking with OO goodness: the Factory Pattern 109
5 One of a Kind Objects: the Singleton Pattern 169
6 Encapsulating Invocation: the Command Pattern 191
7 Being Adaptive: the Adapter and Facade Patterns 235
8 Encapsulating Algorithms: theTemplate Method Pattern 275
9 Well-managed Collections: the lterator and Composite Patterns 315
10 The State of Things: the State Pattern 385
11 Controlling Object Access: the Proxy Pattern 429
12 Patterns of Patterns: Compound Patterns 499
13 Patterns in the Real World: Better Living with Patterns 577
14 Appendix: Leflover Patterns 611

Table of Contents (the rea] thing)

Intro

Your brain on Design Patterns. Here you are trying to learn something, while
here your brain is doing you a favor by making sure the learning doesn’t stick. Your brain’s
thinking,“Better leave room for more important things, like which wild animals to avoid and
whether naked snowboarding is a bad idea.” So how do you trick your brain into thinking

that your life depends on knowing Design Patterns?

Who is this book for? XXV1
We know what your brain is thinking xXxvil
Metacognition XXIX
Bend your brain into submission XXX1
Technical reviewers XXXV
Acknowledgements XXXV

Download at WoweBook.Com

Remember, knowing
concepts like abstraction,

inheritance, and polymorphism do
not make you a good object oriented
desigher. A design guru thinks
about how to create flexible
designs that are maintainable

and that can cope with
change.

intro to Design Patterns

Welcome to Design Patterns

Someone has already solved your problems. In this chapter,
you'’ll learn why (and how) you can exploit the wisdom and lessons learned by
other developers who’'ve been down the same design problem road and survived
the trip. Before we’re done, we’ll look at the use and benefits of design patterns,
look at some key OO design principles, and walk through an example of how one
pattern works. The best way to use patterns is to load your brain with them and
then recognize places in your designs and existing applications where you can

apply them. Instead of code reuse, with patterns you get experience reuse.

The SimUDuck app
Joe thinks about inheritance...

How about an interface?

The one constant in software development

Separating what changes from what stays the same

Designing the Duck Behaviors

Testing the Duck code

Setting behavior dynamically

The Big Picture on encapsulated behaviors
HAS-A can be better than IS-A

The Strategy Pattern

The power of a shared pattern vocabulary
How do I use Design Patterns?

Tools for your Design Toolbox

Exercise Solutions

A Bunch of Patterns

\(ow Code, ,‘ow.v\:‘“
and improved ¥

desion \,a{;lgerns!

Download at WoweBook.Com

x® o O N

11
18
20
22
23
24
28
29
32
34

Xi

table of contents

the Observer Tattern

Keeping your Objects in the Know

Don’t miss out when something interesting happens!
We’ve got a pattern that keeps your objects in the know when something they
might care about happens. Objects can even decide at runtime whether they
want to be kept informed. The Observer Pattern is one of the most heavily used
patterns in the JDK, and it’s incredibly useful. Before we’re done, we’ll also look
at one to many relationships and loose coupling (yeah, that’s right, we said

coupling). With Observer, you'll be the life of the Patterns Party.

The Weather Monitoring application

Meet the Observer Pattern

00 Pasies

Plackreat Yion

Publishers + Subscribers = Observer Pattern
Five minute drama: a subject for observation
The Observer Pattern defined

The power of Loose Coupling

Designing the Weather Station
Implementing the Weather Station

Using Java’s built-in Observer Pattern

The dark side of java.util. Observable

Tools for your Design Toolbox

Exercise Solutions

ONE TO MANY RELATIONSHIP

Objeet that
hor)ds state

Dcpenden‘l: Ob\jec{;

&
House 055

Automatic update/notification

xii

Download at WoweBook.Com

39
44
45
48
51
53
56
57
64
71
74
78

the Decorator Pattern

Decorating Objects

Just call this chapter “Design Eye for the Inheritance
Guy.” We’ll re-examine the typical overuse of inheritance and you'll learn how
to decorate your classes at runtime using a form of object composition. Why?
Once you know the techniques of decorating, you'll be able to give your (or
someone else’s) objects new responsibilities without making any code changes

to the underlying classes.

Welcome to Starbuzz Coffee

The Open-Closed Principle

T used to think real men
subclassed everything. That was until
I learned the power of extension

at runtime, rather than at compile
time. Now look at me!

Meet the Decorator Pattern

Constructing a Drink Order with Decorators
The Decorator Pattern Defined

Decorating our Beverages

Writing the Starbuzz code

Real World Decorators: Java I/0

Writing your own Java I/O Decorator

Tools for your Design Toolbox

Exercise Solutions

Download at WoweBook.Com

80
86
88
89
91
92
95
100
102
105
106

Xiii

table of contents

the Factory Pattern

Baking with OO Goodness

Get ready to cook some loosely coupled OO designs.
There is more to making objects than just using the new operator. You'll learn
that instantiation is an activity that shouldn’t always be done in public and can
often lead to coupling problems. And you don’t want that, do you? Find out how

Factory Patterns can help save you from embarrasing dependencies.

When you see “new”, think “concrete” 110
Objectville Pizza 112
Encapsulating object creation 114
Building a simple pizza factory 115
The Simple Factory defined 117
A Framework for the pizza store 120
Allowing the subclasses to decide 121
Let’s make a PizzaStore 123
Declaring a factory method 125
Meet the Factory Method Pattern 131
Parallel class hierarchies 132
Factory Method Pattern defined 134
A very dependent PizzaStore 137
Looking at object dependencies 138
The Dependency Inversion Principle 139
Meanwhile, back at the PizzaStore... 144
Families of ingredients... 145
Building our ingredient factories 146
Looking at the Abstract Factory 153
Behind the scenes 154
Abstract Factory Pattern defined 156
Factory Method and Abstract Factory compared 160
Tools for your Design Toolbox 162
Exercise Solutions 164

Xiv

Download at WoweBook.Com

the Singleton Tattern

One of a Kind Objects

The Singleton Pattern: your ticket to creating one-of-a-
kind objects, for which there is only one instance. You
might be happy to know that of all patterns, the Singleton is the simplest in terms
of its class diagram; in fact the diagram holds just a single class! But don’t get
too comfortable; despite its simplicity from a class design perspective, we’'ll
encounter quite a few bumps and potholes in its implementation. So buckle

up—this one’s not as simple as it seems...

One and only one object
The Little Singleton
Dissecting the classic Singleton Pattern
Confessions of a Singleton
The Chocolate Factory
Singleton Pattern defined
Hershey, PA

, we have a problem...
BE the JVM
Dealing with multithreading
Singleton Q&A
Tools for your Design Toolbox

Exercise Solutions

00 Patterr =
S(:E — -h" - Yt

& 1 _ha =
4 e ass o,\\\l has

5\0\13\ Yd'“{:

_Bnswee 3 it

3 ide 3
m e : and prov
L a \ one nstante

2 Lanestot

A4Y B S\hs‘c{;ov\

(X

Download at WoweBook.Com

170
171
173
174
175
177
178
179
180
184
186
188

table of contents

the Command Tattern

Encapsulating Invocation

In this chapter we take encapsulation to a whole new
level: we’re going to encapsulate method invocation.
That'’s right, by encapsulating invocation we can crystallize pieces of computation
so that the object invoking the computation doesn’t need to worry about how to do
things; it just uses our crystallized method to get it done. We can also do some
wickedly smart things with these encapsulated method invocations, like save

them away for logging or reuse them to implement undo in our code.

Home Automation or Bust

Til have a Burger

e ece et The Remote Control
o /_% Taking a look at the vendor classes
Meanwhile, back at the Diner...
Let’s study the Diner interaction
The Objectville Diner Roles and Responsibilities
- From the Diner to the Command Pattern
B e e e i .
:; methed Lo begin b Order's e ot Our first command object
y & The Command Pattern defined
o POy
g = > ‘E!‘ E;Eks;.fﬁfwf:’;' The Command Pattern and the Remote Control
s ‘C:t = W j e Implementing the Remote Control
b o ; Putting the Remote Control through its paces
- S
‘@/ ° Time to write that documentation

Using state to implement Undo

Every remote needs a Party Mode!

Using a Macro Command

More uses of the Command Pattern: Queuing requests
More uses of the Command Pattern: Logging requests
Tools for your Design Toolbox

Exercise Solutions

xvi

Download at WoweBook.Com

192
193
194
197
198
199
201
203
206
208
210
212
215
220
224
225
228
229
230
232

European Wall Qutlet

Standard AC Plug

the Adapter and Facade Patterns
Being Adaptive

In this chapter we’re going to attempt such impossible
feats as putting a square peg in a round hole. Sound impossible?
Not when we have Design Patterns. Remember the Decorator Pattern? We
wrapped objects to give them new responsibilities. Now we’re going to wrap some
objects with a different purpose: to make their interfaces look like something they’re
not. Why would we do that? So we can adapt a design expecting one interface to a
class that implements a different interface. That's not all, while we're at it we’re going

to look at another pattern that wraps objects to simplify their interface.

Adapters all around us

Object Oriented Adapters

The Adapter Pattern explained

Adapter Pattern defined

Object and Class Adapters

Tonight’s talk: The Object Adapter and Class Adapter
Real World Adapters

Adapting an Enumeration to an Iterator

Tonight’s talk: The Decorator Pattern and the Adapter Pattern
Home Sweet Home Theater

Lights, Camera, Facade!

Constructing your Home Theater Facade

Facade Pattern defined

The Principle of Least Knowledge

Tools for your Design Toolbox

Exercise Solutions

Adaptee

Client requesg) «‘M,‘,.-d"““ @

The Client is implemented
against the target inferface Aapter

adapteg
= interface <)
s
s
v Ao

Turkey was the
. dﬂP?“ nteckate

Download at WoweBook.Com

236
237
241
243
244
247
248
249
252
255
258
261
264
265
270
272

XVii

table of contents

the Teémplate Method Pattern

Encapsulating Algorithms

We’ve encapsulated object creation, method invocation,
complex interfaces, ducks, pizzas... what could be next?
We're going to get down to encapsulating pieces of algorithms so that subclasses can
hook themselves right into a computation anytime they want. We’re even going to

learn about a design principle inspired by Hollywood.

Whipping up some coffee and tea classes 277
Abstracting Coffee and Tea 280
Taking the design further 281
Tea . - Abstracting prepareRecipe() 282
:‘sn«‘:::::m‘!‘“‘“””m What have we done? 285
O . Meet the Template Method 286
@) c::f:::::::age ‘gﬂd Let’s make some tea 287
O Brew What did the Template Method get us? 288
@}:{ZE 2 T:;::::Z::mp 5%}&:;’ Template Method Pattern defined 289
- 7 P Code up close 290
© Sspth bt oy T v Hooked on Template Method... 292
O Addlenon : - / 2':::::::::“:"&& Using the hook 293
Coffee? Tea? Nah, let’s run the TestDrive 294
The Hollywood Principle 296
The Hollywood Principle and the Template Method 297
Template Methods in the Wild 299
Sorting with Template Method 300
We’ve got some ducks to sort 301
Comparing ducks and ducks 302
The making of the sorting duck machine 304
Swingin’ with Frames 306
Applets 307
Tonight’s talk: Template Method and Strategy 308
Tools for your Design Toolbox 311
Exercise Solutions 312
xviii

Download at WoweBook.Com

the Iterator and Composite Patterns

Well-Managed Collections

There are lots of ways to stuff objects into a collection.
Put them in an Array, a Stack, a List, a Map, take your pick. Each has its own
advantages and tradeoffs. But when your client wants to iterate over your objects,
are you going to show him your implementation? We certainly hope not! That just
wouldn’t be professional. Don’t worry—in this chapter you'll see how you can let
your clients iterate through your objects without ever seeing how you store your
objects. You'’re also going to learn how to create some super collections of objects
that can leap over some impressive data structures in a single bound. You’re also

going to learn a thing or two about object responsibility.

Objectville Diner and Pancake House merge 316
Comparing Menu implementations 318
——— Can we encapsulate the iteration? 323
Pansake M cj“jg:;” Meet the Iterator Pattern 325
] Adding an Iterator to DinerMenu 326
pesint Ve/ffi?\hﬂanu (Looking at the design 331
= Cleaning things up with java.util.Iterator 333
What does this get us? 335
Iterator Pattern defined 336
Single Responsibility 339
Iterators and Collections 348
Iterators and Collections in Java 5 349
Just when we thought it was safe... 353
The Composite Pattern defined 356
Designing Menus with Composite 359
Implementing the Composite Menu 362
Flashback to Iterator 368
The Null Iterator 372
The magic of Iterator & Composite together... 374
Tools for your Design Toolbox 380
Exercise Solutions 381
Xix

Download at WoweBook.Com

table of contents

the State Pattern

The State of Things

A little known fact: the Strategy and State Patterns were
twins separated at birth. As you know, the Strategy Pattern went on

to create a wildly successful business around interchangeable algorithms. State,
however, took the perhaps more noble path of helping objects learn to control their
behavior by changing their internal state. He’s often overheard telling his object

clients, “just repeat after me, I'm good enough, I'm smart enough, and doggonit...”

How do we implement state? 387
State Machines 101 388
. ik the bl machine combrller neds b A first attempt at a state machine 390
eve's the way we think the gambd MA G 2 for usl We
bW hzvmbe‘l‘;"c,fj;,,': T o el o beet . . |
gy Gl .y be ST EE L bl s sl You knew it was coming... a change request! 394
e L Wighty Gumball Engincers .)
The messy STATE of things... 396
o ”Q\\s . .
et Defining the State interfaces and classes 399
Implementing our State Classes 401
Reworking the Gumball Machine 402
The State Pattern defined 410
State versus Strategy 411
State sanity check 417
We almost forgot! 420
Tools for your Design Toolbox 423
Exercise Solutions 424

XX

Download at WoweBook.Com

the Troxy Pattern

Controlling Object Access

Ever play good cop, bad cop? You're the good cop and you provide
all your services in a nice and friendly manner, but you don’t want everyone
asking you for services, so you have the bad cop control access to you. That’s
what proxies do: control and manage access. As you're going to see there are
lots of ways in which proxies stand in for the objects they proxy. Proxies have
been known to haul entire method calls over the Internet for their proxied objects;

they’ve also been known to patiently stand in the place for some pretty lazy

objects.

L
g\

£\
Ho \

\

<<interface>>
Subject

Monitoring the gumball machines
The role of the ‘remote proxy’

RMI detour

A

GumballMachine remote proxy
Remote proxy behind the scenes

The Proxy Pattern defined

Get Ready for virtual proxy
Designing the CD cover virtual proxy
Virtual proxy behind the scenes
Using the Java API’s proxy

Five minute drama: protecting subjects
Creating a dynamic proxy

The Proxy Zoo

Tools for your Design Toolbox

Exercise Solutions

<<interface>>
InvocationHandler

request()

invoke()

N

request()

*
> :

€~ The proxy nov consists

: & of fwo tlasses
Proxy InvocationHandler
request() invoke()

Download at WoweBook.Com

430
434
437
450
458
460
462
464
470
474
478
479
488
491
492

XXi

table of contents

Compound Tatterns

Patterns of Patterns

Who would have ever guessed that Patterns could work
together? You've already witnessed the acrimonious Fireside Chats (and be
thankful you didn’'t have to see the Pattern Death Match pages that the publisher
forced us to remove from the book so we could avoid having to use a Parent’s
Advisory warning label), so who would have thought patterns can actually get along
well together? Believe it or not, some of the most powerful OO designs use several
patterns together. Get ready to take your pattern skills to the next level; it's time for
Compound Patterns. Just be careful—your co-workers might kill you if you're struck

with Pattern Fever. Compound Patterns

The beat is set at 119 BPM and you Duck reunion
ould like £o intrease it to 120

608 conrd Adding an adapter
0j Cantral |
Enter B°M. You cliek on
the increase
e beat button
View Adding a factory

Which vesults in the
controler being invoked

Adding a decorator

Adding a composite, and iterator

/ The contrller as Adding an observer
the model to update
its BPM by one
Gontroller Patterns summary
You see the beatbar

%zo‘\'Mode y

on0

Ple evry /2 setond A duck’s eye view: the class diagram

§ Because the BP;
A 2 e the BPM is 120, the view
3 beat nobfication evey /2 x,imi‘b

B0 5 View &—\4

/\w

Vi s b bt e 801 Looking at MVC through patterns-colored glasses
Using MVC to control the beat...
The Model
The View

Model-View-Controller, the song

setBPM()

off()
ge\BPMQ

Design Patterns are your key to the MVC

The view is wpdated e
o120 BPM. ehanged- |

the model state

The Controller

Exploring strategy

Adapting the model

Now we’re ready for a HeartController
MVC and the Web

Design Patterns and Model 2

Tools for your Design Toolbox

Exercise Solutions

xXii

Download at WoweBook.Com

500
501
504
506
508
513
516
523
524
526
528
532
534
537
539
542
545
546
547
549
557
560
561

Better Living with Patterns

Patterns in the Real World

Ahhhh, now you’re ready for a bright new world filled with
Design Patterns. But, before you go opening all those new doors of opportunity
we need to cover a few details that you'll encounter out in the real world—things get a
little more complex out there than they are here in Objectville. Come along, we've got

a nice guide to help you through the transition...

Your Objectville guide
Design Pattern defined
Looking more closely at the Design Pattern definition

May the force be with you

W5 Pattern catalogs
ide to @ﬂ;% 8

will G
The OBt 5 o i Patons

i How to create patterns

So you wanna be a Design Patterns writer?
Organizing Design Patterns

Thinking in patterns

Your mind on patterns

Don’t forget the power of the shared vocabulary

Top five ways to share your vocabulary
Cruisin’ Objectville with the Gang of Four
Your journey has just begun...

Other Design Pattern resources

The Patterns Zoo

Annihilating evil with Anti-Patterns

Tools for your Design Toolbox

Leaving Objectville...

K\b\wa\’b\“\" i
\ § =~ Ralph
Johnson

méang of Four

-
John Vlissides

Erith Gamma

Download at WoweBook.Com

578
379
581
582
583
586
587
589
594
597
599
600
601
602
603
604
606
608
609

XXiii

table of contents

XXiv

Appendix: Leftover Patterns

Not everyone can be the most popular. Aot has changed in

the last 10 years. Since Design Patterns: Elements of Reusable Object-Oriented

Software first came out, developers have applied these patterns thousands of times.

The patterns we summarize in this appendix are full-fledged, card-carrying, official
GoF patterns, but aren’t always used as often as the patterns we’ve explored so
far. But these patterns are awesome in their own right, and if your situation calls for
them, you should apply them with your head held high. Our goal in this appendix is

to give you a high level idea of what these patterns are all about.

Al these compasite .
Classes have £ do is add Bridge
e Vst recds b be able bo 3l (ond ok oy abock

AGate() atross classes, and this is exposing themselves :). Buil d er
The Client asks the Sheve you o 3dd new methods for /
o frm B et
Composite shrtbore. N N /
New methods can be RN
added o the Visitor oS B

Chain of Responsibility

5@

without atfecting the @ N
Composite e; o
R) Interpreter
(Og@] e Menultem)
N ~N e X .
aont /) %, Mediator
Traverser ‘4

/

\ Memento
T Knows how to Ingredient Ingredient
e b Vit Do Prototype
T Composite shructwre

Visitor

Flyweight

~,

Index

Download at WoweBook.Com

612
614
616
618
620
622
624
626
628

631

how to use this book

Intro

I can't believe they
put that ina design
patterns book!

he burning question 2"
- SC'S(I‘BN{:\?:‘I a\:\:: ﬁcvh:’cc"\v\ a design patterrs book

[n

“S o w\,\\I

XXV

Download at WoweBook.Com

how to use this book

Who is this book for?

Who should probably back away frowm this book?

XXVi

If you can answer “yes” to all of these:

@ Do you know Java? (You don’t need to be a guru.)

Do you want to learn, understand, remember, and
apply design patterns, including the OO design
principles upon which design patterns are based?

Do you prefer stimulating dinner party conversation

to dry, dull, academic lectures?

this book is for you.

If you can answer “yes” to any one of these:

@ Are you completely new to Java?

(You don’t need to be advanced, and even if you
don’t know Java, but you know C#, you'll probably
understand at least 80% of the code examples. You
also might be okay with just a C++ background.)

@ Are you a kick-butt OO designer/developer looking
for a reference book?

@ Are you an architect looking for enterprise design
patterns?

@ Are you afraid to try something different?
Would you rather have a root canal than mix
stripes with plaid? Do you believe that a technical
book can’t be serious if Java components are
anthropomorphized? o

N

this book 1s not for you.

[note -c\rom ma\rke{:ing this book is
or anyone with a evedit tavd.J

Download at WoweBook.Com

\{ou'“ yro\)abw be Oka\l

'msJ(',cad-

\Iou kV\O‘N

i

the intro

We know what you're thinking.

“How can this be a serious programming book?”
“What’s with all the graphics?”

“Can I actually learn it this way?”

And we know what your brainis thinking. \(* mportan

Your brain craves novelty. It’s always searching, scanning, waiting for
something unusual. It was built that way, and it helps you stay alive.

Today, you’re less likely to be a tiger snack. But your brain’s still looking. You
just never know.

So what does your brain do with all the routine, ordinary, normal things
you encounter? Everything it can to stop them from interfering with the
brain’s 7eal job—recording things that matter. It doesn’t bother saving
the boring things; they never make it past the “this is obviously not
important” filter.

How does your brain know what’s important? Suppose you’re out for a day
hike and a tiger jumps in front of you, what happens inside your head and

body?

Great. Only
637 more dull, dry,
boring pages.

Neurons fire. Emotions crank up. Chemicals surge.
And that’s how your brain knows...

This must be important! Don’t forget it! \prain ks g

oWC)
. wov
But imagine you’re at home, or in a library. It’s a safe, warm, tiger-free zone. THS wnt

You’re studying. Getting ready for an exam. Or trying to learn some tough savindy
technical topic your boss thinks will take a week, ten days at the most.

Just one problem. Your brain’s trying to do you a big favor. It’s trying
to make sure that this obviously non-important content doesn’t clutter
up scarce resources. Resources that are better spent storing the really
big things. Like tigers. Like the danger of fire. Like how you should

never again snowboard in shorts.

And there’s no simple way to tell your brain, “Hey brain, thank you
very much, but no matter how dull this book is, and how little 'm
registering on the emotional Richter scale right now, I really do want
you to keep this stuff’ around.”

you are here b XXVii

Download at WoweBook.Com

XXViii

how to use this book

We think of a “Head First’ reader as a learner.

So what does it take to learn something? First, you have to getit, then make sure
you don’t forgetit. It's not about pushing facts into your head. Based on the
latest research in cognitive science, neurobiology, and educational psychology,
learning takes a lot more than text on a page. We know what turns your brain on.

sSome of the Head First learning principles:

needs £o ¢3)) 4

- te
Make it visual.|magesare far more memorable than words alone,and method on the RM| veme
server sevvite

make learning much more effective (up to 89% improvement in recall and
transfer studies). It also makes things more understandable. Put the
words within or near the graphics they relate to, rather than on

doCalc()

the bottom or on another page, and learners will be up to twice as likely

return value

to solve problems related to the content.

Use a conversational and personalized style.In recent studies, students

performed up to 40% better on post-learning tests if the content spoke directly to

the reader, using a first-person, conversational style rather than taking a formal

T+t really sucks to be an
abstract method. You
don't have a body.

tone. Tell stories instead of lecturing. Use casual language. Don't take yourself

too seriously. Which would you pay more attention to:a stimulating dinner party

companion,ora lecture?

Get the learner to think more deeply. In other words, unless

you actively flex your neurons, nothing much happens in your head.

Does it make sense fo
say Tub IS-A Bathroom?
Bathroom IS-A Tub? Oris
it a HAS-A relationship?

A reader has to be motivated, engaged, curious, and inspired to

solve problems, draw conclusions, and generate new knowledge.

And for that,you need challenges, exercises,and thought-provoking

questions, and activities that involve both sides of the brain,

roam() ; and multiple senses.

o(\‘oo‘“\' . w\a,\]\ Get—and keep—the reader’s attention. We've \
all had the“l really want to learn this but | can't stay awake past

page one” experience. Your brain pays attention to things that

are out of the ordinary, interesting, strange, eye-catching, unexpected. /

Learning a new, tough,technical topic doesn't have to be boring.Your prain will

learn much more quickly if it's not.

Touch their emotions. We now know that your ability to remember something is largely

dependent on its emotional content. You remember what you careé about. You remember when

you feel something. No, we're not talking heart-wrenching stories about a boy and his dog.

We're talking emotions like surprise, curiosity, fun,“what the..?”, and the feeling of “I Rule!”

that comes when you solve a puzzle, learn something everybody else thinks is hard, or realize

you know something that“l'm more technical than thou” Bob from engineering doesn't.

Download at WoweBook.Com

the intro

Metacognition: thinking about thinking

If you really want to learn, and you want to learn more quickly and more deeply,
pay attention to how you pay attention. Think about how you think. Learn how you
learn.

T wonder how I
can trick my brain
into remembering
this stuff...

growing up. We were expected to learn, but rarely taught to learn. S

Most of us did not take courses on metacognition or learning theory when we were

But we assume that if you’re holding this book, you really want to learn design
patterns. And you probably don’t want to spend a lot of time. And you want

to remember what you read, and be able to apply it. And for that, you've got to
understand it. To get the most from this book, or any book or learning experience, take
responsibility for your brain. Your brain on this content.

The trick is to get your brain to see the new material you’re learning as
Really Important. Crucial to your well-being. As important as a tiger.

Otherwise, you’re in for a constant battle, with your brain doing its best to
keep the new content from sticking.

So how DO you get your brain to think Design
Patterns are as important as a tiger?

There’s the slow, tedious way, or the faster, more effective way. The slow
way 1s about sheer repetition. You obviously know that you are able

to learn and remember even the dullest of topics, if you keep pounding on the
same thing. With enough repetition, your brain says, “This doesn’t fee/ important to him,
but he keeps looking at the same thing over and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, cspecially different
types of brain activity. The things on the previous page are a big part of the solution,
and they’re all things that have been proven to help your brain work in your favor. For
example, studies show that putting words within the pictures they describe (as opposed to
somewhere else in the page, like a caption or in the body text) causes your brain to try to
makes sense of how the words and picture relate, and this causes more neurons to fire.
More neurons firing = more chances for your brain to get that this is something worth
paying attention to, and possibly recording;

A conversational style helps because people tend to pay more attention when they
perceive that they’re in a conversation, since they’re expected to follow along and hold up
their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation”
is between you and a book! On the other hand, if the writing style is formal and dry, your
brain perceives it the same way you experience being lectured to while sitting in a roomful
of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning:

you are here » XXix

Download at WoweBook.Com

how to use this book

Here’s what WE did:

We used pictures, because your brain is tuned for visuals, not text. As far as your brain’s 01 O ANY REATIOSP
. . . Object (hic >
concerned, a picture really & worth 1024 words. And when text and pictures work together, we *

embedded the text i the pictures because your brain works more effectively when the text is . i /OQ
.
m(ax‘

Rty

within the thing the text refers to, as opposed to in a caption or buried in the text somewhere. Q 7

We used redundancy, saying the same thing in different ways and with different media types, PO— Huc
and multiple senses, to increase the chance that the content gets coded into more than one area of
your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for novelty,
and we used pictures and ideas with at least some emotional content, because your brain is @
tuned to pay attention to the biochemistry of emotions. That which causes you to_fee/ something -

is more likely to be remembered, even if that feeling is nothing more than a little Aumor,
surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay more

attention when it believes you’re in a conversation than if it thinks you’re passively listening to a
presentation. Your brain does this even when you’re reading. The Patterns Guru

We included more than 40 activities, because your brain is tuned to learn and remember
more when you do things than when you read about things. And we made the exercises
challenging-yet-do-able, because that’s what most people prefer.

someone else wants to understand the big picture first, while someone else just wants to see a
code example. But regardless of your own learning preference, everyone benefits from seeing the
same content represented in multiple ways.

We used mudltiple learning styles, because you might prefer step-by-step procedures, while Q
BULLET POINTS

We include content for both sides of your brain, because the more of your brain you

engage, the more likely you are to learn and remember, and the longer you can stay focused.

Since working one side of the brain often means giving the other side a chance to rest, you can

be more productive at learning for a longer period of time. PHZZIBS

And we included stories and exercises that present more than one point of view, because
your brain is tuned to learn more deeply when it’s forced to make evaluations and judgements.

We included challenges, with exercises, and by asking questions that don’t always have

a straight answer, because your brain is tuned to learn and remember when it has to work at
something, Think about it—you can’t get your body in shape just by watching people at the gym.
But we did our best to make sure that when you’re working hard, it’s on the 7ght things. That
you’re not spending one extra dendrite processing a hard-to-understand example, or
parsing difficult, jargon-laden, or overly terse text.

We used people. In stories, examples, pictures, etc., because, well, because you’re a person. And
your brain pays more attention to pesple than it does to things.

We used an 80/20 approach. We assume that if you’re going for a PhD in software design, this
won’t be your only book. So we don’t talk about everything. Just the stuff you’ll actually need.

XXX

Download at WoweBook.Com

eut this out and stiek it

on Your "Cf?iscra{:or‘

Slow down. The more you understand,
the less you have to memorize.

Don’t just read. Stop and think. When the
book asks you a question, don’t just skip to the
answer. Imagine that someone really is asking
the question. The more deeply you force your
brain to think, the better chance you have of
learning and remembering.

Do the exercises. Write your own notes.
We put them in, but if we did them for you,
that would be like having someone else do

your workouts for you. And don’t just look at

the exercises. Use a pencil. There’s plenty of
evidence that physical activity while learning
can increase the learning.

Read the “There are No Dumb Questions”
That means all of them. They’re not optional
side-bars—they’re part of the core content!
Don’t skip them.

Make this the last thing you read before

bed. Or at least the last challenging thing.

Part of the learning (especially the transfer to
long-term memory) happens after you put the
book down. Your brain needs time on its own, to
do more processing. If you put in something new
during that processing-time, some of what you
just learned will be lost.

Drink water. Lots of it.

Your brain works best in a nice bath of fluid. De-
hydration (which can happen before you ever feel
thirsty) decreases cognitive function.

@

the

Here’s what YOU can do to bend
your brain into submission

So, we did our part. The rest is up to you. These tips are a
starting point; listen to your brain and figure out what works

for you and what doesn’t. Try new things.

Talk about it. Out loud.

Speaking activates a different part of the brain.
If you’re trying to understand something, or
increase your chance of remembering it later, say
it out loud. Better still, try to explain it out loud
to someone else. You’ll learn more quickly, and
you might uncover ideas you hadn’t known were
there when you were reading about it.

Listen to your brain.

Pay attention to whether your brain is getting
overloaded. If you find yourself starting to skim the
surface or forget what you just read, it’s time for a
break. Once you go past a certain point, you won’t
learn faster by trying to shove more in, and you
might even hurt the process.

Feel something!

Your brain needs to know that this matters. Get
involved with the stories. Make up your own cap-
tions for the photos. Groaning over a bad joke is s&zl/
better than feeling nothing at all.

Design something!

Apply this to something new you’re designing, or
refactor an older project. Just do something to get
some experience beyond the exercises and activities
in this book. All you need is a pencil and a problem
to solve... a problem that might benefit from one or
more design patterns.

XXXi

Download at WoweBook.Com

how to use this book

Read Me

This is a learning experience, not a reference book. We deliberately stripped out
everything that might get in the way of learning whatever it is we’re working on at that

point in the book. And the first time through, you need to begin at the beginning, because cd s\mY\

the book makes assumptions about what you’ve already seen and learned. Wi dified 3w~’ umL- 2
Director

We use simple UML-like diagrams.

Although there’s a good chance you’ve run across UML, it’s not covered in the book, and g:tg(s)::’;er: 0

it’s not a prerequisite for the book. If you’ve never seen UML before, don’t worry, we’ll getKevinBaconDegrees()

give you a few pointers along the way. So in other words, you won’t have to worry about
Design Patterns and UML at the same time. Our diagrams are “UML-{ke” -- while we

try to be true to UML there are times we bend the rules a bit, usually for our own selfish
artistic reasons.

We don’t cover every single Design Pattern ever created.

There are a lot of Design Patterns: The original foundational patterns (known as the GoF
patterns), Sun’s J2EE patterns, JSP patterns, architectural patterns, game design patterns
and a /ot more. But our goal was to make sure the book weighed less than the person
reading it, so we don’t cover them all here. Our focus is on the core patterns that matter
from the original GoF patterns, and making sure that you really, truly, deeply understand
how and when to use them. You will find a brief look at some of the other patterns (the
ones you're far less likely to use) in the appendix. In any case, once you’re done with Head
First Design Patterns, you’ll be able to pick up any pattern catalog and get up to speed
quickly.

The activities are NOT optional.

The exercises and activities are not add-ons; they’re part of the core content of the book.
Some of them are to help with memory, some for understanding, and some to help you
apply what you've learned. Don’t skip the exercises. The crossword puzzles are the
only things you don’t have to do, but they’re good for giving your brain a chance to think
about the words from a different context.

We use the word “composition” in the general 00 sense, which is
more flexible than the strict UML use of “composition”.

When we say “one object is composed with another object” we mean that they are related
by a HAS-A relationship. Our use reflects the traditional use of the term and is the one
used in the GoF text (you’ll learn what that is later). More recently, UML has refined

this term into several types of composition. If you are an UML expert, you’ll still be able
to read the book and you should be able to easily map the use of composition to more
refined terms as you read.

XXXii

Download at WoweBook.Com

the

The redundancy is intentional and important.

One distinct difference in a Head First book is that we want you to really get it. And we want
you to finish the book remembering what you've learned. Most reference books don’t have
retention and recall as a goal, but this book is about learning, so you’ll see some of the same
concepts come up more than once.

The code examples are as lean as possible.

Our readers tell us that it’s frustrating to wade through 200 lines of code looking for the two
lines they need to understand. Most examples in this book are shown within the smallest
possible context, so that the part you’re trying to learn is clear and simple. Don’t expect

all of the code to be robust, or even complete—the examples are written specifically for
learning, and aren’t always fully-functional.

In some cases, we haven’t included all of the import statements needed, but we assume that
if you’re a Java programmer, you know that ArrayList is in java.util, for example. If the
imports were not part of the normal core J2SE API, we mention it. We’ve also placed all

the source code on the web so you can download it. You’ll find it at
http://www.headfirstlabs.com/books/hfdp/

Also, for the sake of focusing on the learning side of the code, we did not put our classes
into packages (in other words, they’re all in the Java default package). We don’t recommend
this in the real world, and when you download the code examples from this book, you’ll find
that all classes are in packages.

The ‘Brain Power’ exercises don’t have answers.

For some of them, there is no right answer, and for others, part of the learning experience
of the Brain Power activities is for you to decide if and when your answers are right. In
some of the Brain Power exercises you will find hints to point you in the right direction.

Download at WoweBook.Com

Xxxiii

the early review team

Tech Reviewers Valentin Cretta,

Je(: Cumys

Fearless leader of
the HFDP Extreme

Review Team.

Divk Sehretkmann

XXXV intro

Download at WoweBook.Com

In memory @f P/w'We Maguet
1960-2004

Your amazing technical expertise, relentless enthusiasm, and
deep concern for the learner will inspire us always.

We will never forget you.

Philippe Maquet

Acknowledgments

At O’Reilly:

Our biggest thanks to Mike Loukides at O’Reilly, for starting it all, and helping to shape the Head
First concept into a series. And a big thanks to the driving force behind Head First, Tim O’Reilly.
Thanks to the clever Head First “series mom” Kyle Hart, to rock and roll star Ellie Volkhausen for
her inspired cover design and also to Colleen Gorman for her hardcore copyedit. Finally, thanks to
Mike Hendrickson for championing this Design Patterns book, and building the team.

Our intrepid reviewers:

We are extremely grateful for our technical review director Johannes deJong. You are our hero,
Johannes. And we deeply appreciate the contributions of the co-manager of the Javaranch review
team, the late Philippe Maquet. You have single-handedly brightened the lives of thousands of
developers, and the impact you’ve had on their (and our) lives is forever.

Jef Cumps is scarily good at finding problems in our draft chapters, and once again made a huge
difference for the book. Thanks Jef! Valentin Cretaz (AOP guy), who has been with us from the
very first Head First book, proved (as always) just how much we really need his technical expertise
and insight. You rock Valentin (but lose the tie).

Two newcomers to the HF review team, Barney Marispini and Ike Van Atta did a kick butt job on
the book—you guys gave us some really crucial feedback. Thanks for joining the team.

We also got some excellent technical help from Javaranch moderators/gurus Mark Spritzler,
Jason Menard, Dirk Schreckmann, Thomas Paul, and Margarita Isaeva. And as always,
thanks especially to the javaranch.com Trail Boss, Paul Wheaton.

Thanks to the finalists of the Javaranch “Pick the Head First Design Patterns Cover” contest. The
winner, Si Brewster, submitted the winning essay that persuaded us to pick the woman you see on
our cover. Other finalists include Andrew Esse, Gian Franco Casula, Helen Crosbie, Pho Tek, Helen
Thomas, Sateesh Kommineni, and Jeff Fisher.

Download at WoweBook.Com

the

XXXV

still more acknowledgments

Even wore people*

From Evric and Elisabeth

Writing a Head First book is a wild ride with two amazing tour guides: Kathy Sierra and
Bert Bates. With Kathy and Bert you throw out all book writing convention and enter a world
full of storytelling, learning theory, cognitive science, and pop culture, where the reader always
rules. Thanks to both of you for letting us enter your amazing world; we hope we’ve done Head
First justice. Seriously, this has been amazing. Thanks for all your careful guidance, for pushing
us to go forward and most of all, for trusting us (with your baby). You’re both certainly “wickedly
smart” and you’re also the hippest 29 year olds we know. So... what’s next?

A big thank you to Mike Loukides and Mike Hendrickson. Mike L. was with us every
step of the way. Mike, your insightful feedback helped shape the book and your encouragement
kept us moving ahead. Mike H., thanks for your persistence over five years in trying to get us to
write a patterns book; we finally did it and we’re glad we waited for Head First.

A very special thanks to Erich Gamma, who went far beyond the call of duty in reviewing
this book (he even took a draft with him on vacation). Erich, your interest in this book inspired
us and your thorough technical review improved it immeasurably. Thanks as well to the entire
Gang of Four for their support & interest, and for making a special appearance in Objectville.
We are also indebted to Ward Cunningham and the patterns community who created the
Portland Pattern Repository — an indespensible resource for us in writing this book.

It takes a village to write a technical book: Bill Pugh and Ken Arnold gave us expert advice
on Singleton. Joshua Marinacci provided rockin’ Swing tips and advice. John Brewer’s
‘Why a Duck?” paper inspired SimUDuck (and we’re glad he likes ducks too). Dan Friedman
inspired the Little Singleton example. Daniel Steinberg acted as our “technical liason” and
our emotional support network. And thanks to Apple’s James Dempsey for allowing us to use
his MVC song.

13

Last, a personal thank you to the Javaranch review team for their top-notch reviews and
warm support. There’s more of you in this book than you know.

From Kathy and Bert

We’d like to thank Mike Hendrickson for finding Eric and Elisabeth... but we can’t. Because of
these two, we discovered (to our horror) that we aren’t the only ones who can do a Head First
book. ;) However, if readers want to believe that it’s really Kathy and Bert who did the cool things
in the book, well, who are we to set them straight?

*The large number of acknowledgments is because we’re testing the theory
that everyone mentioned in a book acknowledgment will buy at least one copy,
probably more, what with relatives and everything. If you'd like to be in the
acknowledgment of our next book, and you have a large family, write to us.

XXXVi

Download at WoweBook.Com

1 Intro to Design Patterns

Welcome to *
Design Patterns

Now that we're living
in Objectville, we've just got
to get into Design Patterns...
everyone is doing them. Soon
we'll be the hit of Jim and
Betty's Wednesday night
patterns group!

Someone has already solved your problems. in this chapter, you'll learn
why (and how) you can exploit the wisdom and lessons learned by other developers who've
been down the same design problem road and survived the trip. Before we’re done, we'll
look at the use and benefits of design patterns, look at some key OO design principles, and
walk through an example of how one pattern works. The best way to use patterns is to load
your brain with them and then recognize places in your designs and existing applications

where you can apply them. Instead of code reuse, with patterns you get experience reuse.

this is a new chapter 1

Download at WoweBook.Com

SimUDuck

It started with a simple SimUDuck app

Joe works for a company that makes a highly successful duck pond
simulation game, SimUDuck. The game can show a large variety of
duck species swimming and making quacking sounds. The initial
designers of the system used standard OO techniques and created
one Duck superclass from which all other duck types inherit.

Duck
Al dueks quack and swim, the | Quack(
supevclass takes care of the swim() .
implementation code. display() & The d\s\vla\/() method l:
JI OTHER duck-like methods... sbstratt, smee all dve
subtypes look difkerent:
(MN- S‘*\"kg;‘ﬁc MallardDuck/ Redh]a;uck\ Lypes ok dueks
g
@3{,\“ o“s-‘\o\c .:} S . : Loks °£ o‘\:\\clhszvck lass-
SR ——> | display(){ display() { hevit, from
W\ e 00 e I/ looks like a mallard } // looks like a redhead }
U
foc ¥ o
Xne seeee

In the last year, the company has been under increasing pressure
from competitors. After a week long off-site brainstorming
session over golf, the company executives think it’s time for a big
innovation. They need something 7eally impressive to show at the
upcoming shareholders meeting in Maui next week.

2 Chapter 1

Download at WoweBook.Com

intro to Design Patterns

But now we need the ducks to FLY

The executives decided that flying ducks is just what the
simulator needs to blow away the other duck sim competitors.
And of course Joe’s manager told them it’ll be no problem

for Joe to just whip something up in a week. “After all”, said
Joe’s boss, “he’s an OO programmer... how hard can it be?”

I just need to add a fly()
method in the Duck class and

then all the ducks will inherit it.
Now's my time to really show my
true OO genius.

(

What we want.

Duck
quack()
swim()
display() Joe added-
e |y & Wiat <2
?\\\ 5“.)(’ 9(\‘\0‘ /I OTHER duck-like methods...
'\V\\‘"x\
MallardDuck RedheadDuck Other Duek Lypes-
display() { display() {
Il'looks like a mallard } I/'looks like a redhead }

you are here » 3

Download at WoweBook.Com

something went wrong

But something went horribly wrong...

Joe, I'm at the
shareholder’'s meeting.
They just gave a demo and there
were rubber duckies flying around
the screen. Was this your idea of

a joke? You might want to spend
some time on Monster.com...

What happened?

Joe failed to notice that not all
subclasses of Duck should fly. When
Joe added new behavior to the
Duck superclass, he was also adding
behavior that was not appropriate
for some Duck subclasses. He now
has flying inanimate objects in the
SimUDuck program. O

’ What he thought

was a great use

OK, so there's a slight
flaw in my design. I

don't see why they can't
just call it a “feature”.
It's kind of cute...

A localized update to the code caused a non-
local side effect (flying rubber ducks)!

of inheritance

Duck
quack() for the purpose
. Xne swim() ,
AR display) of reuse hasn't
N . e ot 2 | fly()
,,\.QCV"\» R et /| OTHER duck-like methods... tur ﬂeJ out so Weu
AW T ot 11 .
- udd when 1t comes to
\v\\\o \,\6“ .
: maintenance.
MallardDuck RedheadDuck RubberDuck s d L a\uac\(,
s aon
display() { display() { quack() { & Rubbee \?(\;L'\s overvidden
/'looks like a mallard I/'looks like a redhead I overridden to Squeak so °‘\\"a ¢
))) bo St
display() {
II'looks like a rubberduck
}
4 Chapter 1

Download at WoweBook.Com

intro to Design Patterns

Joe thinks about inheritance...

I could always just
override the fly() method in
rubber duck, the way T am with
the quack() method...

But then what happens when
we add wooden decoy ducks
to the program? They aren't
supposed to fly or quack...

RubberDuck
quack() {// squeak}

display() { .// rubber duck }
fly() {

Il override to do nothing

}

e e
DecoyDuck
quack() {
Il override to do nothing
}

display() { // decoy duck}
n the
, tlass ™ fiy() {
Yeces av«’.ld“‘:_\Cc Lnak ke I override to do nothing
\\\CYBV"‘\B‘; :\L, & doesnt £y }
Rubber g8 ,,\\,ac,\t-
bt it als0 0o€"
i dharpen your penci
Which of the following are disadvantages of using nheritance to
provide Duck behavior? (Choose all that apply.)
(A A. Code is duplicated across subclasses. (A D. Hard to gain knowledge of all duck behaviors.
(1 B. Runtime behavior changes are difficult. [E. Ducks can’t fly and quack at the same time.
(d C. We can’t make ducks dance. (A F Changes can unintentionally affect other ducks.
you are here » 5

Download at WoweBook.Com

inheritance is not the answer

How about an interface?

Joe realized that inheritance probably wasn’t the
answer, because he just got a memo that says that

the executives now want to update the product every
six months (in ways they haven’t yet decided on). Joe
knows the spec will keep changing and he’ll be forced
to look at and possibly override fly() and quack() for
every new Duck subclass that’s ever added to the
program... forever:

So, he needs a cleaner way to have only some (but not
all) of the duck types fly or quack.

Duck

swim()
display()

Quackable

Flyable
fiy()

/I OTHER duck-like methods...

T could take the fly() out of the
Duck superclass, and make a
Flyable() interface with a fly()
method. That way, only the ducks that
are supposed to fly will implement that
interface and have a fly() method... and
I might as well make a Quackable, too,
since not all ducks can quack.

MallardDuck RedheadDuck

RubberDuck

DecoyDuck
display() display() display() display()
fly() fiy() quack()
quack() quack()

What do YOU think about this design?

6 Chapter 1

Download at WoweBook.Com

intro to Design Patterns

That is, like, the dumbest idea
you've come up with. Can you say,
“duplicate code”? If you thought
having to override a few methods was bad,
how are you gonna feel when you need
to make a little change to the flying
behavior... in all 48 of the flying
Duck subclasses?!

What would you do if you were Joe?

We know that not a// of the subclasses should have flying or quacking
behavior, so inheritance isn’t the right answer. But while having

the subclasses implement Flyable and/or Quackable solves part of
the problem (no inappropriately flying rubber ducks), it completely
destroys code reuse for those behaviors, so it just creates a different
maintenance nightmare. And of course there might be more than
one kind of flying behavior even among the ducks that do fly...

At this point you might be waiting for a Design Pattern to come
riding in on a white horse and save the day. But what fun would that
be? No, we’re going to figure out a solution the old-fashioned way—
by applying good OO software design principles.

Wouldn't it be dreamy if

only there were a way to build
software so that when we need to
change it, we could do so with the least
possible impact on the existing code?
We could spend less time reworking
code and more making the program
do cooler things...

you are here » 7

Download at WoweBook.Com

change is constant

The one constant in software development

Okay, what’s the one thing you can always count on in software development?

No matter where you work, what you’re building, or what language you are programming in, what’s
the one true constant that will be with you always?

JOVAHD

USC a mirror to see the an%wer

No matter how well you design an application, over time an
application must grow and change or it will dze.

@ harpen your pencil
Lots of things can drive change. List some reasons

you've had to change code in your applications (we put
in a couple of our own to get you started).

My tustomers or users decide they want something else, or they want new ‘("uhc{:ionali{:\/.

My company decided it is going with another database vendor and it is also purthasing
its data from another supplier that uses a diffevent data format. Avgh,’

Download at WoweBook.Com

intro to Design Patterns

Zeroing in on the problew...

So we know using inheritance hasn’t worked out very well, since
the duck behavior keeps changing across the subclasses, and it’s
not appropriate for all subclasses to have those behaviors. The
Flyable and Quackable interface sounded promising at first—only
ducks that really do fly will be Flyable, etc.—except Java interfaces
have no implementation code, so no code reuse. And that means
that whenever you need to modify a behavior, you’re forced to
track down and change it in all the different subclasses where that
behavior is defined, probably introducing new bugs along the way!

Take what varies and

Luckily, there’s a design principle for just this situation.

"encapsulate” it so it won't

Design Principle affect the rest of your code.
Identify the aspects of your

application that vary and separate
them from what stays the same.

The result? Fewer
(unintended consequences

frOm CO(IQ changes anJ more

In other words, if you’ve got some aspect of your code that is {le)nl)lllty in your systems!
changing, say with every new requirement, then you know you’ve

got a behavior that needs to be pulled out and separated from all

the stuff that doesn’t change.

Here’s another way to think about this principle: take the parts
that vary and encapsulate them, so that later you can
alter or extend the parts that vary without affecting
those that don’t.

As simple as this concept is, it forms the basis for almost every
design pattern. All patterns provide a way to let some part of a system
vary independently of all other parts.

Okay, time to pull the duck behavior out of the Duck classes!

Download at WoweBook.Com

pull out what

Separating what changes from what stays the same

Where do we start? As far as we can tell, other than the problems with fly() and quack(), the Duck
class is working well and there are no other parts of it that appear to vary or change frequently.
So, other than a few slight changes, we’re going to pretty much leave the Duck class alone.

Now, to separate the “parts that change from those that stay the same”, we are going to create two
sets of classes (totally apart from Duck), one for fly and one for quack. Each set of classes will hold
all the implementations of their respective behavior. For instance, we might have one class that
implements quacking, another that implements squeaking, and another that implements silence.

We know that fly() and quack() are the parts of the
Duck class that vary across ducks.

To separate these behaviors from the Duck class, we’ll
pull both methods out of the Duck class and create a
new set of classes to represent each behavior.

The Duek elass is <Hill the suvc\rl,\ass
of all dutks, but we are pulling out

| d Vavious behavior
Iy and quatk behaviors an | | |
{\‘;\\:Lcin\g {‘;\c‘m ko another elass . i e mv\‘cmccbhom .

. [ece.
strutture. Lheir own set of tlasses. 9 /
. . 0(\6
OUCk (;\(}56 le/y,ng Be\'\O“\
Duck Behaviors

10

Download at WoweBook.Com

Pesigning the Duck Behaviors

So how are we going to design the set of classes that
implement the fly and quack behaviors?

We’d like to keep things flexible; after all, it was the inflexibility in
the duck behaviors that got us into trouble in the first place. And we
know that we want to assign behaviors to the instances of Duck. For
example, we might want to instantiate a new MallardDuck instance
and initialize it with a specific ¢pe of flying behavior. And while
we’re there, why not make sure that we can change the behavior of
a duck dynamically? In other words, we should include behavior
setter methods in the Duck classes so that we can, say, change the
MallardDuck’s flying behavior at runtime.

Given these goals, let’s look at our second design principle:

Design Principle

Program to an interface, not an
implementation.

We’ll use an interface to represent each behavior — for instance,
FlyBehavior and QuackBehavior — and each implementation of a
behavior will implement one of those interfaces.

So this time it won’t be the Duck classes that will implement the
flying and quacking interfaces. Instead, we’ll make a set of classes
whose entire reason for living is to represent a behavior (for example,
“squeaking”), and it’s the behavior class, rather than the Duck class,
that will implement the behavior interface.

This is in contrast to the way we were doing things before, where

a behavior either came from a concrete implementation in the
superclass Duck, or by providing a specialized implementation in the
subclass itself. In both cases we were relying on an implementation. We
were locked into using that specific implementation and there was no
room for changing out the behavior (other than writing more code).

With our new design, the Duck subclasses will use a behavior
represented by an interface (FlyBehavior and QuackBehavior), so that
the actual implementation of the behavior (in other words, the specific

concrete behavior coded in the class that implements the FlyBehavior

or QuackBehavior) won’t be locked into the Duck subclass.

Download at WoweBook.Com

intro to Design Patterns

From now on, the Duck
hehaviors will live in a
separate class—a class that
im])lements a Particular
hehavior interface.

That way, the Duck classes

won't neeJ 1o lcnow any of
the im]olementation details
for their own bhehaviors.

<<interface>>
FlyBehavior
fiy()
FlyWithWings ‘ FlyNoWay i
fiy() { fiy() {
Il implements duck flying Il do nothing - can't fly!
} }

1

program interface

T don't see why you have to
use an interface for FlyBehavior.
You can do the same thing with an
abstract superclass. Isn't the
whole point to use polymorphism?

“Program to an interface” really means
“Program to a supertype.”

The word nterface is overloaded here. There’s the concept of
interface, but there’s also the Java construct interface. You

can program to an interface, without having to actually use a

Java interface. The point is to exploit polymorphism by
programming to a supertype so that the actual runtime object
isn’t locked into the code. And we could rephrase “program to

a supertype” as “the declared type of the variables should be a
supertype, usually an abstract class or interface, so that the objects
assigned to those variables can be of any concrete implementation
of the supertype, which means the class declaring them doesn’t
have to know about the actual object types!”

This is probably old news to you, but just to make sure we’re

all saying the same thing, here’s a simple example of using a
polymorphic type — imagine an abstract class Animal, with two
concrete implementations, Dog and Cat.

Programming to an implementation would be:

ab‘fracf
:Z an absfi:zezi),?c (eouly Dog d = new Dog(); DCC'&V‘inS the variable “d” as + pe Do
erface) dss OR d.bark () ; (a eontrete implementation of nimal)3
Torces us to tode to a tontreke
'”‘?'C'ch\fafion.
Animal But programming to an interface/supertype would be:
makeSound() 4
We k ’
Animal animal = new Dog(); wccca':\o:lo;{/: tsasi Elr?cg‘a:‘rfal
animal.makeSound() ; veferente Fol\/mor?hically.
contrete Even better, rather than hard-coding the instantiation of the
\m\a\cmcnﬂ{“"‘s subtype (like new Dog()) into the code, assign the concrete
implementation object at runtime:
Dog Cat
makeSound() { makeSound() { a = getAnimal () ; Z‘iicmgrn ’cb lJ:now .WHAT the actual
bark(); meow(); a.makeSound () ; is th JC‘!‘ ype is-.. all we tare about
)) bty bow o vespond to
bark() { // bark sound } meow() { // meow sound } makeSound().
12

Download at WoweBook.Com

intro to Design Patterns

Implementing the Puck Behaviors

Here we have the two interfaces, FlyBehavior and QuackBehavior along with
the corresponding classes that implement each concrete behavior:

Came Lhing here £or the a\uack

Kot 1ov; we have an intervace
. '\-m)cgv;abf- \ \oc\nav@rt‘f s 3 a\uatko
wor O \cmC"‘\'" fhat just ™ 4o be
?\\&;\‘) glasse® m‘-z & need ‘o method that needs
\! \'2
f a:\cw \\f\"?‘ i\’::s;s\\fmc‘\,\‘od' \m\’\Can{Zd-/
. olemen
vy
<<interface>> <<interface>>
FlyBehavior QuackBehavior
fiy() quack()
FlyWithWings FlyNoWay Quack SqL;eak ' MuteQuack
fIy(? {) 0 { quack() { quack() { quack() {
Il implements duck flying If do nothing - can't fiy! Il implements duck quacking Il rubber duckie squeak 1/ do nothing - can’t quack!
:)) })
4"‘841(/\ T /(\
And here’s zL':K. *‘cd//}, s f/)ef Quatks that squeak
Hey. all dugy, & € implepme,, 4 Tuack ua &\ Quacks that make
es 'éhc . a Cah'-é ’p on o)
of £l in5 _#‘I”‘P/e”‘fnfaf ly no sound at all
that hal o all e
aVe
With this design, other types of objects can [Fams peneki® ok
reuse our fly and quack behaviors because Qo we ‘5°J°,J°:;,£ 2\l the
these behaviors are no longer hidden away g?,\AS?/ “‘talc pomes 39D
in our Duck classes! agP* k,\’oa““‘

And we can add new behaviors without
modifying any of our existing behavior
classes or touching any of the Duck classes
that use flying behaviors.

13

Download at WoweBook.Com

behavior in a

therejare no
Dumb Questions

Q} Do | always have to implement my application first, see
where things are changing, and then go back and separate &
encapsulate those things?

A: Not always; often when you are designing an application,
you anticipate those areas that are going to vary and then go ahead
and build the flexibility to deal with it into your code. You'll find

that the principles and patterns can be applied at any stage of the
development lifecycle.

Q} Should we make Duck an interface too?

A: Not in this case. As you'll see once we've got everything
hooked together, we do benefit by having Duck not be an interface
and having specific ducks, like MallardDuck, inherit common
properties and methods. Now that we’'ve removed what varies from
the Duck inheritance, we get the benefits of this structure without
the problems.

Q} It feels a little weird to have a class that’s justa
behavior. Aren’t classes supposed to represent things? Aren’t
classes supposed to have both state AND behavior?

A: In an OO system, yes, classes represent things that
generally have both state (instance variables) and methods. And in
this case, the thing happens to be a behavior. But even a behavior
can still have state and methods; a flying behavior might have
instance variables representing the attributes for the flying (wing
beats per minute, max altitude and speed, etc.) behavior.

'@@ harpen your pencil
darpenyour

behavior that isn’t a duck?

0 Using our new design, what would you do if you needed to
add rocket-powered flying to the SimUDuck app?

Q Can you think of a class that might want to use the Quack

*(Spunos yonp saye e} 91AP

®) [1ed yonp e ‘opdurexa auQ (g
ERLIRERIE

JOTARYIGAL 21 syuawapdwt yer)
SSB[O PAIIMOIOYIOYAL] & 91ed1)) (]

14

SIomsuy/

Download at WoweBook.Com

intro to Design Patterns

Integrating the Puck Behavior

The key is that a Duck will now delegate its flying
and quacking behavior, instead of using quacking and
flying methods defined in the Duck class (or subclass).

Here’s how:

Q First we’ll add two instance variables to the Duck class called flyBehavior and
quackBehavior, that are declared as the interface type (not a concrete class implementation
type). Each duck object will set these variables polymorphically to reference the specific
behavior type it would like at runtime (FlyWithWings, Squeak, etc.).

We’ll also remove the fly() and quack() methods from the Duck class (and any subclasses)
because we’ve moved this behavior out into the FlyBehavior and QuackBehavior classes.

We’ll replace fly() and quack() in the Duck class with two similar methods, called
performFly() and performQuack(); you’ll see how they work next.

[nstante variables hold a veferente to

The behavior vaviables are speti Lt behavior ak vuntime.

detlaved as the behavior Duck
INTERFACE type. L —
FlyBehavior flyBehavior

QuackBehavior quackBehavior

These methods veplace rf K Al et
By and k)7 o o

oS
: Wo°
\ display() Q"ackmg Be®
performFly()

Duck Behaviors
/I OTHER duck-like methods...

e Now we implement performQuack():

c{;\\'\hs {:\\ah

public class Duck { Eath Duck has 3 rcg\:g":‘;\t: ::J:;v&‘aw

QuackBehavior quackBehavior; < -‘m‘,\cmcn’cs Lhe QuatkDe

// more havior

Rather than handling {:\\3 a\\vat;k :cjd‘a‘t
. e
public void performQuack() { .‘BC\!}, the Duek obj)“'t Y: e?cn“d by
quackBehavior.quack () ; {,/ behavioe to fhe objet
} } o\uab\(BC\"a\’.‘ov'
Pretty simple, huh? To perform the quack, a Duck just allows the object that
1s referenced by quackBehavior to quack for it.
In this part of the code we don’t care what kind of object it is, all we care
about is that it knows how to quack()!
you are here » 15

Download at WoweBook.Com

integrating duck behavior

More Integration...

e Okay, time to worry about how the flyBehavior and
quackBehavior instance variables are set. Let’s take a look at

the MallardDuck class:
public class MallardDuck extends Duck { A Ma“ardDuck wses bhe Quat\((,\azvﬁzk
gl
public MallardDuck() f{ £ andleits quath < when \’CE :Jchc
quackBehavior = new Quack(); . \led the ch\aoy\s\b\\\‘t\[o N b'cf:\:
flyBehavior = new FlyWithWings() ; s 62 . ' ted to the Quatk 29
% Yy g ’ \Aack s dc\cga 4
} and we et 3 veal quack
Remember, MallardDutk inhevits the quack— pod b 585 FIyWi EnWinos 3s its
Behavior and flyBchavior instante variables F'\“fBC\‘a vior ype

£rom elass Duck.

public void display () {
System.out.println(“I'm a real Mallard duck”);

}

So MallardDuck’s quack is a real live duck quack, not a squeak and
not a mute quack. So what happens here? When a MallardDuck

1s instantiated, its constructor initializes the MallardDuck’s inherited
quackBehavior instance variable to a new instance of type Quack (a
QuackBehavior concrete implementation class).

And the same is true for the duck’s flying behavior—the MallardDuck’s
constructor initializes the flyBehavior instance variable with an instance
of type FlyWithWings (a FlyBehavior concrete implementation class).

16 Chapter 1

Download at WoweBook.Com

intro to Design Patterns

Wait a second, didn't you
say we should NOT program to an
implementation? But what are we doing
in that constructor? We're making a
new instance of a concrete Quack
implementation class!

Good catch, that’s exactly what we’re doing...
Jfor now.

Later in the book we’ll have more patterns in
our toolbox that can help us fix it.

Still, notice that while we are setting the
behaviors to concrete classes (by instantiating
a behavior class like Quack or FlyWithWings
and assigning it to our behavior reference
variable), we could easily change that at
runtime.

So, we still have a lot of flexibility here,

but we’re doing a poor job of initializing

the instance variables in a flexible way. But
think about it, since the quackBehavior
instance variable is an interface type, we
could (through the magic of polymorphism)
dynamically assign a different QuackBehavior
implementation class at runtime.

Take a moment and think about how you
would implement a duck so that its behavior
could change at runtime. (You’ll see the code
that does this a few pages from now.)

you are here » 17

Download at WoweBook.Com

testing duck behaviors

Testing the Puck code

18

0 Type and compile the Duck class below (Duck.java), and the
MallardDuck class from two pages back (MallardDuck.java).

public abstract class Duck { bl
Detlace two vebecente vaviables
FlyBehavior flyBehavior; £or the behavior 'un{:crgac: {',\,?cs.
. . v
QuackBehavior quackBehavior; o
public Duck() {
}

Al duek wbelasses (in the same
?ackage) inhevit these.

public abstract void display();

public void performFly () {

} flyBehavior.fly () ; <_\ Dclcga{:c +o the behavior ¢tlass.

public void performQuack() {
quackBehavior.quack() ;

}

public void swim() {
System.out.println (“All ducks float, even decoys!”);
}

e Type and compile the FlyBehavior interface (FlyBehavior.java) and
the two behavior implementation classes (FlyWithWings.java and
FlyNoWay.java).

The interface that all «Cl\/ing

public interface FlyBehavior ({ !
behavior ¢lasses implement.

public void fly();
}

public class FlyWithWings implements FlyBehavior {

public void fly() f Flying behavior \mv\men‘ca{:'\on
} System.out.println (*I’'m flying!!”); gl dutks that Do ‘c\\[
}
public class FlyNoWay implements FlyBehavior { v
public void fly () { ’Y"‘ﬂ behavioy implementadt;
System.out.println(“I can’t fly”); or ducks that do NOT £ 'on
} rubber ducks ang dep, duck (ke
} Y ducks).
Chapter 1

Download at WoweBook.Com

intro to Design Patterns

Testing the Puck code continved...

e Type and compile the QuackBehavior interface
(QuackBehavior.java) and the three behavior implementation
classes (Quack.java, MuteQuack.java, and Sqeak.java).

public interface QuackBehavior {
public void quack() ;
}

public class Quack implements QuackBehavior ({
public void quack() {
System.out.println (“Quack”) ;
}

public class MuteQuack implements QuackBehavior ({
public void quack() {
System.out.println (“<< Silence >>");

}

public class Squeak implements QuackBehavior {
public void quack() {
System.out.println (“Squeak”) ;
}
}

Q Type and compile the test class
(MiniDuckSimulator.java).

public class MiniDuckSimulator {

public static void main (String[] args) {

Duck mallard = new MallardDuck() ; —
mallard.performiuaci(); This calls the Ma\\ardDuLk\s\.;:\ :;ncn dc\csa{xs .
mallard.performFly () ; Ycrﬁorm&uack() m\:gh:d’.t |(.‘ o o\uack() e
| the ob)ct.{:’s QuackBehavior ,
| duek’s inhevited a\uacchhavwr vekerente

i ith M llardDuek’s
e rlun the cod” Then we do the same thing wn{;\\ a
inhevited YevﬁormF\\/() wethod.

File Edit Window Help Yadayadayada

%java MiniDuckSimulator

Quack

I'm flying!!

you are here » 19

Download at WoweBook.Com

ducks with dynamic behavior

Setting behavior dynamically

What a shame to have all this dynamic talent built into our ducks and not be using
it! Imagine you want to set the duck’s behavior type through a setter method on the
duck subclass, rather than by instantiating it in the duck’s constructor.

Q Add two new methods to the Duck class:

public void setFlyBehavior (FlyBehavior fb) {
flyBehavior = fb;

} Duck
FlyBehavior flyBehavior;
public void setQuackBehavior (QuackBehavior gb) ({ QuackBehavior quackBehavior;

quackBehavior = gb;

swim()

display()

performQuack()

performFly()

setFlyBehavior()
setQuackBehavior()

I OTHER duck-like methods...

editor note: gratuitous pun - fix

6 Make a new Duck type (ModelDuck.java).

public class ModelDuck extends Duck {

— \ife ovounded--
public ModelDuck() { Oue model dutk begins like 3

flyBehavior = new FlyNoWay () ; ithout 3 way to £\\,
quackBehavior = new Quack(); W

}

public void display () {
System.out.println (“I’m a model duck”);

}

}
© Make a new FlyBehavior type That's okay, ‘"‘"E f“‘f’;? 2
(FlyRocketPowered.java). rotket powered tlying behavior

public class FlyRocketPowered implements FlyBehavior ({
public void fly () {
System.out.println(“I'm flying with a rocket!”);
}

20 Chapter 1

Download at WoweBook.Com

intro to Design Patterns

Change the test class (MiniDuckSimulator.java), add the

ModelDuck, and make the ModelDuck rocket-enabled. before
public class MiniDuckSimulator {
public static void main(String[] args) { 1 ~ J

Duck mallard = new MallardDuck() ;
mallard.performQuack() ; ﬁ, ﬁb

mallard.performFly () ; QormF\‘IO dc\cga{:cs

he fivst call to perxe dee
| CJc,\r\c (:\\[Bc\\av'\or ochct se{.-, n :
Duck model = new ModelDuck () ; o , " '
< Modc\DuL\L < tonstrut
model .performFly () ; SO F‘\INowa\l i

model.setFlyBehavior (new FlyRocketPowered()) ; -
"~ This invokes the model’s inhevited

e _ behavior setter method, and...voilal The
| % ‘aoficl :udd;r,aly P;as rotket—powered
| Ing Lapabil;
I£ it worked, the model duck dynamically e

thanged its £lying behavior! Yoy ¢an't do

THAT if the ; o
duck al,;sfhc mPlementation lies inside the

File Edit Window Help Yabadabadoo

%java MiniDuckSimulator
Quack
I'm flying!!

I can’t fly

I'm flying with a rocket

To change a duck’s

hehavior at runtime, qust
call the duck’s setter
method for that behavior.

you are here » 21

Download at WoweBook.Com

the big picture

The Big Picture on encapsulated behaviors

Okay, now that we’ve done the deep dive on the
duck simulator design, it’s time to come back up
for air and take a look at the big picture.

Below is the entire reworked class structure. We have everything you’d expect:
ducks extending Duck, fly behaviors implementing FlyBehavior and quack

behaviors implementing QuackBehavior.

Notice also that we’ve started to describe things a little differently. Instead
of thinking of the duck behaviors as a set of behaviors, we’ll start thinking of
them as a famuly of algorithms. Think about it: in the SimUDuck design, the
algorithms represent things a duck would do (different ways of quacking or
flying), but we could just as easily use the same techniques for a set of classes

that implement the ways to compute state sales tax by different states.

Pay careful attention to the relationships between the classes. In fact, grab
your pen and write the appropriate relationship (IS-A, HAS-A and

IMPLEMENTS) on each arrow in the class diagram.

Client makes use of an .
entapsulated Famil\/ of algorithms
£or both ﬂ\/’mg and quacking,

Client

FlyBehavior flyBehavior
QuackBehavior quackBehavior

swim()
display()

performQuack()

performFly()

setFlyBehavior()
setQuackBehavior()

/I OTHER duck-like methods...

Encapsulated fly behavior

<<interface>>

RubberDuck ‘ DecoyDuck

3

display() {
Ilooks like a redhead }

display() {
Il'ooks like a mallard }

display() { display() {
Ilooks like a rubberduck } Ilooks like a decoy duck }

Encapsulated quack behavior
<<interface>>
QuackBehavior

quack()

Squeak

quack() {
Il rubber duckie squeak

Quack MuteQuack

quack() {
Il do nothing - can't quack!

quack) {
Ilimplements duck quacking

}

22 Chapter 1

Download at WoweBook.Com

FlyBehavior
|7 y eath
O et
ek Ay O
- N famy
FlyWithWings FlyNoWay as @ s
0 { 0 \oo*
Il implements duck flying I/ do nothing - can't fly!
} } F'

HAS-A can be better than I1S-A

The HAS-A relationship is an interesting one: each duck
has a FlyBehavior and a QuackBehavior to which it
delegates flying and quacking.

When you put two classes together like this you’re using
composition. Instead of wheriting their behavior, the
ducks get their behavior by being composed with the right
behavior object.

This is an important technique; in fact, we’ve been using
our third design principle:

Design Principle

Favor composition over inheritance.

As you've seen, creating systems using composition gives you
a lot more flexibility. Not only does it let you encapsulate

a family of algorithms into their own set of classes, but it
also lets you change behavior at runtime as long as

the object you’re composing with implements the correct
behavior interface.

Composition is used in_many design patterns and you’ll
see a lot more about its advantages and disadvantages
throughout the book.

A duck call is a device that hunters use to mimic the
calls (quacks) of ducks. How would you implement your
own duck call that does not inherit from the Duck class?

Download at WoweBook.Com

intro to Design Patterns

Master and Student...

v Master: Grasshopper,

& V{ tell me what you have
£ 4

~ /4L leamned of the Object-
Oriented ways.

Student: Master, | have learned that
the promise of the object-oriented way
is reuse.

Master: Grasshopper, continue...

Student: Master, through inheritance
all good things may be reused and
so we will come to drastically cut
development time like we swiftly cut
bamboo in the woods.

Master: Grasshopper, is more
time spent on code before or after
development is complete?

Student: The answer is after,
Master. We always spend more time
maintaining and changing software
than initial development.

Master: So Grasshopper, should effort
go into reuse above maintaintability
and extensibility?

Student: Master, | believe that there is
truth in this.

Master: | can see that you still have
much to learn. | would like for you to
go and meditate on inheritance further.
As you've seen, inheritance has its
problems, and there are other ways of
achieving reuse.

23

the

pattern

Speaking of Design Patterns...

24

@ Congratulations on
your first pattern!

You just applied your first des.gn pattern—the
STRATEGY pattern. That’s right, you used the
Strategy Pattern to rework the SimUDuck app.
Thanks to this pattern, the simulator is ready for any
changes those execs might cook up on their next
business trip to Vegas.

Now that we’ve made you take the long road to apply it,
here’s the formal definition of this pattern:

oV
The Strategy Pattern defines a family of algorithms, dcg""")é‘m_\ w‘;:-"a: s
encapsulates each one, and makes them interchangeable. \LsCT g.mwcss Qm;w
Strategy lets the algorithm vary independently from need ‘g\LC‘I tud
clients that use it. klvert

Download at WoweBook.Com

intro to Design Patterns

Design Puzzle

Below you’ll find a mess of classes and interfaces for an action adventure game. You’ll
find classes for game characters along with classes for weapon behaviors the characters
can use in the game. Each character can make use of one weapon at a time, but can
change weapons at any time during the game. Your job is to sort it all out...

(Answers are at the end of the chapter.)

Your task:

0 Arrange the classes.

e Identify one abstract class, one interface and eight classes.

e Draw arrows between classes.
a. Draw this kind of arrow for inheritance (“extends”). —
b. Draw this kind of arrow for interface (“implements”).| o~
c. Draw this kind of arrow for “HAS-A* ——

e Put the method setWeapon() into the right class.

Character
WeaponBehavior weapon;
fight(); KnifeBehavior BowAndArrowBehavior
useWeapon() { // implements cutting _useWeapon() (Ilimplements shoot-
Queen i with a knife } N <<inter;ac;>>. Tow with a bow }
fight() { .} 'eaponBehavior
King useWeapon();
fight() { ... } Troll - AxeBehavior h
fight(){ ... } ulseWgapon() {/limplements chop- l
ping with an axe }
Knight SwordBehavior
fight() { ... } useWeapon() { // implements swing-
ing a sword }

setWeapon (WeaponBehavior w) {
this.weapon = w;

you are here » 25

Download at WoweBook.Com

diner

Overheard at the local diner...

26

Alice

I need a Cream cheese
with jelly on white bread, a
chocolate soda with vanilla ice cream, a
grilled cheese sandwich with bacon, a tuna
fish salad on toast, a banana split with

ice cream & sliced bananas and a coffee
with a cream and two sugars, ... oh,

and put a hamburger on the grilll

Give mea C.J.

White, a black & white, a
Jack Benny, a radio, a house
boat, a coffee regular and
burn onel

What'’s the difference between these two orders? Not a thing! They’re both
the same order, except Alice is using twice the number of words and trying the
patience of a grumpy short order cook.

What’s Flo got that Alice doesn’t” A shared vocabulary with the short order
cook. Not only is it easier to communicate with the cook, but it gives the cook less
to remember because he’s got all the diner patterns in his head.

Design Patterns give you a shared vocabulary with other developers. Once you've
got the vocabulary you can more easily communicate with other developers and
inspire those who don’t know patterns to start learning them. It also elevates your
thinking about architectures by letting you think at the pattern level, not the
nitty gritty object level.

Download at WoweBook.Com

intro to Design Patterns

Overheard in the next cubicle...

So I created this broadcast
class. It keeps track of all
the objects listening to it and anytime
a new piece of data comes along it sends a
message to each listener. What's cool is that
the listeners can join the broadcast at any
time or they can even remove themselves.
It is really dynamic and loosely-coupled!

RANVN
PQWEWR

Can you think of other shared vocabularies
that are used beyond OO design and diner
talk? (Hint: how about auto mechanics,
carpenters, gourmet chefs, air traffic control)
What qualities are communicated along with
the lingo?

Can you think of aspects of OO design
that get communicated along with pattern
names? What qualities get communicated
along with the name “Strategy Pattern™?

Rick, why
didn't you just say
you were using the
Observer Pattern?

Exactly. If you
communicate in patterns,
then other developers know
immediately and precisely the
design you're describing. Just don't
get Pattern Fever... you'll know
you have it when you start using
patterns for Hello
World...

you are here » 27

Download at WoweBook.Com

shared vocabulary

The power of a shared pattern vocabulary

When you communicate using patterns you
are doing more than just sharing LINGO.

Shared pattern vocabularies are POWERFUL.
e

When you communicate with another developer or your Lesy 13 e v
team using patterns, you are communicating not just a weve v e s&va\‘a“o\’s ok owr dui; C~“
pattern name but a whole set of qualities, characteristics L the yavious o€ . behavior has 0¢
and constraints that the pattern represents. mer Lells you e dv ek tlasses
The Y:u\a‘\',cd nto s o‘:v‘dcd and thanoed
entd eash \! Ky on
Patterns allow you to say more with less. When that f;i“:: e needed:
even

you use a pattern in a description, other developers quickly
know precisely the design you have in mind.

Talking at the pattern level allows you to stay “in SesOP e P

the design” longer. Talking about software systems using y 5u "a“\i\\a’c ,\\;\L\L\\i 2

patterns allows you to keep the discussion at the design veer ™ Lation detR!

level, without having to dive down to the nitty gritty details e’

of implementing objects and classes.

Shared vocabularies can turbo charge your As your feam begins {t‘o i\a“s desoy
development team. A team well versed in design ideas and expeviente evrm ity
patterns can move more quickly with less room for Ya‘H:crns, you will build a eom
misunderstanding. of patterns users.

Shared vocabularies encourage more junior

developers to get up to speed. Junior developers look Think about starting a patterns study

up to experienced developers. When senior developers group at your o\'Saniza{iow, maybe Yyou
tan even act paid while you'e learn—

ng...)

make use of design patterns, junior developers also become
motivated to learn them. Build a community of pattern
users at your organization.

28 Chapter 1

Download at WoweBook.Com

intro to Design Patterns

How do | use Design Patterns?

We've all used off-the-shelf libraries and frameworks. We take them, write some code against their APIs,
compile them into our programs, and benefit from a lot of code someone else has written. Think about

the Java APIs and all the functionality they give you: network, GUIL, 1O, etc. Libraries and frameworks go
a long way towards a development model where we can just pick and choose components and plug them
right in. But... they don’t help us structure our own applications in ways that are easier to understand, more

maintainable and flexible. That’s where Design Patterns come in.
Design patterns don’t go directly into your code, they first go into your BRAIN. Once you’ve loaded your

brain with a good working knowledge of patterns, you can then start to apply them to your new designs,
and rework your old code when you find it’s degrading into an inflexible mess of jungle spaghetti code.

Object that
holds state

A Bunch of Patterns

Your Code, now new
and improved WiEh
ch‘S“ Ya‘t‘hCY'V\S'.

Q: If design patterns are so great,
why can’t someone build a library of
them so | don’t have to?

A: Design patterns are higher level
than libraries. Design patterns tell us
how to structure classes and objects to
solve certain problems and it is our job to
adapt those designs to fit our particular
application.

therejare po
Dumb Questions

Q: Aren’t libraries and frameworks
also design patterns?

A: Frameworks and libraries are not
design patterns; they provide specific
implementations that we link into our
code. Sometimes, however, libraries and
frameworks make use of design patterns
in their implementations. That's great,
because once you understand design
patterns, you'll more quickly

Download at WoweBook.Com

understand APIs that are structured
around design patterns.

Q: So, there are no libraries of
design patterns?

A: No, but you will learn later about
pattern catalogs with lists of patterns that
you can apply to your applications.

29

why

patterns?

Patterns are
nothing more than using
OO design principles...

A common misconception,
Grasshopper, but it's more
subtle than that. You have
much to learn...

=
Friendly

Skeptical Peveloper Patterns Guru

30

Developer: Okay, hmm, but isn't this all just good object-oriented design; I mean
as long as I follow encapsulation and I know about abstraction, inheritance, and
polymorphism, do I really need to think about Design Patterns? Isn't it pretty
straightforward? Isn't this why I took all those OO courses? I think Design
Patterns are useful for people who don't know good OO design.

Guru: Ah, this is one of the true misunderstandings of object-oriented
development: that by knowing the OO basics we are automatically going to be good at
building flexible, reusable, and maintainable systems.

Developer: No?

Guru: No. As it turns out, constructing OO systems that have these properties is
not always obvious and has been discovered only through hard work.

Developer: I think I'm starting to get it. These, sometimes non-obvious, ways of
constructing object-oriented systems have been collected...

Guru: ..yes, into a set of patterns called Design Patterns.

Developer: So, by knowing patterns, I can skip the hard work and jump straight to
designs that always work?

Guru: Yes, fo an extent, but remember, design is an art. There will always be
tradeoffs. But, if you follow well thought-out and time-tested design patterns, you'll
be way ahead.

Developer: What do I do if I can't find a pattern?

Download at WoweBook.Com

Remember, knowing
concepts like abstraction,
inheritance, and polymorphism do
not make you a good object oriented
designer. A design guru thinks about
how to create flexible designs that
are maintainable and that can
cope with change.

00

intro to Design Patterns

Guru: There are some object oriented-principles that
underlie the patterns, and knowing these will help you
to cope when you can't find a pattern that matches your
problem.

Developer: Principles? You mean beyond abstraction,
encapsulation, and...

Guru: Yes, one of the secrets to creating maintainable

/e \ OO systems is thinking about how they might change in the

you are here »

Download at WoweBook.Com

your design toolbox

Tools for your Pesign Toolbox

You’ve nearly made it through the first
chapter! You’ve already put a few tools
in your 00 toolbox; let’s make a list of
them before we move on to Chapter 2.

\now TN 00 bast
N

" \'\.\Ca\\\i’
We assume \lsscs ¢ o\\’.mo‘rY by

of vn U Ve 45

00 Dasits

whec2n st\,\a{\ov\
how W e
P\bs‘\'xab{\o“ cgn‘kxaﬁ‘\',, and a:c \‘*k’\c Y\:*g)
. oV R g
E“Lavs“\aho“ wov\;;f-\sc \lY““ \'\: i ::m s
.) \ en
?o\\lmov\w\msm \)“aua - mv\ﬂy
\v\\\cv'\JoanLe \‘a‘,*‘“ o
00 Printiples)
well e taking 3 tloser \:o\
. c d an also
Encapsvlate what vav! s Y:j e
F : Yos.‘ho“ e adding 3 ew o'
avor Lo
'm\ncr'\{:ence.
Program ‘o 'm{-,crﬁaccs, not
v .
\m\:\:m:n‘oahons.

Throughou{: the
book think about
how patterns vely
on 00 basies and
yrinci\?\cs.

One down, many to go!

32 Chapter 1

Download at WoweBook.Com

- BULLET POIN& —

Knowing the OO basics
does not make you a good
00 designer.

Good OO designs are
reusable, extensible and
maintainable.

Patterns show you how to
build systems with good
00 design qualities.

Patterns are proven object-
oriented experience.

Patterns don’t give you
code, they give you
general solutions to design
problems. You apply them
to your specific application.

Patterns aren't invented,
they are discovered.

Most patterns and
principles address issues of
change in software.

Most patterns allow some
part of a system to vary
independently of all other
parts.

We often try to take what
varies in a system and
encapsulate it.

Patterns provide a

shared language that can
maximize the value of your
communication with other
developers.

are from this chapter.

intro to Design Patterns

Let’s give your right brain something to do.

It’s your standard crossword; all of the solution words

1
2 3
4 5
6 7 8
9
10 11 12
13
14
15
16 17
18 19
20
Across Down
2 what varies 1. Patterns in many applications

4. Design patterns
6. Java 10, Networking, Sound

9. Rubberducks make a

13. Bartender thought they were called

15. Program to this, not an implementation
17. Patterns go into your

18. Learn from the other guy's

19. Development constant

20. Patterns give us a shared

3. Favor over inheritance

5. Dan was thrilled with this pattern
7. Most patterns follow from OO

8. Not your own

10. High level libraries

11. Joe's favorite drink

12. Pattern that fixed the simulator
13. Duck that can't quack

14. Grilled cheese with bacon

16. Duck demo was located where

33

Download at WoweBook.Com

design puzzle solution

Design Puzz]e Solution

Character is the abstract class for all the other characters (King, Queen,
Khnight and Troll) while Weapon is an interface that all weapons
implement. So all actual characters and weapons are concrete classes.

To switch weapons, each character calls the setWeapon() method, which
is defined in the Character superclass. During a fight the useWeapon()
method is called on the current weapon set for a given character to inflict
great bodily damage on another character.

abstract

Character

WeaponBehavior weapon;
fight();

setWeapon(WeaponBehavior w) {
this.weapon = w;

A Chavacter HAS-A

}] 4 b\ Wca?onBchavior.
King Knight \
fight(){ ..} fight(){ .. }
Queen Troll
} fight() { ... } fight() { ... } <<interface>>
WeaponBehavior
uselWeapon(); I

a b D v

SwordBehavior h . BowAndArrowBehavior
useWeapon() { // implements swing- l *, | useWeapon() { // implements shoot-

; d - - ith a —
ing a sword } KnifeBehavior K’ AxeBehavior

useWeapon() { //implements cutting useWeapon() { // implements chop-
mgv\‘\', with a knife } ping with an axe }

wmole
otk c,ou\d wnf
Note trat AV T e, S 2

e e
in

elip @
P ked se0 b

34 Chapter 1

Download at WoweBook.Com

intro to Design Patterns

SoJutions

[harpen our pencil
o your p

Which of the following are disadvantages of using subclassing to provide specific
Duck behavior? (Choose all that apply.)

o A Codeis duplicated across subclasses. E/C. Hard to gain knowledge of all duck behaviors.
B. Runtime behavior changes are difficult. [D. Ducks can’t fly and quack at the same time.
[C. We can’t make duck’s dance. &E. Changes can unintentionally affect other ducks.
1
R
2 3
ENCAPSULATE
c o 'R0 ¢ «
6 7 8
V] M A P I S B F
R P R S QU E A K
10 11 12
o I F M S E I
DESIGNERPATTERNS L
E I c A R R v U
c T I M T A E T R
o I P E INTERFACE
Y) L w N E c S
D N E o I G K
16 17
U M S R Y B R ATIN
c A K E
18 19
K S UCCES S E S C HANGE
I N
20
VOoCABULARY

h en en ll What are some factors that drive change in your applications? You might
@\ ag your P G have a very different list, but here’s a few of ours. Look familiar?
My eustomers or users detide they want something else, or they want new funttionality.

My tompany decided it is going with another database vendor and it is also purthasing its data
£rom another supplier that uses a diffevent data format. Argh,’

Well, technology changes and we've got to update our tode to make use of prototols.
We've learned enough building our system that we'd like to 9o back and do things a little better.

you are here » 35

Download at WoweBook.Com

Download at WoweBook.Com

2 the Qbserver Fattern

Keeping your* +
+ Objects in the know

Hey Jerry, I'm
notifying everyone that the
Patterns Group meeting moved to
Saturday night. We're going to be
talking about the Observer Pattern.
That pattern is the best! It's the
BEST, Jerry!

Don’t miss out when something interesting happens! we've got a
pattern that keeps your objects in the know when something they might care about happens.
Objects can even decide at runtime whether they want to be kept informed. The Observer
Pattern is one of the most heavily used patterns in the JDK, and it's incredibly useful. Before
we’re done, we’ll also look at one to many relationships and loose coupling (yeah, that's right,

we said coupling). With Observer, you'll be the life of the Patterns Party.

this is a new chapter 37

Download at WoweBook.Com

weather monitoring

Congratulations!

Your team has just won the contract to build
Weather-O-Rama, Inc.’s next generation,
Internet-based Weather Monitoring Station.

ather-O-Rama oS

in Street
\ey, OK 45021

Wei
100 Mai
Tornado AY

t of Work

statemen neration

o build our neXt £

Station!

e\ected

38

Download at WoweBook.Com

the observer pattern

The Weather Monitoring application overview

The three players in the system are the weather station (the physical device that
acquires the actual weather data), the WeatherData object (that tracks the data coming
from the Weather Station and updates the displays), and the display that shows users
the current weather conditions.

ikions 1s ont of
ays The

ther stats

ent Cond:i
c‘:\;c“d\“crm{: disyl

user tan also oet wed

and 3 fovetast- X’

P——

Humidity displays

sensor device

Oi

Temperature L

Current
Conditions
Temp: 72°
Humidity: 60
Pressure: ¢

pulls data

WeatherData
object

sensor device

Weather Station

Display device

Pressure
sensor device

Weather-O-Rama provides What we implement

The WeatherData object knows how to talk to the physical Weather Station, to get
updated data. The WeatherData object then updates its displays for the three different
display elements: Current Conditions (shows temperature, humidity, and pressure),
Weather Statistics, and a simple forecast.

Our job, if we choose to accept it, is to create an app that

uses the WeatherData object to update three displays for
current conditions, weather stats, and a forecast.

39

Download at WoweBook.Com

weather data class

Unpacking the WeatherDPata class

As promised, the next morning the WeatherData source files arrive.
Peeking inside the code, things look pretty straightforward:

we
cekwen ne most ¥ \:‘m\ p
WeatherData Lo & \’“ajcw)

b cf,‘\';“‘c\\'
getTemperature() cesswee Y& e seb
getHumidity() / Khese yariaole YCJC vpdd ed
getPressure() otk \nows ©
measurementsChanged() Weakher ghation
// other methods

This method gets called
whenever the weather measurements
have been updated

ta
developers of the Wcaldncha */ - .
The de sbout what we public void measurementsChanged() {
1k vs a tlue
ob)ccf ¢ // Your code goes here
necd to add }

WeatherData.java

Remember, this Current Condi
) ondi
ONE of three diffecent displ

tions is J‘us{

dy streens.

ggm’t'itons Our job is to implement measurementsChanged()

Temp: 72° so that it updates the three displays for current
Humidity: 60 conditions, weather stats, and forecast.

Display device

40 Chapter 2

Download at WoweBook.Com

the observer pattern

What do we know so far?

The spec from Weather-O-Rama wasn’t all that clear, but we have to
figure out what we need to do. So, what do we know so far?

getTemperature ()

{¥ The WeatherData class has getter methods for three ..
getHumidity ()

measurement values: temperature, humidity and
barometric pressure. getPressure ()

¥ The measurementsChanged() method is called any
time new weather measurement data is available. (We
don’t know or care how this method is called; we just
know that it is.)

measurementsChanged ()

Weather
Stats

Avg. temp: 62°

Conditions

{¥ We need to implement three display elements that s T8
use the weather data: a current conditions display, a
statistics display and a forecast display. These displays
must be updated each time WeatherData has new
measurements.

Display One

Display Three

{¥ The system must be expandable—other developers —
can create new custom display elements and users
can add or remove as many display elements as they
want to the application. Currently, we know about
only the initial three display types (current conditions, oo
statistics and forecast).]

Future displays

41

Download at WoweBook.Com

first try

Taking a first, misquided SWAG at
the Weather Station

Here’s a first implementation possibility—we’ll take the hint from the Weather-O-
Rama developers and add our code to the measurementsChanged() method:

public class WeatherData {
// instance variable declarations

public void measurementsChanged() {
Grab the most vecent measuremets
float temp = getTemperature(); by calling the WeatherData's getter

float humidity = getHumidity(); methods (alveady imylcmn{cd)-
float pressure = getPressure() ;

currentConditionsDisplay.update (temp, humidity, pressure); Now wpdate

statisticsDisplay.update (temp, humidity, pressure); ow 'Yl

forecastDisplay.update (temp, humidity, pressure) ; the disp ays--
}

Call each display element +o
wpdate its display, passing it the

most vecent measuremendts.

// other WeatherData methods here

— harpen our pencil
S your p

Based on our first implementation, which of the following apply?
(Choose all that apply.)

d A. We are coding to concrete (1 D. The display elements don’t implement a
implementations, not interfaces. common interface.

(4 B. For every new display element we neced [E. We haven’t encapsulated the part that

to alter code. changes.
[d C. We have no way to add (or remove) (A E We are violating encapsulation of the
display elements at run time. WeatherData class.

Definition of SWAG: Scientific Wild A** Guess

42

Download at WoweBook.Com

the observer pattern

What’s wrong with our implementation?

Think back to all those Chapter 1 concepts and principles...

public void measurementsChanged() {

float temp = getTemperature() ;
float humidity = getHumidity() ;

= Avea of thange, we need
float pressure = getPressure() ;

to entapsulate this.

statisticsDisplay.update (temp, humidity, pressure) ;
forecastDisplay/update (temp, humidity, pressure);

Ny

urrentConditignsDisplay.update (temp, humidity, pressure); % /

At least we seem to be using a
tommon intecface o talk to the
display elements... they all have an
By coding to tonerete implementations update() method takes ﬂ;c temp,
we have no way {0 add or remove humidi{:\/, and pressure values.
other display elements without making

thanges 4o the program.

Umm, I know I'm new

here, but given that we are in
the Observer Pattern chapter,
maybe we should start using it?

We’ll take a look at
Observer, then come
back and figure out how

to apply it to the weather
monitoring app-.

43

Download at WoweBook.Com

meet the observer pattern

Meet the Observer Pattern

You know how newspaper or magazine
subscriptions work:

44

o A newspaper publisher goes into business and begins
publishing newspapers.

(2] You subscribe to a particular publisher, and every time
there’s a new edition it gets delivered to you. As long as
you remain a subscriber, you get new newspapers.

e You unsubscribe when you don’t want papers anymore,

and they stop being delivered.

e While the publisher remains in business, people, hotels,

airlines and other businesses constantly subscribe and
unsubscribe to the newspaper.

Miss what's going on
in Objectville? No way, of
course we subscribel

Chapter 2

Download at WoweBook.Com

the observer pattern

Publishers + Subscribers = Observer Pattern

If you understand newspaper subscriptions, you pretty much
understand the Observer Pattern, only we call the publisher
the SUBJECT and the subscribers the OBSERVERS.

Let’s take a closer look:

The observers have subseribed to
(vegisteved with) the Sub\')cclc
4o veteive updates when the
Sub\')ct,{:'s data changes.

When data in the Sub\')cr,{: cthanges)

fhe odbservers ave no ikied-

. \ett manades
Sbcc{i"b et

Ky iy 2

Bfect 0o ' '
New data values are
Commumid&‘[‘,cd to the

obsevvers in some form

when '{:hc\/ thange.

2
Moyse 0¥
[Observer Objects |

This ob'cc{', isnt an ,
ob;crvc\)r, so it doesn t

) 5&, no{i\g\cd when the
Ouck 00\0 Sub\')cd:’ < data changes:

Cx

you are here » 45

Download at WoweBook.Com

a day in the life of the

A day in the life of the Observer Pattern

46

A Duck object comes along
and tells the Subject that
it wants to become an
observer.

Duck really wants in on the
action; those ints Subject is
sending out whenever its state
changes look pretty interesting...

The Duck object is now an
official observer.

S s ¥
Duck is psyched... he's on the Cect 00
list and is waiting with great
anticipation for the next
notification so he can get an int.

Observers

The Subject gets a new
data value!

Now Duck and all the rest of the
observers get a notification that
the Subject has changed.

_Observers

Download at WoweBook.Com

the observer pattern

The Mouse object asks to be
removed as an observer.

The Mouse object has been
getting ints for ages and is tired
of it, so it decides it's time to
stop being an observer.

_Observer's

Mouse is outta herel

The Subject acknowledges the
Mouse's request and removes it

from the set of observers. O _
I

Mouse 00\0

Observers

The Subject has another
new int.

All the observers get another
notification, except for the
Mouse who is no longer included.
Don't tell anyone, but the Mouse
secretly misses those ints...
maybe it'll ask to be an observer
again some day. Mope 6&

_Obser‘vers

you are here » 47

Download at WoweBook.Com

five minute

Five minute drama: a subject for observation

In today's skit, two post-bubble software developers
encounter a real live head hunter...

This is
Ron, I'm looking for a
Java development position, T've
got five years experience and...

Uh, yeah,
you and everybody
else, baby. I'm putting
you on my list of Java
developers, don't call me,
T'll call you!

© Vv

Headhunter/Subject

T'll add you to the list,
you'll know along with
everyone else.

Software
Developer #1

Hi, I'm Jill, T've
written a lot of EJB
systems, I'm interested

in any job you've got with
Java development.

_~ar

Software Subject
Developer #2

48

Download at WoweBook.Com

the observer pattern

e Meanwhile for Ron and Jill life goes
on; if a Java job comes along, they'll
get notified, after all, they are ob-

Thanks, T'll
send my resume
right over.

servers.

This guy is a real jerk,
who needs him. I'm
looking for my own job.

Hey
observers, there's
a Java opening down at
JavaBeans-R-Us, jump
on it! Don't blow it!

Bwahaha, money
in the bank, baby!

o) 3
o
/ "

i Observer

yﬁ Observer

Subject

Arghhhlll Mark my
words Jill, you'll never work
in this town again if I have

anything to do with it. You're
off my call listll

Jill lands her own job!

You can take me
off your call list, I
found my own job!

Observer o Subject

49

Download at WoweBook.Com

the observer pattern

Two weeks later...

y'S

e

Jill's loving life, and no longer an observer.
She's also enjoying the nice fat signing
bonus that she got because the company
didn't have to pay a headhunter.

But what has become of our dear Ron? We hear
he's beating the headhunter at his own game.

He's not only still an observer, he's got his own
call list now, and he is notifying his own observers.
Ron's a subject and an observer all in one.

50

Download at WoweBook.Com

The Observer Pattern defined

When you're trying to picture the Observer Pattern, a newspaper
subscription service with its publisher and subscribers is a good
way to visualize the pattern.

In the real world however, you'll typically see the Observer Pattern
defined like this:

The Observer Pattern defines a one-to-many
dependency between objects so that when one
object changes state, all of its dependents are
notified and updated automatically.

Let's relate this definition to how we've been talking about the
pattern:

ONE TO MANY RELATIONSHIP
Ob\')cc'l: that
holds state
R2) Je;:ob's& '

The subject and observers define the one-to-many relationship.
The observers are dependent on the subject such that when the
subject’s state changes, the observers get notified. Depending on
the style of notification, the observer may also be updated with
new values.

As you'll discover, there are a few different ways to implement
the Observer Pattern but most revolve around a class design that
includes Subject and Observer interfaces.

Let's take a look...

Download at WoweBook.Com

the observer pattern

The Observer Pattern

defines a one-to-many
relationship between a set
of ol)jects.

When the state of one

object changes, all of its
JepenJents are notified.

51

loose coupling

The Observer Pattern defined:
the class diagram

Al Vo’cm’cia\ obsevvers need

. e Observer
fo im \cmC“{'_frt_“s 'm{:cr(:acc
) inkeckate. 1N LeO
'V*,C‘f;; e sker Each subject \ust has one method, “\’&ac '
' ke Su\o')cb*f); Late Yo ¥ ¢an have many Jﬂ\a{ gets called when
Vrexe S*} S s \V\\C cemolt observers. Sub)ct‘gs state changes:
. sO S
O‘o)‘-" . “A) \,SCY\'C
N[Ag bé\v\g o
< 0‘0ch o
3(,\\0"\5"\‘ & <«interface>> ‘w, <<interface>> .
Subject Observer
registerObserver() update() I
removeObserver,()
notifyObservers() A
P
g bi :
ConcreteSubject R ConcreteObserver
registerObserver() {...} update()

removeObserver() {...}
contrete sub\')ct,’c always .
f‘m\?\cmmb the Sub’%cc%,
\h{',crx:a(,& [n A:d'\ \on ::o
ister and vemove
{Fv‘:\:%;zas, Lhe tonevete sub\)cct;)
im\v\Cmcn{'; a no{‘,\‘(:\fObscwcrs{:
mebhod that is used o update
all the current observers

whenever state thanges:

notifyObservers()

getState()
setState()

setting an
(mOY'C abou{-‘

there
Dum

Q: What does this have to do
with one-to-many relationships?

A: With the Observer pattern, the
Subject is the object that contains the
state and controls it. So, there is ONE
subject with state. The observers, on
the other hand, use the state, even

if they don't own it. There are many
observers and they rely on the Subject
to tell them when its state changes.
So there is a relationship between the
ONE Subject to the MANY Observers.

52 Chapter 2

4 oekking its
5{—,\\'\5 later)-

I/ other Observer specific
methods

Contrete observers tan be

any tlass that implements the
Obsevver interface. Each
observer vegisters with a tontrete

subject to veceive updates.

arene
b Questions

Q: How does dependence come
into this?

A: Because the subject is the sole
owner of that data, the observers are
dependent on the subject to update
them when the data changes. This
leads to a cleaner OO design than

allowing many objects to control the
same data.

Download at WoweBook.Com

the observer pattern

The power of Loose Coupling

When two objects are loosely coupled, they can interact,
but have very little knowledge of each other.

The Observer Pattern provides an object design where
subjects and observers are loosely coupled.

Why?

The only thing the subject knows about an observer is that it
implements a certain interface (the Observer interface). It doesn’t need to
know the concrete class of the observer, what it does, or anything else about it.

We can add new observers at any time. Because the only thing the subject
depends on is a list of objects that implement the Observer interface, we can add new
observers whenever we want. In fact, we can replace any observer at runtime with
another observer and the subject will keep purring along. Likewise, we can remove How many
observers at any time. — 4 ¢ £ event kinds
We never need to modify the subject to add new types of observers. Let’s (1// of thange tan you
say we have a new concrete class come along that needs to be an observer. We don’t J]dCh‘E\‘c Y here?
need to make any changes to the subject to accommodate the new class type, all

we have to do is implement the Observer interface in the new class and register as

an observer. The subject doesn’t care; it will deliver notifications to any object that

implements the Observer interface.

We can reuse subjects or observers independently of each other. If we
have another use for a subject or an observer, we can easily reuse them because the
two aren’t tightly coupled.

Changes to either the subject or an observer will not affect the other.
Because the two are loosely coupled, we are free to make changes to either, as long as
the objects still meet their obligations to implement the subject or observer interfaces.

Design Principle

Strive for loosely coupled designs
between objects that interact.

Loosely coupled designs allow us to build flexible 0O
systems that can handle change because they minimize
the interdependency between objects.

53

Download at WoweBook.Com

planning the

w harpen Your pencil
\\\\ Before moving on, try sketching out the classes you’ll need to implement the
Weather Station, including the WeatherData class and its display elements.

Make sure your diagram shows how all the pieces fit together and also how
another developer might implement her own display element.

If you need a little help, read the next page; your teammates are already
talking about how to design the Weather Station.

54

Download at WoweBook.Com

the observer pattern

Cubicle conversation

Back to the Weather Station project, your teammates have
already started thinking through the problem...

So, how are we
going to build this thing?

Mary: Well, it helps to know we’re using the Observer Pattern.
Sue: Right... but how do we apply it?

Y Mary: Hmm. Let’s look at the definition again:

The Observer Pattern defines a one-to-many dependency between objects so that when one
object changes state, all its dependents are notified and updated automatically.

Mary: That actually makes some sense when you think about it. Our WeatherData
class 1s the “one” and our “many” is the various display elements that use the weather
measurements.

Sue: That’s right. The WeatherData class certainly has state... that’s the temperature,
humidity and barometric pressure, and those definitely change.

Mary: Yup, and when those measurements change, we have to notify all the display
elements so they can do whatever it is they are going to do with the measurements.

Sue: Cool, I now think I see how the Observer Pattern can be applied to our Weather
Station problem.

Mary: There are still a few things to consider that I’'m not sure I understand yet.
Sue: Like what?
Mary: For one thing, how do we get the weather measurements to the display elements?

Sue: Well, looking back at the picture of the Observer Pattern, if we make the
WeatherData object the subject, and the display elements the observers, then the
displays will register themselves with the WeatherData object in order to get the
information they want, right?

Mary: Yes... and once the Weather Station knows about a display element, then it can
just call a method to tell it about the measurements.

Sue: We gotta remember that every display element can be different... so I think that’s
where having a common interface comes in. Even though every component has a
different type, they should all implement the same interface so that the WeatherData
object will know how to send them the measurements.

Mary: I sec what you mean. So every display will have, say, an update() method that
WeatherData will call.

Sue: And update() is defined in a common interface that all the elements implement...

55

Download at WoweBook.Com

designing the weather station

Pesigning the Weather Station

How does this diagram compare with yours?

All our weather tomponents

'\mY\C"‘"‘{"

the Obsevrver

inkevkate. This gives the

Su\)"ct‘h a tom
Lo Talk to when

mon 1“{cv£atc
~‘£ LOMCS ‘{',IW\C

4o wpdate the obsevvers:

observers

<<interface>>

'm’c,c\'; ate
\eb .
SW B \C -
Weve s ow\d \o?)\L Famil?

s

<<interface>> L

Subject I
registerObserver,()
removeObserver()

notifyObservers()

WeatherData

registerObserver()
removeObserver()
notifyObservers()

getTemperature()
getHumidity()
getPressure()
measurementsChanged()

N

wca{-,\ncha{:a now
’m‘;\cmcvx{:s the
Subject nterkate.

56 Chapter 2

-

Observer

update()

update()
display() { // display current
measurements }

This d|sP,ay C,C”\Ch‘l‘,
shows the Current
measurements £iom the

WeatherDats op jeet.

Statistit.:sDispIay

update()

age, min and max measure-

display() { // display the aver-

ments }

This one keeps track
0‘(: the min/avg/ma%
mcaswc'ncn{:s and

displays them.

Download at WoweBook.Com

Let’s also ereate an
intevface for all display
elements £o implement. The
display elements just need to
implement a display() method.

)

<<interface>>
DisplayElement

display()

ThirdPartyDisplay

update()

display() { // display
something else based on
measurements }

N

Developers
tan im?\tmth{i
the Observer

. and Disylay
ForecastDisplay im{:cr(:accs {',o
update() treate their own
display() { / display the display element.

forecast }

|

(her
This display shows the weat
(:olrccasi l:lascd on the bavometer.

W

These three display elements should have a pointer to
WeatherData labeled “subject” too, but boy would
this diagram start to look like spaghetti if they did.

the observer pattern

Implementing the Weather Station

We’re going to start our implementation using the class diagram and following Mary
and Sue’s lead (from a few pages back). You’ll see later in this chapter that Java
provides some built-in support for the Observer pattern, however, we’re going to get
our hands dirty and roll our own for now. While in some cases you can make use of
Java’s built-in support, in a lot of cases it’s more flexible to build your own (and it’s
not all that hard). So, let’s get started with the interfaces:

Both of these methods take an
public interface Subject /— Observer as an arqument; that is, the
public void registerObserver (Observer o) ;}

) , Obsevver £o be vegistered or vemoved.
public void removeObserver (Observer o);
public void notifyObservers();

} This method is called o no{:i‘(“\/ all observers
N~ — when the Subject’s state has thanged.

public interface Observer { The Observer intecface is
public void update (float temp, float humidity, float pressure); imﬂtmcn{:ed b\/ all observers,
: A T T so they all have o implement
These are the state values the Observers get Lrom the update() method. Heve
the Subjeet when a weather measurement thanges we've following Mary and

Sue’s lead and passing the

o , ents to the observers.
public interface DisplayElement { measuremen

public void display(); N
The DisplayElement interface Jjust includes
one method, disyla\/o, that we will call when
the display element needs to be displayed.

}

—@ RALN
Mary and Sue thought that passing the measurements directly to the
observers was the most straightforward method of updating state. Do
you think this is wise? Hint: is this an area of the application that

might change in the future? If it did change, would the change be well
encapsulated, or would it require changes in many parts of the code?

Can you think of other ways to approach the problem of passing the
updated state to the observers?

Don’t worry, we’ll come back to this design decision after we finish the
initial implementation.

you are here » 57

Download at WoweBook.Com

implementing the weather station

Implementing the Subject interface in REMEMBER: ve don't provide

import and package statements

Weafhervafa in the code listings. Get the

complete source tode £rom the

Remember our first attempt at implementing the WeatherData class at the headivstlabs web site. Youll
beginning of the chapter? You might want to refresh your memory. Now Find the URL. on page xxxiii in
it’s time to go back and do things with the Observer Pattern in mind... the Inkro. 3

Here we implement the Sub\)cc{: Interface.

58

public class WeatherData implements Subject { & WeatherData now implements

private ArraylList observers;

the Subjeet interface.
private float temperature;
private float humidity; We've added an Arra\/US{i to

private float pressure; hold the Observers, and we

L uttovr.
public WeatherData () { / create it in the constr to
observers = new ArrayList();

}
When an observer vcg‘ns{c\rs, we \)VS{"
public void registerObserver (Observer o) { & add it to the end of the list.
observers.add (o) ;

) .
Likewise, when an obsevver wants +o un—vregister,

public void removeObserver (Observer o) { we ‘)“Sf take it of £ the list.
int 1 = observers.indexOf (o) ;
if (1 >= 0) {
observers.remove (1) ;

Heve's the fun part; this is where we
£ell all the observers about the state.
Because they are all Obsevvers, we

}
L/— know they all implement update(), so

public void notifyObservers() { we know how to no’c'l("\/ them.
for (int i = 0; 1 < observers.size(); i++) {
Observer observer = (Observer)observers.get(i);

observer.update (temperature, humidity, pressure);

| We no‘c\(:\[he Obsexvers when

dated measuremen
K—\ E:'o?v):‘t‘\:\‘:\: Weather Gtation:

public void measurementsChanged () {
notifyObservers () ;

}

public void setMeasurements (float temperature, float humidity, float pressure) {
this.temperature = temperature;
t;is .humidity = humidity; Okay, while we wanted +o ship a nice little
this.pressure = pressure;] i
p p : ﬁ_/ weather station with eath book, the publisher
measurementsChanged () ; ldn't a0 for i
wouldn't 90 Yor it. So, vather than reading
actual weather data off a device, we've
// other WeatherData methods here Joiny {:o use {:his mc{‘)\od {:o £CS£ our dis?la
elements. Ov, for fun,ozou tould write code
to grab measurements of £ the web.

}

Chapter 2

Download at WoweBook.Com

the observer pattern

Now, let$ build those display elements

Now that we’ve got our WeatherData class straightened out, it’s time to build the
Display Elements. Weather-O-Rama ordered three: the current conditions display, the
statistics display and the forecast display. Let’s take a look at the current conditions
display; once you have a good feel for this display element, check out the statistics and
forecast displays in the head first code directory. You'll see they are very similar.

It also imp)|
CLause o::re"‘c'\fs D

require gl| 4;
implement. ﬁhlis P(ay elements ¢,
e.

Obscr‘l ex

peplemen
This d\s"\a}'}c z\\can‘_‘)u Lrom the

o eDats N

public class CurrentConditionsDisplay implements Observer,
private float temperature;
private float humidity;
private Subject weatherData;

DisplayElement {

The tonstructor is passed the
weatherData object (the Subject)
and we use it to vegister the
display as an observer-

public CurrentConditionsDisplay (Subject weatherData) {
this.weatherData = weatherData;
weatherData.registerObserver (this) ;

public void update (float temperature,
this.temperature = temperature;

tl’.lis .humidity = humidity; é—‘—\ When uyda{c() is called, we
display(); save the temp and humidi{:\/

and call displayO-

float humidity, float pressure) {

public void display () {
System.out.println (“Current conditions: “ + temperature
} + “F degrees and “ + humidity + “% humidity”); The dsﬂayo method
} ; \')\.5{-, prints out the most
‘\'CCCV\‘{; {;CMY and \'\umldl{',\l.

th o
Du%ie@rﬁuestlons

the way the data gets displayed. We

Q: Is update() the best place to
call display?

A: In this simple example it made
sense to call display() when the values
changed. However, you are right,

there are much better ways to design

are going to see this when we get to
the model-view-controller pattern.

Q: Why did you store a reference
to the Subject? It doesn’t look

like you use it again after the
constructor?

Download at WoweBook.Com

A: True, but in the future we
may want to un-register ourselves as
an observer and it would be handy
to already have a reference to the
subject.

you are here » 59

testing the weather station

Power up the Weather Station

0 First, let’s create a test harness

The Weather Station is ready to go, all we need is some code to glue
everything together. Here’s our first attempt. We’ll come back later in
the book and make sure all the components are easily pluggable via a
configuration file. For now here’s how it all works:

Fiest) ereate the

ata
public class WeatherStation ({ Wca‘U\C"D
public static void main(String[] args) { / o\')cd'«'
WeatherData weatherData = new WeatherData () ;
|£ You don’{‘, CurrentConditionsDisplay currentDisplay =
want to new CurrentConditionsDisplay (weatherData);

download the % StatisticsDisplay statisticsDisplay = new StatisticsDisplay (weatherData);
tode you tan ForecastDisplay forecastDisplay = new ForecastDisplay(weatherData);
)

ut
Lommc}:{{‘, Ol_ . weatherData.setMeasurements (80, 65, 30.4f); F\ Coosta e
these w.o ne weatherData.setMeasurements (82, 70, 29.2f); .V'CI e the three
and vun it weatherData.setMeasurements (78, 90, 29.2f); d|sF ays and
| pass them the
} Simulate new weather WeatherData object.
mcaswcvncv\{',s~

e Run the code and let the Observer Pattern do its magic

File Edit Window Help StormyWeather
%$java WeatherStation

Current conditions: 80.0F degrees and 65.0% humidity
Avg/Max/Min temperature = 80.0/80.0/80.0

Forecast: Improving weather on the way!

Current conditions: 82.0F degrees and 70.0% humidity
Avg/Max/Min temperature = 81.0/82.0/80.0

Forecast: Watch out for cooler, rainy weather
Current conditions: 78.0F degrees and 90.0% humidity
Avg/Max/Min temperature = 80.0/82.0/78.0

Forecast: More of the same

%

60 Chapter 2

Download at WoweBook.Com

the observer pattern

@ harpen our pencil
S y

Johnny Hurricane, Weather-O-Rama’s CEO just called, they can’t possibly ship without a Heat Index
display element. Here are the details:

The heat index is an index that combines temperature and humidity to determine the apparent
temperature (how hot it actually feels). To compute the heat index, you take the temperature, T, and the
relative humidity, RH, and use this formula:

heatindex =
16.923 + 1.85212 * 10 * T + 5.37941 * RH - 1.00254 * 10! > T
* RH + 9.41695 * 103 * T2 + 7.28898 * 103 * RH? + 3.45372 * 10*
* T2 * RH - 8.14971 * 10* * T * RH? + 1.02102 * 10> * T2 * RH? -
3.8646 * 105 * T3 + 2.91583 * 10> * RH® + 1.42721 * 10 * T3 * RH
+ 1.97483 * 1077 * T * RH® - 2.18429 * 10® * T3 *x RH? 4+ 8.43296 *
1071° * T2 * RH® - 4.81975 * 107! * T3 * RH?

So get typing!

Just kidding. Don’t worry, you won'’t have to type that formula in; just create your own HeatlndexDisplay.
java file and copy the formula from heatindex.txt into it.

R You tan get heatindextxt from headfirstlabs.com

How does it work? You’d have to refer to Head First Meteorology, or try asking someone at the National
Weather Service (or try a Google search).

When you finish, your output should look like this:

File Edit Window Help OverdaRainbow

%java WeatherStation

Current conditions: 80.0F degrees and 65.0% humidity
Avg/Max/Min temperature = 80.0/80.0/80.0

Forecast: Improving weather on the way!

Heat index is 82.95535

Current conditions: 82.0F degrees and 70.0% humidity
Avg/Max/Min temperature = 81.0/82.0/80.0

Forecast: Watch out for cooler, rainy weather

Heat index is 86.90124

Current conditions: 78.0F degrees and 90.0% humidity
Avg/Max/Min temperature = 80.0/82.0/78.0

Forecast: More of the same

Heat index is 83.64967

%

you are here » 61

Download at WoweBook.Com

fireside chat: subject and observer

Fireside Chats

V.

Subject

I'm glad we’re finally getting a chance to chat in
person.

Well, I do my job, don’t I? I always tell you what’s
going on... Just because I don’t really know who
you are doesn’t mean I don’t care. And besides, I
do know the most important thing about you—
you implement the Observer interface.

Oh yeah, like what?

Well excuuuse me. 1 have to send my state with my
notifications so all you lazy Observers will know
what happened!

Well... I guess that might work. I'd have to open

myself up even more though to let all you Observers
come in and get the state that you need. That might

be kind of dangerous. I can’t let you come in and
just snoop around looking at everything I've got.

62 Chapter 2

Tonight's talk: A Subject and Observer spar over the right
way to get state information to the Observer.

Observer

Really? I thought you didn’t care much about
us Observers.

Well yeah, but that’s just a small part of who I
am. Anyway, I know a lot more about you...

Well, you’re always passing your state around
to us Observers so we can see what’s going
on inside you. Which gets a little annoying at
times...

Ok, wait just a minute here; first, we’re not lazy,
we just have other stuff to do in between your
oh-so-important notifications, Mr. Subject, and
second, why don’t you let us come to you for
the state we want rather than pushing it out to
just everyone?

Download at WoweBook.Com

Subject

Yes, I could let you pull my state. But won’t that be
less convenient for you? If you have to come to me
every time you want something, you might have to
make multiple method calls to get all the state you
want. That’s why I like push better... then you have
everything you need in one notification.

Well, I can see the advantages to doing it both ways.
I have noticed that there is a built-in Java Observer
Pattern that allows you to use either push or pull.

Great... maybe I'll get to see a good example of
pull and change my mind.

the observer pattern

Observer

Why don’t you just write some public getter
methods that will let us pull out the state we
need?

Don’t be so pushy! There’s so many different
kinds of us Observers, there’s no way you can
anticipate everything we need. Justlet us come
to you to get the state we need. That way, if
some of us only need a little bit of state, we
aren’t forced to get it all. It also makes things
easier to modify later. Say, for example, you
expand yourself and add some more state, well
if you use pull, you don’t have to go around
and change the update calls on every observer,
you just need to change yourself to allow more
getter methods to access our additional state.

Oh really? I think we’re going to look at that
next....

What, us agree on something? I guess there’s
always hope.

63

Download at WoweBook.Com

Jjava’s built-in observer pattern

Using Java’s built-in
Observer Pattern

So far we’ve rolled our own code for the
Observer Pattern, but Java has built-in support
in several of its APIs. The most general is the
Observer interface and the Observable class in
the java.util package. These are quite similar

to our Subject and Observer interface, but give
you a lot of functionality out of the box. You
can also implement either a push or pull style of
update to your observers, as you will see.

With Javd's built-in
support, all you have to do is
extend Observable and tell it
when to notify the Observers.
The API does the rest for you.

To get a high level feel for java.util. Observer and
java.util.Observable, check out this reworked
OO design for the WeatherStation:

\ass keeys iae: In
The Ob:?v\a\b};o:r observers This S\‘:}'\d \o;\l\fl 3)3‘\6‘ <ame 35
Lk 2) ‘h) its e . l
{;Y"Z ,\o{—;&\cs ther o iit \’Y‘cv\ous tlass diaoyam. 2 We left out the
Dis\?la\/Elcmcn{:
| observers . <<interface>> i ih‘{ZCY‘caCC; bujca“
. Observable > Observer the dis\?la\/s <l
gmgéb'e: a 3:?1?53:?;5&0 update)] implement it too
not an
R notifyObservers() . .)
ot A et
extends Observable. SO GeneralDisplay || _StatisticsDispla ForecastDispla
update() update() update()
WeatherDat display() display() display()
eatherData
] getTemperature()
. gsv: X \oo getHumidity()
Tws ge | Yo\0 getPressure() date0)
Qawi\\'\a‘f. "\ Q)e)ﬁ o There will be a few ehanges to make {:obihf u‘\; ailc’s
Koy w: set- mekhod in the concrete Observers, g;{: e %\,lcrﬁacc
s . our Subject, whith we can fhe same idea... we have @ Lommon sevver in . d;
“f,if ;\:o ¢all ﬁm Obsgvv(a)"“' chc wiith an update() method that's called by the Subje
: mo
4 need the vegistert/ v€
b i 0 et
anymore; We inhevit that behavior
Lrom the 5“\7“"\355'
64 Chapter 2

Download at WoweBook.Com

the observer pattern

How Java’s built-in Observer Pattern works

The built in Observer Pattern works a bit differently than the implementation that we used
on the Weather Station. The most obvious difference is that WeatherData (our subject)
now extends the Observable class and inherits the add, delete and notify Observer methods
(among a few others). Here’s how we use Java’s version:

For an Object to become an observer...

As usual, implement the Observer interface (this time the java.util. Observer
interface) and call addObserver() on any Observable object. Likewise, to remove
yourself as an observer just call deleteObserver().

For the Observable to send notifications...

First of all you need to be Observable by extending the java.util. Observable
superclass. From there it is a two step process:

Q You first must call the setChanged() method to signify
that the state has changed in your object

: ion takes an
W veysion .
2v§\£vavy daka oo ett
Q Then, call one of two notifyObservers() methods: that 5&,5 Yasscd _
cath Observer when ¥
either notifyObservers() OF notifyObservers (Object arg) is no‘t“c.‘Cd'

For an Observer to receive notifications...

It implements the update method, as before, but the signature of the

method is a bit different: ‘/_/data object

>
update (Observable o, Object arg)

;)
The Subject that sent
‘Eh: n:{:i)qcciia{joj iss;:sscd This will be the data objeet that was
in as this acgument. passed to notifyObserversO), or null if

a data ob\')ct‘{: wasn't sPcLi‘Cied-

If you want to “push” data to the observers you can pass the data as a data object
to the notifyObserver(arg) method. If not, then the Observer has to “pull” the data

it wants from the Observable object passed to it. How? Let’s rework the Weather
Station and you’ll see.

65

Download at WoweBook.Com

behind the scenes

66

to

A
ot?
P

Chapter 2

Wiait, before we get

setChanged() method? We didn't

that, why do we need this

need that before.

The setChanged() method is used to signify that the state has changed and that notifyObservers(),
when it is called, should update its observers. If notifyObservers() is called without first calling
setChanged(), the observers will NOT be notified. Let’s take a look behind the scenes of
Observable to see how this works:

the Scenes

setChanged() { The setChanged() method
changed = true | seks a thanged flag to true.
} W
e i j . 0 onl
§oc notifyObservers(Object arg) { | notifyObservers Y
Qs if (fchanged) {b he | QT_ :\:chﬁzlcs iks observers }fl/(f;
or every observer on the list faais T .
call update (this, arg) the changed ¥1ag s
changed = false And after it notifies
} &_// Lhe observers, it sets the
} thanged ﬂag back to false.
notifyObservers() {

notifyObservers(null)
}

Why is this necessary? The setChanged() method is meant to give you more flexibility in how
you update observers by allowing you to optimize the notifications. For example, in our weather
station, imagine if our measurements were so sensitive that the temperature readings were
constantly fluctuating by a few tenths of a degree. That might cause the WeatherData object
to send out notifications constantly. Instead, we might want to send out notifications only if the

temperature changes more than half a degree and we could call setChanged() only after that
happened.

You might not use this functionality very often, but it’s there if you need it. In either case, you
need to call setChanged() for notifications to work. If this functionality is something that is useful
to you, you may also want to use the clearChanged() method, which sets the changed state back to
false, and the hasChanged() method, which tells you the current state of the changed flag.

Download at WoweBook.Com

the observer pattern

Reworking the Weather Station with the built-in support

First, let’s rework WeatherData to use
java.util.Observable

Make sure we ave importing the [2)

cight Observer/Observable. © We don't need to keep track of

We are now our observers anymore, or manage
subelassing Observable. their registration and removal,
(the superelass will handle that)
import java.util.Observable; so we've vemoved the ¢ode for
import java.util.Observer; rcgis{cr, add and no‘{:i‘c\/-

public class WeatherData extends Observable {
private float temperature; e Our tonstruttor no longcr

private float humidity; needs to treate a data
private float pressure; shrueture to hold Observers.

public WeatherData() { }
¥ Notice we aren't sending a data objeet with
public void measurementsChanged() { the no‘(:i‘c\/o‘JscrvcrsO eall. That means

setChanged() ; wc’\rc us'mg {:hc PULL wmodel.
notifyObservers () ;

}

public void setMeasurements (float temperature, floa
this.temperature = temperature;
this.humidity = humidity;
this.pressure = pressure; e We now Fivst call sc{:Changch to
measurementsChanged () ; indicate the state has ¢hanged

before ealling no{iﬁ\/Obscrvcrs().

humidity, float pressure) {

}
public float getTemperature() {
return temperature;

}

public float getHumidity () {

return humidity; \
} v\ e These methods aren't new, but

. (W,)
public float getPressure() { &— because we 3“' 9oing £° use “pull
return pressure; we {houﬁh{: we'd vemind you
} they ave here. The Obsevvers
) will use them to get at the

WeatherData ob\')cc{:'s state.

you are here » 67

Download at WoweBook.Com

current conditions rework

Now, let’s rework the CurrentConditionsDisplay

Aaain, make sure we are importing

the vight Observer/Observable.
© We now are implementing the Observer inteckace from java.util

import java.util.Observable;
import java.util.Observer;

public class CurrentConditionsDisplay implements Observer, DisplayElement {

Observable observable;
private float temperature; Our Lons{vw‘:ﬁov now takes an
Observable and we use this to

private float humidity; [_— e
add the eurrent onditions
public.CurrentConditionsDisplay(Observable observable) { ob\')cc‘l: as an Obsevver.
this.observable = observable;
observable.addObserver (this) ;

We've ¢h
public void update (Observable obs, Object arg) { e angcd the
: . update() method
if (obs instanceof WeatherData) { ¢ Lak
WeatherData weatherData = (WeatherData)obs; o ¢ b°ﬂ" an
Observable and the

this.temperature = weatherData.getTemperature () ;
this.humidity = weatherData.getHumidity () ; OP{:whal data argumcwb

display();
}
}
ublic void display () { .
’ System.out.irir{tln(“Current conditions: “ + temperature e ,h u?dajcco, we ‘("lrs{:
+ “F degrees and “ + humidity + “% humidity”); make sure the observable
) is of type WeatherData
} and then we use its
getter methods to
obtain the temperature
and humidi{:y

measurements. After
that we eall disyla\/().

68 Chapter 2

Download at WoweBook.Com

the observer pattern
Code Magnets

The ForecastDisplay class is all scrambled up on the fridge. Can you
reconstruct the code snippets to make it work? Some of the curly
braces fell on the floor and they were too small to pick up, so feel
free to add as many of those as you need!

observable.addObserver(this)'

if (observable instanceof WeatherData) {

public class ForecastDisplay implements
Observer, DisplayElement {

i .q display(!
blic void
”)/ display code here

WeatherData weatherDatg =
(WeatherData)observable'

able,
. pservable observ
public vol

object arg) {

import java.util.Observable;
ort java.util.Observer;

imp

you are here » 69

Download at WoweBook.Com

test drive

Running the new code

Just to be sure, let’s run the new code...

File Edit Window Help TryTihisAtHome

%$java WeatherStation

Forecast: Improving weather on the way!

Avg/Max/Min temperature = 80.0/80.0/80.0

Current conditions: 80.0F degrees and 65.0% humidity
Forecast: Watch out for cooler, rainy weather
Avg/Max/Min temperature = 81.0/82.0/80.0

Current conditions: 82.0F degrees and 70.0% humidity

Forecast: More of the same

Avg/Max/Min temperature = 80.0/82.0/78.0

Current conditions: 78.0F degrees and 90.0% humidity

%

Hmm, do you notice anything different? Look again...

You’ll see all the same calculations, but mysteriously, the order of the text output is
different. Why might this happen? Think for a minute before reading on...

Never depend on order of evaluation of the
Observer notifications
The java.util.Observable has implemented its notifyObservers() method such that the

Observers are notified in a different order than our own implementation. Who’s right?
Neither; we just chose to implement things in different ways.

What would be incorrect, however, is if we wrote our code to depend on a specific
notification order. Why? Because if you need to change Observable/Observer

implementations, the order of notification could change and your application would
produce incorrect results. Now that’s definitely 7ot what we’d consider loosely coupled.

70 Chapter 2

Download at WoweBook.Com

the observer pattern

Doesn't
java.util.Observable
violate our OO design principle
of programming to interfaces
not implementations?

The dark side of java.util.Observable

Yes, good catch. As you’ve noticed, Observable is a class, not an terface, and worse,

it doesn’t even implement an interface. Unfortunately, the java.util. Observable
implementation has a number of problems that limit its usefulness and reuse. That’s not
to say it doesn’t provide some utility, but there are some large potholes to watch out for.

Observable is a class

You already know from our principles this is a bad idea, but what harm does it really
cause?

First, because Observable is a class, you have to subclass it. That means you can’t add
on the Observable behavior to an existing class that already extends another superclass.
This limits its reuse potential (and isn’t that why we are using patterns in the first place?).

Second, because there isn’t an Observable interface, you can’t even create your own
implementation that plays well with Java’s built-in Observer API. Nor do you have
the option of swapping out the java.util implementation for another (say, a new, multi-
threaded implementation).

Observable protects crucial methods

If you look at the Observable API, the setChanged() method is protected. So what? Well,
this means you can’t call setChanged() unless you’ve subclassed Observable. This means
you can’t even create an instance of the Observable class and compose it with your own
objects, you have to subclass. The design violates a second design principle here...favor
composition over inheritance.

What to do?

Observable may serve your needs if you can extend java.util. Observable. On the other
hand, you may need to roll your own implementation as we did at the beginning of the
chapter. In either case, you know the Observer Pattern well and you’re in a good position
to work with any API that makes use of the pattern.

7

Download at WoweBook.Com

observer and swing

Other places you'll find the Observer Pattern
in the JVK

The java.util implementation of Observer/Observable is not the only place you’ll
find the Observer Pattern in the JDK; both JavaBeans and Swing also provide their
own implementations of the pattern. At this point you understand enough about

th

observer to explore these APIs on your own; however, let’s do a quick, simple Swing JavaBeans the

£ \/ou'rc Lurious

e Obsecver Pattern in

about

ek out the

example just for the fun of it. PYO?CV{\IChanch\s‘hCncr

A little background...

Let’s take a look at a simple part of the Swing API, the JButton. If you look under
the hood at JButton’s superclass, AbstractButton, you’ll see that it has a lot of add/
remove listener methods. These methods allow you to add and remove observers,
or as they are called in Swing, listeners, to listen for various types of events that
occur on the Swing component. Tor instance, an ActionListener lets you “listen in”
on any types of actions that might occur on a button, like a button press. You’'ll find
various types of listeners all over the Swing API.

A little life-changing application

Okay, our application is pretty simple. You’ve got a button that says “Should I do
1t?”” and when you click on that button the listeners (observers) get to answer the
question in any way they want. We’re implementing two such listeners, called the
AngelListener and the DevilListener. Here’s how the application behaves:

[ce.
Here's owr faney nterka

7
2

Should | do it?

we tlick on th

ntecfate.

And heve's the oujcvu{: when

e \')\A‘{’,‘hOV"

File Edt Windowd >
%java SwingObserverExample

Devil answer —_ [CH. on, do it!

, . : qe50
AV\SC\ answevr PoY Don’'t do it, you might regret it!

%

]

72 Chapter 2

Download at WoweBook.Com

the observer pattern

And the code...

This life-changing application requires very little code. All we need to do is
create a JButton object, add it to a JIrame and set up our listeners. We’re going
to use inner classes for the listeners, which is a common technique in Swing
programming. If you aren’t up on inner classes or Swing you might want to
review the “Getting GUI” chapter of Head First Java.

<o 3kion that
Gimple Suimg application c
ame an
public class SwingObserverExample { just cna’c,cs 3 Y.m-‘
JFrame frame; Hheows 3 button in

public static void main(String[] args) {
SwingObserverExample example = new SwingObserverExample () ;
example.go () ;

public void go () {

frame = new JFrame () ; Makcs the devil and
JButton button = new JButton (“Should I do it?”); angel ob\')cc{‘,s listeners
button.addActionListener (new AngellListener()); (observers) oc the button.

button.addActionListener (new DevilListener ());
frame.getContentPane () .add (BorderLayout.CENTER, button);
// Set frame properties here

class Angellistener implements ActionListener ({
public void actionPerformed (ActionEvent event) {
System.out.println (“Don’t do it, you might regret it!”);

Here
| e o;s:iftc tlass dcpini'(:ions for
class DevillListener implements ActionListener ({ Classcs (bu{; z;,de'p'"ed 3s inney
public void actionPerformed(ActionEvent event) { ey don’t have b b)
System.out.println (“Come on, do it!”);
}
) ’K
} Rather than update(), the
attionPerformed() method
gets called when the state
in the sub\')cc{: (in this ease
the button) thanges.
you are here » 73

Download at WoweBook.Com

your design toolbox

Tools for your Pesign Toolbox

Welcome to the end of Chapter 2.
You’ve added a few new things to your
00 toolbox...

00 Pasies

A\MLV:! -"I\on

00 Printiples

what varies

Encavsu\a{:c

Favor Lomyos\’c'\on over

\h\\cv\‘\',av\(,c. ‘\:

Program to '\V\{',CY“CaLCS, no . . chst

- | member)
mv\cme“uhons { YY"V\C‘Y\O o dcdcs\‘ﬁns are
sel LouY\cd ot Sy d
Ghrive Lor \oo \Io\,")cc that sy ¢ d deoys
een

vesilient Lo thanoe:

00 Patterrs

- fmah\l
il ObSCVVCY - dc‘Q'\ncs ab ,o:: - __’\\a__’
. denty \)C‘\')NCCV\ V) ‘ba{_/c, a“ e
it ol one 00)¢ L thanoes
% ‘;:c‘:;ndenb are vso-\',&\
au’(pma’c\ca\\\[
R

new pattern for communieating state to a

U set of ob\')e(‘,{:s ina |oosc|\/ {,ouylcd manner. We
haven't seen the last of the Observer Pattern
- \)us{: wait until we talk about MVC!

74 Chapter 2

Download at WoweBook.Com

—— BULLET POINTS —

The Observer Pattern defines
a one-to-many relationship
between objects.

Subjects, or as we also know
them, Observables, update
Observers using a common
interface.

Observers are loosely coupled
in that the Observable knows
nothing about them, other
than that they implement the
Observer Interface.

You can push or pull data from
the Observable when using
the pattern (pull is considered
more “correct”).

Don't depend on a specific
order of notification for your
Observers.

Java has several
implementations of the
Observer Pattern, including
the general purpose java.util.
Observable.

Watch out for issues with
the java.util.Observable
implementation.

Don't be afraid to create
your own Observable
implementation if needed.

Swing makes heavy use of the
Observer Pattern, as do many
GUI frameworks.

You'll also find the pattern in
many other places, including
JavaBeans and RMI.

the observer pattern

Design Principle Challenge

For each design principle, describe how the Observer Pattern
makes use of the principle.

Design Principle

Identify the aspects of your application that vary
and separate them from what stays the same.

Design Principle

Program to an interface, not an implementation.

This is @ hard one, hint: think about how observers

and sub\')cc{:s work together.

Design Principle

Favor composition over inheritance.

you are here » 75

Download at WoweBook.Com

crossword puzzle

- ¢ Time to give your right brain something to do again!
=~ This time all of the solution words are from chapter 2.

=

Across
1. Observable is a not an interface

3. Devil and Angel are

AN

EEEEEEEEE @

to the button

4. Implement this method to get notified

5. Jill got one of her own

6. CurrentConditionsDisplay implements this

interface

8. How to get yourself off the Observer list

12. You forgot this if you're not getting notified
when you think you should be

15. One Subject likes to talk to observers
18. Don't count on this for notification

19. Temperature, humidity and

20. Observers are

21. Program to an
implementation

22. A Subject is similar to a

76 Chapter 2

on the Subject
not an

Down

2. Ron was both an Observer and a

3. You want to keep your coupling

7. He says you should go for it

9. can manage your observers for you
10. Java framework with lots of Observers
11. Weather-O-Rama's CEO named after this
kind of storm

13. Observers like to be when
something new happens
14. The WeatherData class the

Subject interface

16. He didn't want any more ints, so he removed
himself

17. CEO almost forgot the index display
19. Subject initially wanted to _____ all the data
to Observer

Download at WoweBook.Com

Design
rincip e

Challenge

the observer pattern

@ dharpen vour pencil
sl

Based on our first implementation, which of the following apply?
(Choose all that apply.)

[D. The display clements don’t implement a
common interface.

" A. We are coding to concrete
implementations, not interfaces.

@ B. For every new display element we need & E. We haven't encapsulated what changes.

to alter code.

M C. We have no way to add display
clements at run time.

4 F We are violating encapsulation of the
WeatherData class.

The thing that vavies in the Observer Pattern

is the state of the Subject and the number and

Design Principle

Identify the aspects of your application that
vary and separate them from what stays the
same.

types of Observers. With this pattern, You ean

vary the objects that ave dependent on the state

of the Sub\')cd',, without having to thange that

Sub\)ed:- That's called planning ahead/

Both the Subjett and Observer use interfates.

The Subject keeps track of objetts implement—

Design Principle

Program to an interface, not an implementation.

ing the Observer interface, while the observers

vegister with, and get notified by, the Sub\)ec{:

interface. As we've seen, this keeps things nice

and loosely coupled.

The Observer Pattern uses tomposition to tompose

Design Principle

Favor composition over inheritance.

any number of Observers with theiv Subjects.

These velationships aren't set wp by some kind of

inhevitance hiecarehy. No, they are set up at

vuntime by COm\?osiﬂon!

you are here »

Download at WoweBook.Com

77

exercise solutions

Code Magnets

Exercise
so]utions

import java.util.observable;
a.util.Observer;

import jav:

public class ForecastDisplay implements
Observer, DisplayElement {

Private float —

i Currentpr
Private float laStPresSEjsure = 29.92¢;

public ForecastDisplay(Observable

observable) {

observable.addobserver(this) ; I

rvable,

e
\ public void update(Observable obs

object arg) |

if (observable instanceof WeatherData) {

WeatherDatga weatherData =
(WeatherData)observable'
;

lastPressure = currentPressure;
currentPressure = weatherData.getPressure () ;

i jsplay (O {
suplic void disp
> // display code here

L AlsTs

S IRATAVSEa N
a KACILE gﬂﬂﬂﬂﬂﬂﬂ
4

" M0 v e 08 s e R Ve Rl b
nnn W

il

a
£ AL R
D e P E N v e N TR
o s
i

N T E R FIACE]

il
]
13
13
i
o
A
N

il
Plus L1 s H e R

78 Chapter 2

Download at WoweBook.Com

3 the DecoratorPattern

"
+ Decorating Objects *+

T used to think real men
subclassed everything. That was
until I learned the power of
extension at runtime, rather than
at compile time. Now look at me!

Just call this chapter “Design Eye for the Inheritance Guy.”
We’'ll re-examine the typical overuse of inheritance and you'll learn how to decorate

your classes at runtime using a form of object composition. Why? Once you know the
techniques of decorating, you'll be able to give your (or someone else’s) objects new

responsibilities without making any code changes to the underlying classes.

this is a new chapter 79

Download at WoweBook.Com

the starbuzz story

Welcowe to Starbuzz Coffee

Starbuzz Coffee has made a name for itself as the

fastest growing coffee shop around. If you’ve seen one ‘
on your local corner, look across the street; you’ll see
another one.

Because they’ve grown so quickly, they’re scrambling
to update their ordering systems to match their
beverage offerings.

When they first went into business they designed their
classes like this...

[\ass,
verage is an Jbstract ¢
?:bc\asgcd by all beveraoes
offered in the cokfee shop-
Beverage The desripbion stance e

ipti & B s set in eath subtlass and holds a
i ldcstzviv{:‘lon of the beverage, like

The tost0 mc%l,hod is getDescription() “Most. Excellent Dark Roast”
abstract; subtlassses T~ % cost() iption() method
need to define their e Scuz)c\sa:?{::h{ion.c ’
own imylcmcnlcafw'" /I Other useful methods... veturns the destrip

HouseBlend DarkRoast Decaf Espresso

| | |
cost() I cost() I cost() I cost() I

~N) ;F S

Eath subelass implements ost() £o veturn the tost of the beverage.

80 Chapter 3

Download at WoweBook.Com

the decorator pattern

In addition to your coffee, you can also ask for several condiments like
steamed milk, soy, and mocha (otherwise known as chocolate), and have
it all topped off with whipped milk. Starbuzz charges a bit for each of
these, so they really need to get them built into their order system.

Here’s their first attempt...

Beverage

description

getDescription()
cost()

/I Other useful methods...

1 pi Vith dMilk
HouseBlendWithSteamedMilk DarkRoastWithSteamedM N . andMocha
andMocha andMocha DecaﬂNlt(I’M h dMilk
HouseBle andMocha cost()
adl cost() cost() cost)
r EspressoWithSteamedMi
= " . »I Deca!wnﬁgteameaﬂl ! m
cost() DarkRozs“tmg:::::;n ediilk andCaramel costf)| EspressoWithWhipandMocha
cost) DarkRoastwithyy °*5'0 DecafWith
HouseBle | cost)
HouseBlendWi e
and§ cost() DarkRoastWi cost() cost{)
cost() cost(costl) R DecafWithSoy
" . DecafWithSteamedMilk ||
HouseBlendWith: DarkRoastWithSteamedMilk cost()
i) — andSoy ' and™E, With
HouseBlendWithWhip— it DecafWithSteamedMilk || oot -
| DarkRoa: d DecafWithSoyandMocha
cost() cost()
HouseB| cost() Dec
cost() — cost()
HouseBlendWithWhipandSoy DarkRoastWi D costy cost() ‘
cost() EspressoWithSteamedMilk

cost()

DecafWithSt

D

ith: dMilk

andWhip

teame

"

DarkRoastWithWhipandSoy

DecafWitt

WithWhip

Whoa!
Can you say
“class explosion?"

Download at WoweBook.Com

the

h tost method Lom?u{',cs'

E::{: oE the cokfee along with the
other tondiments in the order.

81

you are here »

violating design principles

i @ RALN
PQAQWEWR
It's pretty obvious that Starbuzz has created a maintenance nightmare for

themselves. What happens when the price of milk goes up? What do they do
when they add a new caramel topping?

Thinking beyond the maintenance problem, which of the design principles that
we’ve covered so far are they violating?

iAem BiIq e ur woayj Jo omj burjejoin ol ey} JuiH

This is stupid; why do we need
all these classes? Can't we just use

instance variables and inheritance in
the superclass to keep track of the
condiments?

Well, let's give it a try. Let's start with the Beverage base
class and add instance variables to represent whether or
not each beverage has milk, soy, mocha and whip...

Beverage

description New boolean values -("ov-

milk —
oy —— / eath tondiment

mocha
whip

hasMocha() \
setMocha()

hasWhip() L These et and set the boolean
setWhip) s ¥ the condimerts

I/ Other useful methods..

82 Chapter 3

Download at WoweBook.Com

Now we'll implement. eost() in Beverage (instead of
getDescription() L keeping it abstract), so that it can caleulate the

cost() @—// costs assotiated with the ondiments for a particular

beverage instance. Qubelasses will still overvide

2:?&’.'”('?9 tost(), but they will also invoke the super version so
hasSoy) that they can ealeulate the total cost of the basic
setSoy() beverage plus the osts of the added tondiments.

the decorator pattern

Beverage
Now let's add in the subclasses, one :‘nﬁcrlptlon
for each beverage on the menu: soy
mocha
whip

The supertlass ost() will calevlate the

iments, while getDescription()
coks tor o e etlasses ———1 tas)
vvidden Lo .
t}:lc\ ::aicnd that functionality to hasMilk()
)

intlude eosts for that speeitit setMilk(

{:\/\76 hasSoy()

beverage ' setSoy()

I tost() method needs to compute hasMocha()
Fat OJC of the beveraoe and then sethocha()
the tos diments by calling the hasWhip()
add in the condim Lion of cost()- setWhip()

\

supertlass implemen

\g\ /I Other useful methods..
L\ TR

HouseBlend ' DarkRoast ' Decaf ' Espresso '

cost() cost() cost() cost()

Write the cost() methods for the following classes (pseudo-Java is okay):

@ oharpen your pencil
i’ your p

public class Beverage { public class DarkRoast extends Beverage {

public double cost() {
public DarkRoast() {

description = "Most Excellent Dark Roast";

}
public double cost() {

you are here » 83

Download at WoweBook.Com

impact of change

See, five
classes total. This is
definitely the way to go.

I'm not so sure: I can
see some potential problems
with this approach by thinking
about how the design might need
to change in the future.

0 harpen Your pencil
What requirements or other factors might change that will impact this design?

Price changes for condiments will foree us to alter existing code.

New eondiments will foree us to add new methods and alter the cost method in the superclass.

o

e 53‘\\“&\;\5
W of iced tea? i DRSNS
e may have new beverages. For some ot these beverages (iced tea?), the condiments OeR™ \gd

S

may not be appropriate, yet the Tea subtlass will still inherit methods like hasWhip().

eX
3\1

What if a eustomer wants a double motha?

\{o\r‘f vt

84 Chapter 3

Download at WoweBook.Com

the decorator pattern

Master and Student...

Master: Grasshopper, it has been some time since our last
meeting. Have you been deep in meditation on inheritance?

Student: Yes, Master. While inheritance is powerful, | have
learned that it doesn’t always lead to the most flexible or
maintainable designs.

Master: Ah yes, you have made some progress. So, tell me my student, how
then will you achieve reuse if not through inheritance?

Student: Master, | have learned there are ways of “inheriting” behavior at
runtime through composition and delegation.

Master: Please, go on...

Student: When | inherit behavior by subclassing, that behavior is set statically
at compile time. In addition, all subclasses must inherit the same behavior. If
however, | can extend an object’s behavior through composition, then | can do
this dynamically at runtime.

Master: Very good, Grasshopper, you are beginning to see the power of
composition.

Student: Yes, it is possible for me to add multiple new responsibilities to objects
through this technique, including responsibilities that were not even thought of
by the designer of the superclass. And, | don’t have to touch their code!

Master: What have you learned about the effect of composition on maintaining
your code?

Student: Well, that is what | was getting at. By dynamically composing objects,
| can add new functionality by writing new code rather than altering existing
code. Because I’'m not changing existing code, the chances of introducing bugs
or causing unintended side effects in pre-existing code are much reduced.

Master: Very good. Enough for today, Grasshopper. | would like for you to
go and meditate further on this topic... Remember, code should be closed (to
change) like the lotus flower in the evening, yet open (to extension) like the
lotus flower in the morning.

85

Download at WoweBook.Com

the open-closed principle

The Open-Closed Principle

Grasshopper is on to one of the most important design principles:

Design Principle

Classes should be open
for extension, but closed for
modification.

Come on in; we’re
open. Feel free to extend

our classes with any new behavior you
like. If your needs or requirements change (and we
know they will), just go ahead and make your own
extensions.

Sorry, we’re closed.
That’s right, we spent
a lot of time getting this code correct and

bug free, so we can’t let you alter the existing code.
It must remain closed to modification. If you don’t
like it, you can speak to the manager.

Our goal is to allow classes to be easily extended to
incorporate new behavior without modifying existing code.
What do we get if we accomplish this? Designs that are
resilient to change and flexible enough to take on new
functionality to meet changing requirements.

86 Chapter 3

Download at WoweBook.Com

thereﬁre no

Dumb Questions

Q: Open for extension and closed
for modification? That sounds very
contradictory. How can a design be
both?

A: That’s a very good question. It
certainly sounds contradictory at first.

After all, the less modifiable something
is, the harder it is to extend, right?

As it turns out, though, there are some
clever OO techniques for allowing
systems to be extended, even if we can't
change the underlying code. Think
about the Observer Pattern (in Chapter
2)...by adding new Observers, we can
extend the Subject at any time, without
adding code to the Subject.You'll see
quite a few more ways of extending
behavior with other OO design
techniques.

Q: Okay, | understand Observable,
but how do | generally design
something to be extensible, yet closed
for modification?

A: Many of the patterns give us
time tested designs that protect your

code from being modified by supplying
a means of extension. In this chapter
you'll see a good example of using the
Decorator pattern to follow the Open-
Closed principle.

Q: How can | make every part of
my design follow the Open-Closed
Principle?

the decorator pattern

A: Usually, you can’t. Making OO
design flexible and open to extension

without the modification of existing
code takes time and effort. In general,
we don't have the luxury of tying down
every part of our designs (and it would
probably be wasteful). Following

the Open-Closed Principle usually
introduces new levels of abstraction,
which adds complexity to our code.
You want to concentrate on those areas
that are most likely to change in your
designs and apply the principles there.

Q} How do | know which areas of
change are more important?

A: That is partly a matter of
experience in designing OO systems and

also a matter of knowing the domain
you are working in. Looking at other
examples will help you learn to identify
areas of change in your own designs.

While it may seem like a contraJiction,
there are teclmic[ues for allowing code to be
extended without direct modification.

Be careful when c]moosing the areas of code
that need to be extended; applying the
Open—Closec[Principle EVERYWHERE

15 waste{ul, unnecessary, and can lead 1o
complex, hard to understand code.

Download at WoweBook.Com

87

meet the decorator pattern

Okay, enough of the "Object
Oriented Design Club.” We have real
problems here! Remember us? Starbuzz
Coffee? Do you think you could use
some of those design principles to
actually help us?

Meet the Pecorator Pattern

Okay, we’ve seen that representing our beverage plus condiment pricing
scheme with inheritance has not worked out very well — we get class
explosions, rigid designs, or we add functionality to the base class that isn’t
appropriate for some of the subclasses.

So, here’s what we’ll do instead: we’ll start with a beverage and “decorate”
it with the condiments at runtime. For example, if the customer wants a
Dark Roast with Mocha and Whip, then we’ll:

© Take a DarkRoast object

Q Decorate it with a Mocha object
6 Decorate it with a Whip object

e Call the cost() method and rely on
delegation to add on the condiment costs

Okay, but how do you “decorate” an object, and how does delegation
come into this? A hint: think of decorator objects as “wrappers.” Let’s
see how this works...

88 Chapter 3

Download at WoweBook.Com

the decorator pattern
Constructing a drink order with Decorators

€@ We start with our DarkRoast object.

L
e that DaY\LRoaashd as
O R eom B T s
'\n\\c‘(‘:}() method tnat com?
a tos

k-
e tost of £ &

© The customer wants Mocha, so we create a Mocha
object and wrap it around the DarkRoast.

s
etk is @ detorator 18
p e M‘::::r:b \C\c ob\')cd: it s \(‘ic.cova:gmg,
J'OIYC\\‘: case, @ Deverdde: By)m\wo ,
‘:c mean it 1S Lhe same Lype-

o, Motha has 3 Cos‘t(:' :ce\:iato;;cak
’ h Yo\\lmov\? s
,\\— ahd g\:\;‘:‘:‘ggc wv‘aWCd n Moi\;\aa a‘: ,
a“%evcragc 4oo (becavse Mo
3) |
svbtyre of Beveraoe)
© The customer also wants Whip, so we create a
Whip decorator and wrap Mocha with it.

Whi? is a detorator, so it also
mirrors DavkRoast’s type and
intludes a tost() method.

So, a DavkRoast wrapped in Motha and Whip is still
a Beverage and we ¢an do anything with it we ¢an do
with a DavkRoast, intluding eall its eost() method.

you are here »
Download at WoweBook.Com

89

decorator

Q Now it’s time to compute the cost for the customer. We do this
by calling cost() on the outermost decorator, Whip, and Whip is
going to delegate computing the cost to the objects it decorates.

Once it gets a cost, it will add on the cost of the Whip. .
(Youll see how i

é// a ‘(:CW Yagcs.)

4

First, we call cost() on the Mocha calls cost() on
outmost decorator, Whip. DarkRoast.

G Whip calls cost() on Mocha.

o parkRoast
returns its cost,

99 cents.
Whip adds its total, 10 cents,
to the result from Mocha, and Mocha adds its cost, 20
returns the final result—$1.29. 6 cents, to the result from
DarkRoast, and returns
the new total, $1.19.
Okay, here’s what we know so far...
= Decorators have the same supertype as the objects they decorate.
= You can use one or more decorators to wrap an object.
= Given that the decorator has the same supertype as the object it decorates, we can pass
around a decorated object in place of the original (wrapped) object.
K C\] Pd\n‘h

= The decorator adds its own behavior either before and/or after delegating to the object it
decorates to do the rest of the job.

= Objects can be decorated at any time, so we can decorate objects dynamically at runtime
with as many decorators as we like.

Now let’s see how this all really works by looking at the
Pecorator Pattern definition and writing some code.

90

Download at WoweBook.Com

The Decorator Pattern defined

Let’s first take a look at the Decorator Pattern description:

The Decorator Pattern attaches additional
responsibilities to an object dynamically.
Decorators provide a flexible alternative to
subclassing for extending functionality.

While that describes the role of the Decorator Pattern, it doesn’t give us a lot
of insight into how we’d apply the pattern to our own implementation. Let’s
take a look at the class diagram, which is a little more revealing (on the next
page we’ll look at the same structure applied to the beverage problem).

Component

The ContreteComponent

methodA()
methodB()
I/ other methods

is the objc& we're 9oing -
to dynamicall\/ add new
behavior to. [t extends \,

the decorator pattern

Each tomponent tan be used on its

own, or wrapped by a decorator.

component

Eath detorator HAS-A
(wraps) a tomponent, whith
means the detorator has an

instance vaviable that holds
CO"\POV\C"{‘ ConcreteComponent i Decorator a Y‘C-Fcrcncc toa Com?oncn‘b
methodA() methodA()

methodBy() methodB()

I/ other methods Il other methods \ Detorators implement the L
same inkecfate or abst'r::c
tlass as the “°"‘\7°“CJ: !
are 9oin9 to detovate

ConcereteDecoratorA ConcereteDecoratorB

A Component wrappedObj Component wrappedObj

Th Condrc‘chccora{:o\r has‘an
'msi,&ncc vaviable for the thing
it detovate (the Component. the
Dccora{‘.ov wra?s).

methodA()
methodB()
newBehavior()
Il other methods

Object newState

R

methodA()
methodBy()
I/ other methods

Detovators tan extend the
state of the component.

—

Detovators tan add new methods; however, new
behavior is typically added by doing computation
before or akter an cxis{:ing method in the COMPOY\CY\{}

Download at WoweBook.Com

you are here » 91

decorating beverages

Pecorating our Beverages

Okay, let’s work our Starbuzz beverages into this framework...

Peverage atts as owr

sbskract componen

AN

t class.

Beverage

description

getDescription()
cost()
Il other useful methods

component

HouseBlend DarkRoast CondimentDecorator
cost() cost() getDescription()
/
Espresso Decaf h
cost() cost() I
A Milk Mocha Soy Whip
Lee Beverage beverage Beverage beverage Beverage beverage Beverage beverage
T\\C &OV‘ ne YC
ont cost() cost() cost() cost()
to &’\IYC getDescription() getDescription() getDescription() getDescription()
gokxee

NV 72~

RANN

And here are our tondiment detorators; notice

get

{:thh“d to im?ltmcn{i not onl\/ tost() but also
estription(). We'll see why in @ moment..

PQWwWEWR

Before going further, think about how you’d implement the cost() method of
the coffees and the condiments. Also think about how you’d implement the

getDescription() method of the condiments.

92 Chapter 3

Download at WoweBook.Com

the decorator pattern

Cubicle Conversation

Some confusion over Inheritance versus Composition

going to use inheritance in this

Okay, I'm a little
confused...I thought we weren't

pattern, but rather we were going
to rely on composition instead.

Sue: What do you mean?

Mary: Look at the class diagram. The CondimentDecorator is extending the Beverage class.
That’s inheritance, right?

Sue: True. I think the point is that it’s vital that the decorators have the same type as the
objects they are going to decorate. So here we’re using inheritance to achieve the type maitching,
but we aren’t using inheritance to get behavior.

Mary: Okay, I can see how decorators need the same “interface” as the components they wrap
because they need to stand in place of the component. But where does the behavior come in?

Sue: When we compose a decorator with a component, we are adding new behavior. We
are acquiring new behavior not by inheriting it from a superclass, but by composing objects
together.

Mary: Okay, so we’re subclassing the abstract class Beverage in order to have the correct type,
not to inherit its behavior. The behavior comes in through the composition of decorators with
the base components as well as other decorators.

Sue: That’s right.

Mary: Ooooh, I sece. And because we are using object composition, we get a whole lot more
flexibility about how to mix and match condiments and beverages. Very smooth.

Sue: Yes, if we rely on inheritance, then our behavior can only be determined statically at
compile time. In other words, we get only whatever behavior the superclass gives us or that we
override. With composition, we can mix and match decorators any way we like... at runtime.

Mary: And as I understand it, we can implement new decorators at any time to add new
behavior. If we relied on inheritance, we’d have to go in and change existing code any time we
wanted new behavior.

Sue: Exactly.

Mary: I just have one more question. If all we need to inherit is the type of the component,
how come we didn’t use an interface instead of an abstract class for the Beverage class?

Sue: Well, remember, when we got this code, Starbuzz already /ad an abstract Beverage class.
Traditionally the Decorator Pattern does specify an abstract component, but in Java, obviously,
we could use an interface. But we always try to avoid altering existing code, so don’t “fix” it if
the abstract class will work just fine.

Download at WoweBook.Com

93

decorator fraining

New barista fraining

Make a picture for what happens when the order is for a
“double mocha soy latte with whip” beverage. Use the menu
to get the correct prices, and draw your picture using the
same format we used earlier (from a few pages back):
@ Wwhip calls cost() on Mocha.

Mocha calls cost() on
e DarkRoast.

@ First, we call cost() on the
outmost decorator, Whip.

DarkRoast
returns its cost,
99 cents.

o Whip adds its total, 10 cents,
to the result from Mocha, and Mocha adds its cost, 20
returns the final result—$1.29. o cents, to the result from
DarkRoast, and returns
the new total, $1.19.

& 5 "dack ved

Wiy beverdd®

Okay, I need for you to
make me a double mocha,
soy latte with whip.

Starbuzz Coffes

B hi{fen your PGHCI' Draw your picture here.

Coffees
House Blenqd .89
Dark Roast .99
Decaf 1.05
Espresso 1.99
Condiments
Steamed Milk 19
Mocha 20
=y .15
Whip .10

T —

94 Chapter 3

Download at WoweBook.Com

the decorator pattern

Writing the Starbuzz code

It’s time to whip this design into some real code.

Let’s start with the Beverage class, which doesn’t need to
change from Starbuzz’s original design. Let’s take a look:

public abstract class Beverage { m

. et

s an abs‘t\'a

String description = “Unknown Beverage”; Beveage ! t methods
tlass with the Two

o0 ay\d tostt/-
public String getDescription() { SC'EDC“X‘Y{-“O“
return description;

} \ 5C£Dcs(,\riy{:ion is alveady

i e
public abstract double cost(); '"‘\’lc”‘c"‘#Cd for us, but w
) need to implement tost()
in the subtlasses.

Beverage is simple enough. Let’s implement the abstract
class for the Condiments (Decorator) as well:

b
F\rch; we ““:\:':'.\ JC: a Peverage

[hanged |
\/ mJCCWV: C:‘ahd the Deveraoe ¢lass
SO

public abstract class CondimentDecorator extends Beverage {

public abstract String getDescription() ; («\
}

We've also going to vequire

that the tondiment

decorators all veimplement the
getDeseription() method. Again,

we'll see why in a sec..

you are here » 95

Download at WoweBook.Com

implementing the beverages
Coding beverages

Now that we’ve got our base classes out of the way, let’s
implement some beverages. We’ll start with Espresso.
Remember, we need to set a description for the specific
beverage and also implement the cost() method.

Fiest we exkend the DPeverage

1S everage:
¢\ass, sinte this is 3 b 9
public class Espresso extends Beverage ({
public Espresso() { o
description = “Espresso”; < To take tare of the dcs&m?}:wv\l:c
: sek Lhis in the tonstruttor Tor he
tlass. Remember the destviption instante
public doupe Lost vaviable is inhevited Lrom Beverage.
return 1.99;
}

{O LO“\?V‘{;C hhc LOS{: OE an ESY‘ €SS0 V“C do'\ t

. wst
Finally, we need Lhis tlass, we)

"CCd ho WovY 1 abouh add“l wm Cov\d\"\Chl',S wm
nee retuwn ‘t (4 ?‘ \te an SY' esso 1! .

public class HouseBlend extends Beverage {
public HouseBlend () {

description = “House Blend Coffee”;
14 1 S
public double cost() { 992222_ a 89
return .89; House 99
J park RO g
} pecaf 1.99
ss0
&, Okay, here’s another Beverage. Al we Espre
do is set the appropriate deseription, . ents
ndimes = .10
“House Blend Cotfee,” and then veturn Wlk o
the torveet ost: 895 Mocha 15
soy .10
wWhip
You ¢an treate the other two Beverage classses

(DavkRoast and Decaf) in exactly the same way.

96 Chapter 3

Download at WoweBook.Com

the decorator pattern

Coding condiments

If you look back at the Decorator Pattern class diagram, you’ll
see we’ve now written our abstract component (Beverage), we
have our concrete components (HouseBlend), and we have our
abstract decorator (CondimentDecorator). Now it’s time to
implement the concrete decorators. Here’s Mocha:

\ etordt"

. .
Motha is a detorator, so we oo onG . . Lake Motha i th
extend CondimentDetorator. RC';:'\(’S Deverdd® We've 9oiny to msjéa:\‘/e‘ragc using;

¢ a vekevente toa e
(1) An instante vaviable £o ho
public class Mocha extends CondimentDecorator { everane e wra?\,m?).
Beverage beverage; - A . 3 . - -
' we ave
public Mocha (Beverage beverage) ({ <\/\Vaﬁa\a\c to the ob\)c,d’, . N to s
this.beverage = beverage; wva\’\""“.’r Heve, ,wc ve 9o -3 e o
} Lhe beverage weve wrapping
chova{:ov’s tonsbruttor:

public String getDescription () {
return beverage.getDescription() + “, Mocha”;

}
ublic double cost() | /K/ Wc want our deseription {:o“no{: only
return .20 + beverage.cost(); m{'lude, the bcv"agc - Say Dark
) Roast” — but also to intlude each
) item dct.o‘ra{ing the beverage, for
moute the tost of our beverage instante, “‘Dark Roast, Motha”. So
Now we need Jf{; ('1 \:‘f;c\c;a{:c fhe eall to the we fiest delegate to the objeet we are
with Motha. TSt B -) 4 it ean compute the decorating to get its destription, then

dbject we've detorating of Motha to the vesult. append ¢, Motha” to that deseription.

tost; then, we add the tost

On the next page we'll actually instantiate the beverage and
wrap it with all its condiments (decorators), but Lirst..

L0 harpen your Penc“ Write and compile the code for the other Soy and Whip
B\, condiments. You'll need them to finish and test the application.

you are here »

Download at WoweBook.Com

97

testing the beverages

Serving some coffees

Congratulations. It’s time to sit back, order a few coffees and marvel at
the flexible design you created with the Decorator Pattern.

Here’s some test code to make orders:

public class StarbuzzCoffee ({ no b
esso
up an &7 \on
public static void main(String args([]) { K\ Ovd“ z‘h s dest,\'\v‘b
Beverage beverage = new Espresso(); av\d YY\
System.out.println (beverage.getDescription ()
+ “ $” + beverage.cost()); . .
Make 3 DarkRoaA: ob\)ct,{:

Beverage beverage? = new DarkRoast (); & Wrap Wt with 3 Motha.
beverage2 = new Mocha (beverage?) ;
beverage2 = new Mocha (beverage2); &—— Weap it in a second Motha.
beverage2 = new Whip (beverage2); <———Wrap it in 3 Whip.
System.out.println (beverage2.getDescription ()

+ “ $” + beverage2.cost());

Beverage beverage3 = new HouseBlend() ; 4;___‘\\

beverage3 = new Soy (beverage3) ; Fh@"%

beverage3

beverage3 = new Whip (beverage3) ;

System.out.println (beverage3.getDescription ()
+ “ $” + beverage3.cost());

ov\d\"‘“*}
and tost

givc us 3 HouscBlChd
new Mocha (beverage3) ; with So\/, Motha, and Whi\a.

} * We've going to see a much better way of
ereating detorated ob\)cc{:s when we tover the
Factory Pattern (and the Builder Patteen,

Now, let’s get those orders in: whith is tovered in the appendix).
, L

% java StarbuzzCoffee
Espresso $1.99
Dark Roast Coffee, Mocha, Mocha, Whip $1.49

House Blend Coffee, Soy, Mocha, Whip $1.34

%

98 Chapter 3

Download at WoweBook.Com

th o
Duel\l‘%@an(uesﬁons

Q: I'm a little worried about code
that might test for a specfic concrete
component - say, HouseBlend - and

do something, like issue a discount.
Once I've wrapped the HouseBlend
with decorators, this isn’t going to work
anymore.

A: That is exactly right. If you have
code that relies on the concrete component’s

type, decorators will break that code.

As long as you only write code against

the abstract component type, the use of
decorators will remain transparent to your
code. However, once you start writing code
against concrete components, you'll want to
rethink your application design and your use
of decorators.

Q: Wouldn't it be easy for some
client of a beverage to end up with

a decorator that isn’t the outermost
decorator? Like if | had a DarkRoast with
Mocha, Soy, and Whip, it would be easy
to write code that somehow ended up
with a reference to Soy instead of Whip,
which means it would not include Whip in
the order.

A: You could certainly argue that

you have to manage more objects with

the Decorator Pattern and so there is

an increased chance that coding errors
will introduce the kinds of problems you
suggest. However, decorators are typically
created by using other patterns like Factory
and Builder. Once we've covered these
patterns, you'll see that the creation of the
concrete component with its decorator is
“well encapsulated” and doesn’t lead to
these kinds of problems.

the decorator pattern

Q: Can decorators know about the
other decorations in the chain? Say, |
wanted my getDecription() method to
print “Whip, Double Mocha” instead of
“Mocha, Whip, Mocha”? That would
require that my outermost decorator
know all the decorators it is wrapping.

A: Decorators are meant to add
behavior to the object they wrap. When
you need to peek at multiple layers into
the decorator chain, you are starting to
push the decorator beyond its true intent.
Nevertheless, such things are possible.
Imagine a CondimentPrettyPrint decorator
that parses the final decription and can print
“Mocha, Whip, Mocha” as “Whip, Double
Mocha.” Note that getDecription() could
return an ArrayList of descriptions to make
this easier.

— harpen our penci|
S y

Our friends at Starbuzz have introduced sizes to their menu. You can now order
a coffee in tall, grande, and venti sizes (translation: small, medium, and large).
Starbuzz saw this as an intrinsic part of the coffee class, so they’ve added two
methods to the Beverage class: setSize() and getSize(). They’d also like for the
condiments to be charged according to size, so for instance, Soy costs 10¢, 15¢
and 20¢ respectively for tall, grande, and venti coffees.

How would you alter the decorator classes to handle this change in requirements?

Download at WoweBook.Com

99

decorators in java i/o

Real World Pecorators: Java 170

The large number of classes in the java.io package is... overwhelming. Don’t feel alone
if you said “whoa” the first (and second and third) time you looked at this API. But
now that you know the Decorator Pattern, the I/O classes should make more sense
since the java.io package is largely based on Decorator. Here’s a typical set of
objects that use decorators to add functionality to reading data from a file:

A text file for veading,

d The] .
s sevcr:\ °°"Y°“c'g’s};j§“:v\‘\‘f\:'\:3§‘h"‘a"’
m, SkringDv .
LineNumberlnputStream is F.‘\C\“\N*S*x:\?uég{:cmz and chc:thc::
also a tontrete detorator. BulberedinputS fream ’c,CP‘W:YSC e vs \ase tompo
It adds the ability £o O detorabor. Al oF Ehese & es
tount the line numbers as E:(:E::c dlnyumdds whith to ve
it veads data. behavior. in bwo ways i t
buffers input Lo improve

pecformance, and also augmen
the intecface with a new
method veadLine() for veading
thavattec—based input, a line
at a time.

BufferedInputStream and LineNumberInputStream both extend
FilterInputStream, which acts as the abstract decorator class.

100 Chapter 3

Download at WoweBook.Com

the decorator pattern

Pecorating the java.io classes

ent.
et tompon
Heve's oW dbstra
InputStream Filt crlh?ujcgbf'ta"‘
is an abstract
detovator.
| FilelnputStream h‘ StringBufferinputStream i| ByteArrayinputStream FilterinputStream

‘ PushbacklnputStream h ‘ BufferedInputStream i‘ DatalnputStream “ LineNumberinputStream i

These [nputStreams act as 7 / /
the tontrete components that \
we will weap with detovrators. heve ave all our contrete detorators.

There are a few more we didn't And (:'ma“\/,
show, like Ob\)cc{:lv\?u{:gjcrcam.

You can see that this isn’t so different from the Starbuzz design. You should
now be in a good position to look over the java.io API docs and compose
decorators on the various put streams.

And you’ll see that the output streams have the same design. And you’ve
probably already found that the Reader/Writer streams (for character-based
data) closely mirror the design of the streams classes (with a few differences
and inconsistencies, but close enough to figure out what’s going on).

But Java I/0 also points out one of the downsides of the Decorator Pattern:
designs using this pattern often result in a large number of small classes

that can be overwhelming to a developer trying to use the Decorator-based
API. But now that you know how Decorator works, you can keep things in
perspective and when you’re using someone else’s Decorator-heavy API, you
can work through how their classes are organized so that you can easily use
wrapping to get the behavior you’re after.

you are here » 101

Download at WoweBook.Com

write your own

Writing your own Java 1/0 Pecorator

Okay, you know the Pecorator Pattern, you've
seen the 170 class diagram. You should be ready to
write your own input decorator.

No problem. T just have to
extend the FilterInputStream class

How about this: write a decorator that converts and override the read() methods.

all uppercase characters to lowercase in the
input stream. In other words, if we read in “1
know the Pecorator Pattern therefore | RULE!”
then your decorator converts this to “i know the
decorator pattern therefore i rule!”

wmport Fivst, extend the FilterlnputStream, the
Dont forget Yo im¥e ab:::rac{: detorator for all [nputStreams.

')ava.\o... (not s\\own) l

public class LowerCaselInputStream extends FilterInputStream {
public LowerCaselInputStream (InputStream in) {
super (in) ; N

}

public int read() throws IOException ({
int ¢ = super.read();
return (c == -1 ? ¢ : Character.tolLowerCase ((char)c));

}

public int read(byte[] b, int offset, int len) throws IOException {
int result = super.read(b, offset, len);

for (nt 1 - offser 1 < offseteresnt; i (R

bli] = (byte)Character.toLowerCase ((char)b[i]); Now we need to imylc"\cr\{: two
} vead methods. They take a
e ey byte (or an arvay of bytes)

} and tonvert eath b\/{:c (that
vepresents a ¢tharacter) to
lowevtase if it’s an upperease
thavacter.

REMEMBER: we don't provide import and package

statements in the code listings. Get the complete

sourte tode from the headfirstlabs web site. You'll

find the URL on page xxxiii in the [ntvo.

102

Download at WoweBook.Com

the decorator pattern

Test out your new Java 170 Decorator

Write some quick code fo test the 1/0 decorator:

public class InputTest {
public static void main(String[] args) throws IOException {

int c;
try {
InputStream in = . tream
new LowerCaselInputStream (Kf\ Gel wp he F\\,C\“Y‘é‘-if{, with
new BufferedInputStream/(and dCLoYa{',c \‘h;og{—xcam
new FileInputStream(“test.txt”))); 3 B“‘Q‘Qc‘rcd\h"u P
and then o7 N0 ke
while((c = in.read()) >= 0) { chasc\v\YV’fS*?“a"‘
System.out.print ((char)c); Low

}

in.close();
} catch (IOException e) {
e.printStackTrace() ;

I know the Decorator Pattern therefore I RULE!

}

Just use the stream to vead
thavacters until the end of test txt file
‘(-‘ilc and F\rin'l: as we go. /

You need 100_
Give it a spin: e this Fle

File Edit Window Help DecoratorsRule

[}

% java InputTest
i know the decorator pattern therefore i rule!

[)
<

you are here » 103

Download at WoweBook.Com

decorator

104

Patterns Expesed

This week’s interview:
Confessions of a Decorator

HeadFirst: Welcome Decorator Pattern. We’ve heard that you’ve been a bit
down on yourself lately?

Decorator: Yes, I know the world sees me as the glamorous design pattern, but
you know, I've got my share of problems just like everyone.

HeadFirst: Can you perhaps share some of your troubles with us?

Decorator: Sure. Well, you know I’ve got the power to add flexibility to
designs, that much is for sure, but I also have a dark side. You see, I can sometimes
add a lot of small classes to a design and this occasionally results in a design
that’s less than straightforward for others to understand.

HeadFirst: Can you give us an example?

Decorator: Take the Java I/0O libraries. These are notoriously difficult for
people to understand at first. But if they just saw the classes as a set of wrappers
around an InputStream, life would be much easier.

HeadFirst: That doesn’t sound so bad. You’re still a great pattern, and
improving this is just a matter of public education, right?

Decorator: There’s more, I'm afraid. ’ve got typing problems: you see,
people sometimes take a piece of client code that relies on specific types and
introduce decorators without thinking through everything. Now, one great thing
about me is that you can usually insert decorators transparently and
the client never has to know it’s dealing with a decorator. But like I
said, some code 1s dependent on specific types and when you start introducing
decorators, boom! Bad things happen.

HeadFirst: Well, I think everyone understands that you have to be careful
when inserting decorators, I don’t think this is a reason to be too down on
yourself.

Decorator: I know, I try not to be. I also have the problem that introducing
decorators can increase the complexity of the code needed to instantiate the
component. Once you've got decorators, you’ve got to not only instantiate the
component, but also wrap it with who knows how many decorators.

HeadFirst: I'll be interviewing the Factory and Builder patterns next week — I
hear they can be very helpful with this?

Decorator: That’s true; I should talk to those guys more often.

HeadFirst: Well, we all think you’re a great pattern for creating flexible designs
and staying true to the Open-Closed Principle, so keep your chin up and think
positively!

Decorator: I'll do my best, thank you.

Download at WoweBook.Com

Tools for your Pesign Toolbox

You’ve got another chapter under
your belt and a new principle and
pattern in the toolbox.

00 Printiples

what varies:

Lion over nheet

Ev\cavsu\a{’ﬁ

Favor congos

Progyam to kerbates mot
vooyam
'\W\Y\C"‘C“‘\”abons‘ designs
Ghyive kor \ooselY wf_cic;cz
. ,hha w
bebweer o\q)cclos for KW: now have the Ovcn-—C!oscd .
Classes should be oYeV\‘Qov Principle to quide us. We've going
Lension but tlosed £o strive 4o design our system
¢ Lieation- <o that the tlosed parts are
moditie isolated from our new extensions.

\

'
s .
OO Pa‘\—"—!r“. £
———
Leoral
Shya b additiond
4 v - htach wically:
o | Dd"’:ﬁ:\a o o\aec’_cb{ijna
nter vesyor - er &
n D\tova:g‘: i,:osu\:c\ass'ms for exbendny
a N
| funchiond}

n for treating desion

. aole. Qv Was it
" Closed Printivle)
o Ovcv{t,hg:s;no‘d\cr patteen we ve

s our irst \"'-“l")('cr

And heve
“3\'\3‘{: Sa*‘.‘s‘cz 2 ‘
veally the Fiest? 18 ¥

used that

-

Download at WoweBook.Com

the decorator pattern

—— BULLET POINTS

® Inheritance is one form of
extension, but not necessarily
the best way to achieve flexibility
in our designs.

® In our designs we should allow
behavior to be extended without
the need to modify existing code.

= Composition and delegation
can often be used to add new
behaviors at runtime.

= The Decorator Pattern provides
an alternative to subclassing for
extending behavior.

® The Decorator Pattern involves
a set of decorator classes that
are used to wrap concrete
components.

= Decorator classes mirror the
type of the components they
decorate. (In fact, they are the
same type as the components
they decorate, either through
inheritance or interface
implementation.)

= Decorators change the behavior
of their components by adding
new functionality before and/or
after (or even in place of) method
calls to the component.

= You can wrap a component with
any number of decorators.

= Decorators are typically
transparent to the client of the
component; that is, unless
the client is relying on the
component’s concrete type.

= Decorators can result in many
small objects in our design, and
overuse can be complex.

105

you are here »

exercise solufions

Exercise sojutions

public class Beverage {

// declare instance variables for milkCost,
// soyCost, mochaCost, and whipCost, and
// getters and setters for milk, soy, mocha public class DarkRoast extends Beverage {

// and whip.
public DarkRoast() {
public double cost() { description = "Most Excellent Dark Roast";
double condimentCost = 0.0;
if (hasMilk()) { public double cost() {
condimentCost += milkCost;
) return 1.99 + super.cost();
if (hasSoy()) {
condimentCost += soyCost; } }
}

if (hasMocha()) {
condimentCost += mochaCost;
}
if (hasWhip()) {
condimentCost += whipCost;
}

return condimentCost;

New barista training

“double mocha soy latte with whip”

e Whip calls cost() on Mocha
6 Mocha calls cost() on another Mocha.

° e e o cots t()v‘\,l;'::‘e e Next, Mocha calls cost() on Soy.
outmost decorator, ip.

e Last topping! Soy calls
cost() on HouseBlend.

e HouseBlend’s cost()
method returns .89
cents and pops off
the stack.

0 Soy’s cost() method
adds .15 and returns
the result, and pops
off the stack.

The second Mocha’s

cost() method adds .20
and returns the result,
and pops off the stack.

@ Finally, the result returns to
Whip’s cost(), which adds .10 and
we have a final cost of $1.54.

The first Mocha’s cost() method
adds .20 and returns the result,
and pops off the stack.

106

Chapter 3

Download at WoweBook.Com

the decorator pattern

Exercise sojutions

Our friends at Starbuzz have introduced sizes to their menu. You can now order a coffee in
tall, grande, and venti sizes (for us normal folk: small, medium, and large). Starbuzz saw this
as an intrinsic part of the coffee class, so they’ve added two methods to the Beverage class:
setSize() and getSize(). They’d also like for the condiments to be charged according to size, so
for instance, Soy costs 10¢, 15¢, and 20¢ respectively for tall, grande, and venti coffees.

How would you alter the decorator classes to handle this change in requirements?

public class Soy extends CondimentDecorator ({

; the
Beverage beverage; Now we reed ko \’rz\’aE::“wach
. d to .
public Soy(Beverage beverage) { N 5&5\7—50 mcﬂ‘:‘ou\d also move Lhis
this.beverage = beverage; beverage: We s

the abstratt ¢lass sinte

} MCH\Od o Lov\d\mcv\{: dCCo‘fa‘h"Ys'

ks used n all
public int getSize() {

return beverage.getSize();

}

public String getDescription() {
return beverage.getDescription() + %, Soy”;

}

public double cost () {
double cost = beverage.cost();

if (getSize() == Beverage.TALL) { £\ Here we 56{: the size (which
cost += .10; propagates all the way to the
} else if (getSize() == Beverage.GRANDE) { tontrete bcvcragc) and then

cost += .15;

} else if (getSize() == Beverage.VENTI) {
cost += .20;

add the appropriate cost.

}

return cost;

you are here » 107

Download at WoweBook.Com

Download at WoweBook.Com

4 the Factory Pattern

i

+ Baking with 00 Goodnesgk

Get ready to bake some loosely coupled OO designs. There is more to
making objects than just using the new operator. You'll learn that instantiation is an activity that
shouldn’t always be done in public and can often lead to coupling problems. And you don’t want

that, do you? Find out how Factory Patterns can help save you from embarrasing dependencies.

this is a new chapter 109

Download at WoweBook.Com

thinking about “new”

Okay, it's been three chapters
and you still haven't answered my
question about new. We aren't supposed
to program to an implementation but

every time I use new, that's exactly
what I'm doing, right?

When you see “new”, think “concrete”.

Yes, when you use new you are certainly instantiating a concrete
class, so that’s definitely an implementation, not an interface. And
it’s a good question; you’ve learned that tying your code to a
concrete class can make it more fragile and less flexible.

Duck duck = new MallardDuck();

\

We want 4o use interfaces Buk we have to treate an |
to keep code Flexible. mskance of a tontrete ¢lass!

When you have a whole set of related concrete classes, often you’re
forced to write code like this:

Duck duck;

if (picnic) { m

duck = new MallardbDuck() ;

} else if (hunting) { We have a bunch of d.ﬂ)evcv&
duck = new DecoyDuck() ; duek tlasses, and we dont kno‘«;

} else if (inBathTub) { wnkil vuntime whith one we nee
duck = new RubberDuck() ; to 'ms{:ah{f‘a‘h"

Here we’ve got several concrete classes being instantiated, and the
decision of which to instantiate is made at runtime depending on
some set of conditions.

When you see code like this, you know that when it comes time for
changes or extensions, you’ll have to reopen this code and examine
what needs to be added (or deleted). Often this kind of code ends
up in several parts of the application making maintenance and
updates more difficult and error-prone.

110 Chapter 4

Download at WoweBook.Com

the factory pattern

But you have to create
an object at some point and
Java only gives us one way to
create an object, right? So
what gives?

What’s wrong with “new”?

Technically there’s nothing wrong with new, after all, it’s a
fundamental part of Java. The real culpritis our old friend
CHANGE and how change impacts our use of new.

By coding to an interface, you know you can insulate yourself
from a lot of changes that might happen to a system down
the road. Why? If your code is written to an interface, then
it will work with any new classes implementing that interface
through polymorphism. However, when you have code

that makes use of lots of concrete classes, you're looking for
trouble because that code may have to be changed as new /\ Remembey that des;
concrete classes are added. So, in other words, your code e © dCS'gns should
will not be “closed for modification.” To extend it with new
concrete types, you'll have to reopen it.

So what can you do? It’s times like these that you can fall back
on OO Design Principles to look for clues. Remember, our
first principle deals with change and guides us to identify the
aspects that vary and separate them from what stays the same.

_ %B RAaNN
How might you take all the parts of your application that instantiate concrete classes and
separate or encapsulate them from the rest of your application?

you are here » 111

Download at WoweBook.Com

identify what varies

ldentifying the aspects that vary

Let’s say you have a pizza shop, and as a cutting-edge pizza store
owner in Objectville you might end up writing some code like this:

Pizza orderPizza () {
Pizza pizza = new Pizzal();
pizza.prepare(); For ‘c'“ib""'f)’: we really want
pizza.bake () ; this to be an abstract elass or
pizza.cut () ; :'"f"«cact, but we ean’t diveetly
instantiate either of those.

pizza.box () ;

return pizza;

But you need more than one type of pizza...

So then you’d add some code that determines the appropriate type of pizza
and then goes about making the pizza:

Pizza orderPizza (String type) { We've now Yassing in
Pizza pizza; ‘_/ the type of pizza to
orderPizza.

if (type.equals (“cheese”)) {

pizza = new CheesePizza () ;
} else if (type.equals (“greek”) {

pizza = new GreekPizza(); A
} else if (type.equals (“pepperoni”) { BaSCd on the type of Piz2a, we
instantiate the corvect ontrete ¢lass
and assign it to the Pizza instance

vaviable. Note that each pizz3 here
has to implement the Pizzg intevface.

pizza = new PepperoniPizza();

pizza.prepare();

pizza.bake(); Onte we have a Pizza, we prepare it

pizza.cut(); (you know, voll the dough, put on the
pizza.box () ; sauce and add the toppings ¢ theese),
return pizza; then we bake it, eut it and box it/

} Eath Pizza subtype (CheesePizza,

VeqgiePizza, ete.) knows how to
prepare itself.

112 Chapter 4

Download at WoweBook.Com

the factory pattern

But the pressure is on to add more pizza types

You realize that all of your competitors have added a couple of trendy pizzas to
their menus: the Clam Pizza and the Veggie Pizza. Obviously you need to keep
up with the competition, so you’ll add these items to your menu. And you haven’t
been selling many Greek Pizzas lately, so you decide to take that off the menu:

Pizza orderPizza (String type) {

Pizza pizza;
L\oscd
This wd?; on |
Lor ol \S\\OY thandt® if (type.equals (“cheese”)) {
e \7:‘ OQS}C\"m%s, '\NC pizza = new CheesePizzal(); This is what vavies:
*} Y‘ ‘k '\'*p *,\\‘S } . - A\Y 174 As {*\c Y\ 223
ve o & & W : e
ha se and w00 N pizza = new-GreekPizza (); sc\cCJC‘O" c\\ah‘?“
« } else if (type.equals (“pepperoni”) { over time) \fgz ks
\
pizza = new PepperoniPizza(); have to modity

code over and over
} else if (type.equals (“clam”) {

pizza = new ClamPizza();
} else if (type.equals (“veggie”) {

pizza = new VeggiePizzal() ;

This is what we expect to stay
the same. For the most part,
preparing, cooking, and patkaoing

pizza.prepare () ;

pizza.bake();

pizza.cut(); a pizza has vemained the same
pizza.box () ; for years and years. So, we
return pizza; don't expect this code to change,
, \')us{: the pizzas it o\?cva{:cs on.
}

Clearly, dealing with which concrete class 1s instantiated is really messing up our
orderPizza() method and preventing it from being closed for modification. But now
that we know what is varying and what isn’t, it’s probably time to encapsulate it.

you are here » 113

Download at WoweBook.Com

encapsulate object creation

Encapsulating object creation

So now we know we’d be better off moving the object creation
out of the orderPizza() method. But how? Well, what

we’re going to do is take the creation code and move it out
into another object that is only going to be concerned with
creating pizzas.

Pizza orderPizza (String type) {

Pizza pizza;

Fiest we pull the ob)

_— treation tode ovt
ovderPizza Method

pizza.prepare();
pizza.bake();
pizza.cut();
pizza.box();

return pizza; M%a;

We’ve got a name for this new object: we
call it a Factory.

Factories handle the details of object creation. Once we have
a SimplePizzaFactory, our orderPizza() method just becomes a
client of that object. Any time it needs a pizza it asks the pizza
factory to make one. Gone are the days when the orderPizza()
method needs to know about Greek versus Clam pizzas. Now
the orderPizza() method just cares that it gets a pizza, which
implements the Pizza interface so that it can call prepare(),

bake(), cut(), and box().

We've still got a few details to fill in here; for instance, what does
the orderPizza() method replace its creation code with? Let’s
implement a simple factory for the pizza store and find out...

114 Chapter 4

if (type.equals (“cheese”)) {
pizza = new CheesePizza();
} else if (type.equals (“pepperoni”) {
pizza = new PepperoniPizza();
} else if (type.equals(“clam”) {
pizza = new ClamPizza();
} else if (type.equals(“veggie”) {

pizza = new VeggiePizza();

ett
the

Then we place that tode in an ob{d:c 3:1{';
is only 9oing to worry about how to o
pizzas. 1€ any other ob:)cc{: needs 3 J:
eveated, this is the ob)c&{: to tome to:

Download at WoweBook.Com

the factory pattern

Building a simple pizza factory

We’ll start with the factory itself. What we’re going to do is define a class that encapsulates the object
creation for all pizzas. Here it is...

[+ has >

the SimplePizzaFactory: pdine

Y]zzas £o¥' its tlients.

Heve's our new tlass,

)g\\od w
life: eveating W

w0 T
'\1’2 S
o O A

ed
e g(ab

onc)obin

s

public class SimplePizzaFactory {
public Pizza createPizza (String type) {
Pizza pizza = null;

if (type.equals (“cheese”)) {
pizza = new CheesePizzal();

} else if (type.equals (“pepperoni”)) { Hﬂ{s{MCCOdcwc
pizza = new PepperoniPizzal(); Y\uckcd out of the

} else if (type.equals(“clam”)) { ordC‘rP"uao method-
pizza = new ClamPizzal();

} else if (type.equals(“veggie”)) {
pizza = new VeggiePizzal();

}

return pizza;

-)

This code is still ?avamc{:criud by
the {:\/Yc of the pizza, ")us{: like our
original ovderPizza() method was.

Q; What's the advantage of this?
It looks like we are just pushing the
problem off to another object.

A: One thing to remember is that the

SimplePizzaFactory may have many clients.

We've only seen the orderPizza() method;
however, there may be a PizzaShopMenu
class that uses the factory to get pizzas
for their current description and price. We
might also have a HomeDelivery class that
handles pizzas in a different way than our

ere

tib Guestions

PizzaShop class but is also a client of the
factory.

So, by encapsulating the pizza creating
in one class, we now have only one
place to make modifications when the
implementation changes.

Don't forget, we are also just about to
remove the concrete instantiations from our
client code!

Download at WoweBook.Com

Q} I've seen a similar design where
a factory like this is defined as a static
method. What is the difference?

AI Defining a simple factory as a
static method is a common technique and

is often called a static factory. Why use a
static method? Because you don’t need

to instantiate an object to make use of the
create method. But remember it also has
the disadvanage that you can’t subclass and
change the behavior of the create method.

115

you are here »

simple factory

Reworking the PizzaStore class

Now it’s time to fix up our client code. What we want to do is rely on the
factory to create the pizzas for us. Here are the changes:

Now we give PizzaStore a veference
1o a SimplePizzaFactory.

public class PizzaStore { [
SimplePizzaFactory factory; (_\

public PizzaStore (SimplePizzaFactory factory) { PizzaStore gets the Lactor

o Y passed to

this.factory = factory; it in the eonstruetor.

}

public Pizza orderPizza (String type) {
Pizza pizza;
pizza = factory.createPizza (type);
pizza.prepare(); And the ovderPizza() method uses the
pizza.bake(); (:ac{:or\/ to ereate its pizzas b\/ simyl\/
pizza.cut(); passing on the type of the order.

pizza.box () ;
return pizza;

}
Notice that we've veplaced the new

// other methods here operator with a ereate method on the
} 1Ca££or\/ ob)cc{. No more tontrete
instantiations hcvc!

— BRAVN

PQWEWR

We know that object composition allows us to change behavior dynamically at runtime (among
other things) because we can swap in and out implementations. How might we be able to use
that in the PizzaStore? What factory implementations might we be able to swap in and out?

(001 ‘uaney maN 19610} Jou
$,19]) sauoyoe) ezzid 9jA1s eluloyjed pue ‘0beaiyD WoA MaON Buijuiyl 81,9M Jng ‘NOA JNOgEe MOUY 3,UOP SN

116 Chapter 4

Download at WoweBook.Com

the factory pattern

The Simple Factory defined Pattern

Honorab]e
Mentjon

The Simple Factory isn’t actually a Design Pattern; it’s more of a programming idiom.
But it is commonly used, so we’ll give it a Head First Pattern Honorable Mention.
Some developers do mistake this idiom for the “Factory Pattern,” so the next time
there is an awkward silence between you and another developer, you’ve got a nice
topic to break the ice.

Just because Simple Factory isn’t a REAL pattern doesn’t mean we shouldn’t check out
how it’s put together. Let’s take a look at the class diagram of our new Pizza Store:

This is the ‘(:ad:or\/ wheve we treate

pizzas; it should be the onl\/ yar’c This is khe \wodvdl' of
of our application that vefers to the factory: riz=2
tontrete Pizza classes.. [
We've defined Pizz3
PizzaStore i—> SimplePizzaFactory i—> Pizza as an abs{'xadi elass
) ' reatePrzzal) ' prepare() [with some hc\v(:u\ .
bake) -‘m‘,\mc,&ahons tha
C Z o ¢an be overvidden.
. box()
This is the client of the The treate method is ofben
Sackory. PizzaSte seclaved statically
now 90¢s Jc\r\“"‘b: H‘cjm aet
S\mv\cP\zzaFaf 7::1 — I —
instantes of PEE

VeggiePizza ClamPizza

These are our eonevete products. Each
Product needs to implement the Pizzs
“in{:erfal:c* (which in Lhis tase means

extend the abstract Pizza ¢elass”) and

be conerete. As long as that’s the tase

it ean be ereated by the Fac{ory and) \—j
handed back to the tlient.

Think of Simple Factory as a warm up. Next, we’ll explore two heavy duty patterns
that are both factories. But don’t worry, there’s more pizza to come!

*Just another veminder: in design patterns, the phrase “implement an interface” does NOT always mean
“write a elass the implements a Java interfate, by using the “implements” keyword in the class declaration” n
the general use of the phrase, a tonerete class implementing @ method from a supertype (which could be a
tlass OR interfate) is still consideved to be “implementing the intevface” of that supertype.

you are here » 117

Download at WoweBook.Com

pizza franchise

Franchising the pizza store

Your Objectville PizzaStore has done so well that you’ve trounced
the competition and now everyone wants a PizzaStore in their
own neighborhood. As the franchiser, you want to ensure the
quality of the franchise operations and so you want them to use
your time-tested code.

But what about regional differences? Each franchise might
want to offer different styles of pizzas (New York, Chicago, and
California, to name a few), depending on where the franchise
store 1is located and the tastes of the local pizza connoisseurs.

L

One Svanthise wants a factory
that makes NY style pizzas:
thin trust, tasty sauee and
jwsta little eheese.

You want all the franthise pizza stoves
to leverage your PizzaStore tode, so the
pizzas are prepaved in the same way:

-

PrzzaStor? &7 Another franthise

wants a factory that
makes Chitago style
pizzas; Lheiv tustomers
like pizzas with thick
erust, vich saute, and
tons of theese.

We've seen one approach...

If we take out SimplePizzaFactory and create three different
factories, NYPizzaFactory, ChicagoPizzaFactory and
CaliforniaPizzaFactory, then we can just compose the PizzaStore

with the appropriate factory and a franchise is good to go. That’s
one approach.

Let’s see what that would look like...

118 Chapter 4

Download at WoweBook.Com

NYPizzaFactory nyFactory = new NYPizzaFactory ()
PizzaStore nyStore = new PizzaStore(nyFactory);

nyStore.order (“Veggie”) ; (—\

ChicagoPizzaFactory chicagoFactory = new ChicagoPizzaFactory();

’

the factory pattern

Heve we treate a factory
for making NY style pizzas.

S

Then we ¢veate a PizzaStove and pass it
a vefevente to the NY facbovy.

~-and when we make pizzas, we

get NY-styled pizzas.

PizzaStore chicagoStore = new PizzaStore(chicagoFactory);

chicagoStore.order (“Weggie”) ;

Likewise £or the Chicago pizza stores: we ereate
a fattory for Chicago pizzas and ereate a store
that is composed vith a Chicago factory. When

we make pizzas, we get the Chicago flavored

ones

But you'd like a little more quality control...

So you test marketed the SimpleFactory idea, and what you
found was that the franchises were using your factory to
create pizzas, but starting to employ their own home grown
procedures for the rest of the process: they’d bake things a
little differently, they’d forget to cut the pizza and they’d use
third-party boxes.

Rethinking the problem a bit, you see that what you’d really
like to do is create a framework that ties the store and the
pizza creation together, yet still allows things to remain
flexible.

In our early code, before the SimplePizzaFactory, we had
the pizza-making code tied to the PizzaStore, but it wasn’t
flexible. So, how can we have our pizza and eat it too?

No‘{: wha{: \IOV‘ wa

Lranthise. You do

nt in a good

what he puts on his pizzas-

Download at WoweBook.Com

T've been making pizza for
years so I thought I'd add my
own “improvements” to the
PizzaStore procedures...

NOT want to know |

you are here »

119

let the subclasses decide

A framework for the pizza store

There is a way to localize all the pizza making activities to the PizzaStore
class, and yet give the franchises freedom to have their own regional style.

What we’re going to do is put the createPizza() method back into PizzaStore,
but this time as an abstract method, and then create a PizzaStore
subclass for each regional style.

First, let’s look at the changes to the PizzaStore:

PizzaStore is now abstract (see why below).

public abstract class PizzaStore {

public Pizza orderPizza (String type) {
Pizza pizza;

Now eveatePizza is back o being a

pizza = createPizza (type) ; call o a method in the PizzaStore
vather than on a ‘(-\actor\/ ob)cé{.

pizza.prepare () ;
pizza.bake();

pizza.cut();
pizza.box () ; \/ Al Lhis looks just the same..

return pizza;

£ D

abstract Pizza createPizza (String type); Now we've moved our '(:QC‘Eor\/

| ob\)ec{: to this method.

(

Our “Fac-l:ory method” is now
abstract in PizzaStove.

Now we’ve got a store waiting for subclasses; we’re going to have a

subclass for each regional type (NYPizzaStore, ChicagoPizzaStore,
CaliforniaPizzaStore) and each subclass is going to make the decision about
what makes up a pizza. Let’s take a look at how this is going to work.

120 Chapter 4

Download at WoweBook.Com

the factory pattern

Allowing the subclasses to decide

Remember, the PizzaStore already has a well-honed order system in the orderPizza()
method and you want to ensure that it’s consistent across all franchises.

What varies among the regional PizzaStores is the style of pizzas they make — New York
Pizza has thin crust, Chicago Pizza has thick, and so on — and we are going to push all
these variations into the createPizza() method and make it responsible for creating the
right kind of pizza. The way we do this is by letting each subclass of PizzaStore define
what the createPizza() method looks like. So, we will have a number of concrete subclasses
of PizzaStore, each with its own pizza variations, all fitting within the PizzaStore
framework and still making use of the well-tuned orderPizza() method.

Each subelass overvides the eveatePizzal)
method, while all subelasses make use

PizzaStore of the orderPizza() method defined
createPizza() in PizzaStore. We tould make the
orderPizza() ordc‘rPiuaO method Linal if we rca"\/

wanted to enforee this.

<N

>

NY sy NYStylePizzaStore ChicagoStylePizzaStore | Similarly, by using the
. S (4 . -
|‘(: a ‘(:YZth.ls{cs wanézs e &\I createPizza() createPizza() Chi tago subtlass, we 55-(: an 5
1223s Yovr Its LusTomers, . A veatePizza
uses the NY subelass, which has mzl:mcc‘?zho.“ ofc; ents
. 1 \ o In .
its own eveatePizza() method, Remember: eveatePizzal) is wi 90 Ing
ereating NY style pizzas. abstract in PizzaStore, so al
pizza store subtypes MUST
& im\"cmtn{ {he method:
public Pizza createPizza (type) {
public Pizza createPizza (type) { if (type.equals(“cheese”)) {
if (type.equals(“cheese”)) { pizza = new ChicagoStyleCheesePizza () ;
pizza = new NYStyleCheesePizza(); } else if (type.equals (“pepperoni”) {
} else if (type.equals (“pepperoni”) { pizza = new ChicagoStylePepperoniPizza () ;
pizza = new NYStylePepperoniPizza () ; } else if (type.equals(“clam”) {
} else if (type.equals(“clam”) { pizza = new ChicagoStyleClamPizza () ;
pizza = new NYStyleClamPizza(); } else if (type.equals (“veggie”) {
} else if (type.equals(“veggie”) ({ pizza = new ChicagoStyleVeggiePizza () ;
pizza = new NYStyleVeggiePizza(); }

you are here » 121

Download at WoweBook.Com

how do subclasses decide?

I don't get it. The

PizzaStore subclasses are just
subclasses. How are they deciding
anything? I don't see any logical decision-
making code in NYStylePizzaStore....

Well, think about it from the point of view of the PizzaStore’s orderPizza() method: it is
defined in the abstract PizzaStore, but concrete types are only created in the subclasses.

is defined in the abstract

PizzaStore .
orderPizzal) X
createPizzal) PizzaStore, not the subtlasses. S?, chi, aly
orderPizza) method has no idea whith subelass Ts
— making the pizzas.

vunning the tode and

Now, to take this a little further, the orderPizza() method does a lot of things with a
Pizza object (like prepare, bake, cut, box), but because Pizza is abstract, orderPizza() has
no idea what real concrete classes are involved. In other words, it’s decoupled!

PizzaStore

pizza = createPizza();

pizza.prepare();
pizza.bake();
pizza.cut();

C pizza.box()

s eveatkePizzal) to ac{:ua\\Y 5.&,
But which kind of pizza will 1.{:
iz2a() method cant decide; it
ho d&cé detide?

createPizza()
orderPizza() +«+veeveenes

ocderPizzal) cal
a Y\ua ob)cc{',-
oet? The ocder?

doesn t know how- So W

When orderPizza() calls createPizza(), one of your subclasses will be called into action to
create a pizza. Which kind of pizza will be made? Well, that’s decided by the choice of
pizza store you order from, NYStylePizzaStore or ChicagoStylePizzaStore.

— /

NYStylePizzaStore ChicagoStylePizzaStore

createPizza() createPizza()

So, 1s there a real-time decision that subclasses make? No, but from the perspective of
orderPizza(), if you chose a NYStylePizzaStore, that subclass gets to determine which
pizza is made. So the subclasses aren’t really “deciding” — it was you who decided by
choosing which store you wanted — but they do determine which kind of pizza gets made.

122 Chapter 4

Download at WoweBook.Com

the factory pattern

Lets make a PizzaStore

Being a franchise has its benefits. You get all the PizzaStore
functionality for free. All the regional stores need to do is subclass
PizzaStore and supply a createPizza() method that implements
their style of Pizza. We’ll take care of the big three pizza styles for
the franchisees.

Here’s the New York regional style:

eveatePizzal) vetuens a Pizz3) ah-d : " The NYPizzaStore extends
subelass is ‘c"“\/ "svo“s‘b‘c For whic PizzaStore, so it inhevits the
contrete Pizza it instantiates orderPizza() method (among others).
public class NYPizzaStore extends PizzaStore {
Pizza createPizza (String item) { e~ We've So{; to im‘?ltmcn{:
if (item.equals (“cheese”)) { cvca{:cPiuao; sinte it is
return new NYStyleCheesePizzal(); abstract in PizzaStove.
} else if (item.equals (“veggie”)) {

return new NYStyleVeggiePizza();
) else if (item.equals (“clarTl")) e Here's where we treate our
return new NYStyleClamPizza();
} else if (item.equals (“pepperoni”)) { tontrete tlasses. For each ‘E\/?c
return new NYStylePepperoniPizza () ; of Pizza we eveate the NY S{"‘/IC'
} else return null;

%* Note that the orderPizza() method in the
supertlass has no ¢lue whith Pizza we are treating; it
just knows it ean prepare, bake, tut, and box it/

Once we’ve got our PizzaStore subclasses built, it will be time
to see about ordering up a pizza or two. But before we do that,
why don’t you take a crack at building the Chicago Style and
California Style pizza stores on the next page.

you are here » 123

Download at WoweBook.Com

factory

@ dharpen your pencil
i your p

We’ve knocked out the NYPizzaStore, just two more to go and we’ll be ready to franchise!
Write the Chicago and California PizzaStore implementations here:

124

Download at WoweBook.Com

the factory pattern

Peclaring a factory method

With just a couple of transformations to the PizzaStore we’ve gone from
having an object handle the instantiation of our concrete classes to a set of
subclasses that are now taking on that responsibility. Let’s take a closer look:

The svbelasses of .
P'l:.zaS’c,orc handle o\.)\)cc{:
\ns{,ah{'j\a{:'\on Lor us n he
crca{:cP\u.a() method-

public abstract class PizzaStore ({

public Pizza orderPizza (String type) {
Pizza pizza;

NYStylePizzaStore
X X createPizza()
pizza = createPizza (type)
E%ZZZ'EZiZ?fe(); ChicagoStylePizzaStore
izza. ;
pizza.cut () ; createPizza()

pizza.box () ;

return pizza;

}
All the rcs\vonsibih{:\/ Lor
instantiating Pizzas has been

// other methods here moved into method that
} atts as a ‘:abto\'\/-

protected abstract Pizza createPizza (String type);

Code Up Close

A factory method handles object creation and encapsulates it in

a subclass. This decouples the client code in the superclass from \ . ey y
the object creation code in the subclass. ized (or ot
acameterize \
Lo select amond scvcvat
vaviations of a produt™

abstract Product factoryMethod(String type)

A ‘Faﬁ'l:ory "\C'l:hod is T\ &\ 'lso\a{-,es ‘H‘\C c\icn{: (‘thc

abst, fattory method veturns £aetory method .
a\rcS :::i:; the subelase fP:Od":Z that is typieally I:odc n ’c\\l\c supevelass, like °“dC*P‘7:aO)
objeet r.reati:h to hardl used within methods defined from knowing what kind of contrete

" in the supertlass. Produtt is actually ereated.

you are here » 125

Download at WoweBook.Com

ordering a pizza

Let’s see how it works: ordering pizzas with
the pizza factory method

T like NY Style pizza... you
know, thin, crispy crust
with a little cheese and
really good sauce.

T like Chicago style deep dish
pizza with thick crust and
tons of cheese.

Ethan needs {0 order
his pizza from 3 Ny

Joel needs to order his

Pizza store. pizza from a Chicago
pizza store. Same pizza
ordering method, but
diffevent kind of pizzal

So0 how do they order?

o First, Joel and Ethan need an instance of a PizzaStore. Joel needs to instantiate a
ChicagoPizzaStore and Ethan needs a NYPizzaStore.

9 With a PizzaStore in hand, both Ethan and Joel call the orderPizza() method and pass
in the type of pizza they want (cheese, veggie, and so on).

6 To create the pizzas, the createPizza() method is called, which is defined in the
two subclasses NYPizzaStore and ChicagoPizzaStore. As we defined them, the
NYPizzaStore instantiates a NY style pizza, and the ChicagoPizzaStore instantiates
Chicago style pizza. In either case, the Pizza is returned to the orderPizza() method.

e The orderPizza() method has no idea what kind of pizza was created, but it knows it is
a pizza and it prepares, bakes, cuts, and boxes it for Ethan and Joel.

126 Chapter 4

Download at WoweBook.Com

the factory pattern

Let’s check out how these pizzas are
really made fo order...

o Let’s follow Ethan’s order: first we need a NY PizzaStore:

= new NYPizzaStore():;

\\ Creates 3 instance of

NYPizzaStore. _S

PizzaStore nyPizzaStore

e Now that we have a store, we can take an order: &
"YPiz205%©

nyPizzaStore.orderPizza (“cheese”); /
\ The ordexPizzal) mekhod is called on

<z2zaStore instante (the method

P
et inside PizzaStore vuns).

defined

()
9]
(0]
O
<
O
[}
N
N
-~
o
(0]
il
(o]
]
]
]

e The orderPizza() method then calls the createPizza()
method:

= createPizza (“cheese”);

Pizza pizza =

Remember, treatePizza0), the factory
method, is im?lCmen{ed in the subtlass. [n

this tase it vetwens a NY Cheese Pizza. S

e Finally we have the unprepared pizza in hand and the
orderPizza() method finishes preparing it:

pizza.prepare();
e dC‘c'mCd

()
pizza.bake();

pizza.cut(); Al of these -md:-hods ar{:wnCd
pizza.box(); ~— in the sycci-(:nc pizza ve

from the Fac{oﬂ/ method
eveatePizzal), defined in the

The ordc\rPiuao method SC{"S N\{PiuaS{ZOYC'

batk a Pizza, without know'ma .
exactly what conerete elass it is.

you are here » 127

Download at WoweBook.Com

the pizza classes

We're just missing one thing: PIZZA!

Our PizzaStore isn’t going to be very popular
without some pizzas, so let’s implement thew:

v an gbstract
well start Wi :\‘{‘ fhe contrete

[tlass and |
(Pf";l will dexive Lrom this
P
. O‘(: dough, 3
public abstract class Pizza { Each Pizza has a name, 3 {:\/\ac »

type of saute, and a set of toppings.

String name;
String dough; <f—’/////”’
String sauce;

ArrayList toppings = new ArrayList();

void prepare() { The abstract elass provides
System.out.println (“Preparing “ + name); somcbaﬂcdc£3ﬂ£5£°Vbah“9
System.out.println (“Tossing dough...”); cubbngandboﬁng
System.out.println (“Adding sauce...”);

System.out.println (“Adding toppings: “);
for (int 1 = 0; 1 < toppings.size(); i++) {

System.out.println (® “ + toppings.get(i));
| P\rc\?ara{:ion Lollows a
| number of steps in a

pavticular sequence:
void bake () {

System.out.println (“Bake for 25 minutes at 3507);
}

void cut () {
System.out.println (“Cutting the pizza into diagonal slices”);

}

void box () {
System.out.println(“Place pizza in official PizzaStore box”);

}

public String getName () {
return name;

}

REMEMBER: we don't provide import and package statements in the
tode listings. Get the complete sourte tode £rom the headfirstlabs
web site. You'll £ind the URL. on page ¥xxiii in the [ntro.

128 Chapter 4

Download at WoweBook.Com

the factory pattern

Now we just need some concrete subclasses... how about defining
New York and Chicago style cheese pizzas?

The N\{ Pizza has its own
public class NYStyleCheesePizza extends Pizza { maﬂnmgs{ﬂcsmmcand{thV“£
public NYStyleCheesePizza () {
name = “NY Style Sauce and Cheese Pizza”;
dough = “Thin Crust Dough”;
sauce = “Marinara Sauce”;

toppings.add (“Grated Reggiano Cheese”);

And one +'°FPi"5)

reggiano theese!

The Chicago Pizza uses plum
{oma{-’ocs as 3 saute alov\g
public class ChicagoStyleCheesePizza extends Pizza { wﬁhc*tVa{thLrwk'
public ChicagoStyleCheesePizza () {
name = “Chicago Style Deep Dish Cheese Pizza”;
dough = “Extra Thick Crust Dough”;
sauce = “Plum Tomato Sauce”;

toppings.add(“Shredded Mozzarella Cheese”); £ —_ ThCChMagos{wcdecP

dish pizza has lots of
mozzarella cheese/

}

void cut () {
System.out.println (“Cutting the pizza into square slices”);

M

The Chicago style pizza also overvides the eut()
method so that the pietes are eut into squares.

}

you are here » 129

Download at WoweBook.Com

make some pizzas

You've waited long enough, time for some pizzas!

First we eeeate Lwo
. . . WS
public class PizzaTestDrive { d’&‘ccrﬂ\{'a skoves:
public static void main(String[] args) { Th se one one store
PizzaStore nyStore = new NYPizzaStore(); cnucE{-‘h s order
PizzaStore chicagoStore = new ChicagoPizzaStore () ; to make ans o '

Pizza pizza = nyStore.orderPizza (“cheese”);
System.out.println (“*Ethan ordered a “ + pizza.getName () + “\n”);

pizza = chicagoStore.orderPizza (“cheese”);
System.out.println (“Joel ordered a “ + pizza.getName () + “\n”);

And the other £or Joel's.

File Edit Window Help YouWantMootzOnThatPizza?

%java PizzaTestDrive

Preparing NY Style Sauce and Cheese Pizza

Tossing dough. ..

Adding sauce...

Adding toppings:

Grated Regiano cheese

Bake for 25 minutes at 350 . ved,

Cutting the pizza into diagonal slices Both "'7'_7'35 Se;?;q:d the

Place pizza in official PizzaStore box the toppings added, d boxed

Ethan ordered a NY Style Sauce and Cheese Pizza pizzas baked, ¢ut and boxed.
Our supevelass never had to

Preparing Chicago Style Deep Dish Cheese Pizza know the details, fhe subelass

radingssvce. handled all that \')us{‘, b\/
ins{',an{‘,ia{fmg the rig\'\{: pizza.

Adding sauce. ..
Adding toppings:
Shredded Mozzarella Cheese
Bake for 25 minutes at 350
Cutting the pizza into square slices
Place pizza in official PizzaStore box
Joel ordered a Chicago Style Deep Dish Cheese Pizza

130 Chapter 4

Download at WoweBook.Com

the factory pattern

It’s finally time to meet the Factory Method Pattern

All factory patterns encapsulate object creation. The Factory Method Pattern encapsulates
object creation by letting subclasses decide what objects to create. Let’s check out these class
diagrams to see who the players are in this pattern:

The Creator classes

This is our abstraet ereator /\’ /_\ Often the ereator contains tode that

elass. [t defines an abstraet depends on an abstract product, which

attory method that Lhe PizzaStore i is produced by a subtlass. The eveator
subelasses implement. to reetePizza) never veally knows which tontrete
Produce Produtts. orderPizza() | YV'oduL{: was produced.

/ \/E\Lc eath franthise gets its

own subtlass of PizzaStore,

NYPizzaStore h ChicagoPizzaStore o .
createPizza() I createPizza() it's ‘c vee to cr.catc its
he ey ¢ own s{‘,\llc 0‘F YIZJ-::;Y 0
4 P implementing ereatelizzat/.
'S our £, ory 0O methog dw/c" it
PV‘odUCCS P"Od Céhod, /‘é C\aSSCS ,tha{-l Yro
uets, \wod%{;s ave called
Lonfxc{:c treators
The Produet classes
ﬂ Factories produce produtts,
Pizza and in the PizzaStore, our
‘arodchc is a Pizza.
These ave the contrete
products — all the pizzas that
are produced by our shores NYStyleCheesePizza ! ChicagoSterCheesePizza!
\>’ | NYStylePepperoniPizza ! | chicagoStylePepperoniPizza

NYStyleClamPizza t ChicagoStyleClamPizza
NYStyleVeggiePizza ChicagoStyleVeggiePizza

you are here » 131

Download at WoweBook.Com

creators and products

Another perspective: parallel class hierarchies

We’ve seen that the factory method provides a framework by supplying an
orderPizza() method that is combined with a factory method. Another way to look
at this pattern as a framework 1s in the way it encapsulates product knowledge into

each creator.

Let’s look at the two parallel class hierarchies and see how they relate:

—~

Notice how these
tlass hierarehies are
parallel: both have
abstract elasses that
are extended by

N

The Product classes contrete classes whien The Creator classes
know about s\?cci‘cic
implementations for NY
Pizza i and Chicago. PizzaStore
createPizza()
orderPizza()
NYStyleCheesePizza h ChicagoSterCheesePizzah NYPizzaStore ChicagoPizzaStore
NYStylePepperoniPizza h ChicagoStylePepperoniPizza createPizza() createPizza()
| .
- NYStyleClamPizza h - ChicagoStyleClamPizza
| 8 | .
- NYStyleVeggiePizza - ChicagoStyleVeggiePizza h < \e
v}
—— | I 3?"“ 3(,0 gkd(f.
X

132 Chapter 4

od is the key to entd

The factory meth

Download at WoweBook.Com

California region to our PizzaStore.

2 Design Puzzle

We need another kind of pizza for those crazy Galifornians (crazy in a good way
of course). Draw another parallel set of classes that you’d need to add a new

PizzaStore

createPizza()
orderPizza()

NYPizzaStore

!

ChicagoPizzaStore h

createPizza()

createPizza()

NYStyleCheesePizza h

ChicagoSterCheesePizzah

T—

NYStylePepperoniPizza h
| &
NYStyleClamPizza

Okay, now write the five most bizarre things you can think of to put on a pizza.

—

h —

ChicagoStylePepperoniPizza
ChicagoStyleClamPizza

|
NYStyleVeggiePizza

=

—

1 .
ChicagoStyleVeggiePizza

—

Then, you’ll be ready to go into business making pizza in California!

the factory pattern

Download at WoweBook.Com

you are here »

133

factory method defined

Factory Method Pattern defined

It’s time to roll out the official definition of the Factory Method Pattern:

The Factory Method Pattern defines an interface
for creating an object, but lets subclasses decide which

class to instantiate. Factory Method lets a class defer
Instantiation to subclasses.

As with every factory, the Factory Method Pattern gives us a way to encapsulate the
instantiations of concrete types. Looking at the class diagram below, you can see that the
abstract Creator gives you an interface with a method for creating objects, also known as the
“factory method.” Any other methods implemented in the abstract Creator are written to
operate on products produced by the factory method. Only subclasses actually implement

Wi
e

the factory method and create products. to \o a¢ *’\\‘0“ we et

. . .. o) eanS) 1S
As in the official definition, you’ll often hear developers say that the Factory Method lets « dcb"d"; T peskan)"\\“

1 i hich cl i i Th “decides” h w urd® o

subclasses decide which class to instantiate. They say “decides” not because the pattern e no van © A
allows subclasses themselves to decide at runtime, but because the creator class is written Jkee ¥

without knowledge of the actual products that will be created, which is decided purely by
the choice of the subclass that is used.

i hat tonkains
The Creator is 3 class tha e

A for all
m \Cmcn{',a{:\ons
[+l\\:{:;\o\:is Lo manipulate Yrod;l\,\%;‘;
. m oQ -
extept For the faetory me
/47 Product Creator i
i n .‘mv‘cmm{: factoryMethod() The abstract ‘cac‘{:oY“/Mc{:hodO
A\l products ™ + the anOperation() is what all Creator subtlasses
Lhe same inteckate so {:\\:
y the pro ut
¢lasses whith use he P2
Lhe intertate
tan vexer to

not the contrete tlass:

\> The ContreteCreator
ConcreteProduct i

must imylmcvxb

ConcreteCreator : £
factoryMethod() lm?ltmth{:s ¢
- FactoryMethodO), which is
the method that actually
AN

yrodutcs ?vodvd{'}-
The ConereteCreator is vesponsible £or

ereating one or more tontrete products. |t
is the only ¢lass that has the knowledae of
how to treate these products.

134 Chapter 4

Download at WoweBook.Com

ere

tmb Guestions

Q} What'’s the advantage of the Factory Method
Pattern when you only have one ConcreteCreator?

AZ The Factory Method Pattern is useful if

you've only got one concrete creator because you are
decoupling the implementation of the product from

its use. If you add additional products or change a
product’s implementation, it will not affect your Creator
(because the Creator is not tightly coupled to any
ConcreteProduct).

Q: Would it be correct to say that our NY and
Chicago stores are implemented using Simple
Factory? They look just like it.

AI They're similar, but used in different ways. Even
though the implementation of each concrete store looks
a lot like the SimplePizzaFactory, remember that the
concrete stores are extending a class which has defined
createPizza() as an abstract method. It is up to each
store to define the behavior of the createPizza() method.
In Simple Factory, the factory is another object that is
composed with the PizzaStore.

Q: Are the factory method and the Creator
always abstract?

AZ No, you can define a default factory method

to produce some concrete product. Then you always
have a means of creating products even if there are no
subclasses of the Creator.

Q: Each store can make four different kinds

of pizzas based on the type passed in. Do all
concrete creators make multiple products, or do they
sometimes just make one?

the factory pattern

A: We implemented what is known as the
parameterized factory method. It can make more than
one object based on a parameter passed in, as you
noticed. Often, however, a factory just produces one
object and is not parameterized. Both are valid forms
of the pattern.

Q: Your parameterized types don’t seem “type-
safe.” I'm just passing in a String! What if | asked for
a “CalmPizza”?

AZ You are certainly correct and that would cause,
what we call in the business, a “runtime error.” There
are several other more sophisticated techniques that
can be used to make parameters more “type safe”, or,
in other words, to ensure errors in parameters can be
caught at compile time. For instance, you can create
objects that represent the parameter types, use static
constants, or, in Java 5, you can use enums.

Q: I'm still a bit confused about the difference
between Simple Factory and Factory Method. They
look very similar, except that in Factory Method, the
class that returns the pizza is a subclass. Can you
explain?

AI You're right that the subclasses do look a lot
like Simple Factory, however think of Simple Factory
as a one shot deal, while with Factory Method you are
creating a framework that let's the subclasses decide
which implementation will be used. For example, the
orderPizza() method in the Factory Method provides a
general framework for creating pizzas that relies on a
factory method to actually create the concrete classes
that go into making a pizza. By subclassing the
PizzaStore class, you decide what concrete products
go into making the pizza that orderPizza() returns.
Compare that with SimpleFactory, which gives you a
way to encapsulate object creation, but doesn'’t give
you the flexibility of the Factory Method because there
is no way to vary the products you're creating.

135

Download at WoweBook.Com

master student

Master and Student...
Master: Grasshopper, tell me how your training is going?

Student: Master, | have taken my study of “encapsulate what
varies” further.

Master: Go on...

Student: | have learned that one can encapsulate the code that
creates objects. When you have code that instantiates concrete
classes, this is an area of frequent change. I've learned a
technique called “factories” that allows you to encapsulate this
behavior of instantiation.

Master: And these “factories,” of what benefit are they?

Student: There are many. By placing all my creation code in one
object or method, | avoid duplication in my code and provide one
place to perform maintenance. That also means clients depend
only upon interfaces rather than the concrete classes required to
instantiate objects. As | have learned in my studies, this allows me
to program to an interface, not an implementation, and that makes
my code more flexible and extensible in the future.

Master: Yes Grasshopper, your OO instincts are growing. Do
you have any questions for your master today?

Student: Master, | know that by encapsulating object creation
I am coding to abstractions and decoupling my client code from
actual implementations. But my factory code must still use
concrete classes to instantiate real objects. Am | not pulling the
wool over my own eyes?

Master: Grasshopper, object creation is a reality of life; we must
create objects or we will never create a single Java program. But,
with knowledge of this reality, we can design our code so that we
have corralled this creation code like the sheep whose wool you
would pull over your eyes. Once corralled, we can protect and
care for the creation code. If we let our creation code run wild,
then we will never collect its “wool.”

Student: Master, | see the truth in this.

Master: As | knew you would. Now, please go and meditate on
object dependencies.

136

Download at WoweBook.Com

the factory pattern

A very dependent PizzaStore

@ harpen Your pencul

Let’s pretend you’ve never heard of an OO factory. Here’s a version of the PizzaStore that
doesn’t use a factory; make a count of the number of concrete pizza objects this class is
dependent on. If you added California style pizzas to this PizzaStore, how many objects would it
be dependent on then?

public class DependentPizzaStore ({

public Pizza createPizza (String style, String type) {
Pizza pizza = null;
if (style.equals (“™NY”)) {
if (type.equals (“cheese”)) {
pizza = new NYStyleCheesePizzal();
} else if (type.equals (“veggie”)) { Hmdksaﬂ{thY

piz?a = new NYStyleVeggiePizzal(); . Yk pizzas
} else if (type.equals(“clam”)) {
pizza = new NYStyleClamPizza();
} else if (type.equals (“pepperoni”)) {
pizza = new NYStylePepperoniPizza();
}
} else if (style.equals(“Chicago”)) {
if (type.equals (“cheese”)) {
pizza = new ChlcagoStyleCheesePlzza(HadksaH{hC
} elsg if (type.equals (“veggie”)) é(//—~ Chmagostﬁt
pizza = new ChlcagoStyleVegglePlzza X
} else if (type.equals(“clam”)) { pizzas
pizza = new ChicagoStyleClamPizza() ;
} else if (type.equals (“pepperoni”)) {
pizza = new ChicagoStylePepperoniPizzal();
}
} else {

System.out.println (“Error: invalid type of pizza”);
return null;

}

pizza.prepare();

pizza.bake();

pizza.cut();

pizza.box () ;

return pizza;

‘/ou tan write
Your answers heve: number

number with California ‘oo

you are here » 137

Download at WoweBook.Com

object dependencies

Looking atf object dependencies

When you directly instantiate an object, you are depending on its
concrete class. Take a look at our very dependent PizzaStore one
page back. It creates all the pizza objects right in the PizzaStore class
instead of delegating to a factory.

If we draw a diagram representing that version of the PizzaStore
and all the objects it depends on, here’s what it looks like:

This version of the
PizzaStore depends on all
those pizza objects, because
it's ereating them divectly.

I‘p 'H)C im ‘t
Plementat; Because any thanges +o the tontrete

tlasses hange, fhenlt‘:.f these) implementations of pizzas affects the

have {o nwdi-py in Pizza SZZ” PizzaStore, we say that the PizzaStore

“depends on” the pizza implementations.

7
Zﬁ/ %'5 O: eperd
N

o
N
Q&
<
8
o Yev a® 3. N
2 N t C:QQ §
@Q— OSfy\ e
% £ S
Teppet® N
Rt KD g
(3 d Ql (o] Sfy\ 6&

Evcr\/ new kind of pizza
we add treates another j

dependenty for PizzaStore.

138 Chapter 4

Download at WoweBook.Com

the factory pattern

The Dependency Inversion Principle

It should be pretty clear that reducing dependencies to

concrete classes in our code is a “good thing.” In fact, we’ve

got an OO design principle that formalizes this notion; it even

has a big, formal name: Dependency Inversion Principle. _\et another
use Lo impre

phvase Yo c_a“
ss the exets "

’ - ise WY
Here’s the general principle: : Yo::;n \l{;;:c?&c, COS{?
':Er:,\\'\s Yook, and Yo \\ ogin
the adm'\rat\ov‘ your
s £ellow developers:

Depend upon abstractions. Do not
depend upon concrete classes.

At first, this principle sounds a lot like “Program to an

interface, not an implementation,” right? It is similar;

however, the Dependency Inversion Principle makes an even

stronger statement about abstraction. It suggests that our

high-level components should not depend on our low-level A “high—lcvcl" component is a ¢lass
components; rather, they should both depend on abstractions. 4//- with behavior defined in terms of

her, “low level” tomponents.
But what the heck does that mean? other, P

: . . . For example, PizzaStore is a
Well, let’s start by looking again at the pizza store diagram high—lcvcl componen £ because

. : . s
on the previous page. .Plzzz.tStore is our | high-level i£< behavior is defined in tevms
component” and the pizza implementations are our “low- of vizzas — it eveates all the
level components,” and clearly the PizzaStore is dependent
on the concrete pizza classes.

diffecent pizza objcc{:s, prepaves,
bakes, uts, and boxes them, while
Now, this principle tells us we should instead write our code the pizzas it uses are low-level

so that we are depending on abstractions, not concrete tomponents.

classes. That goes for both our high level modules and our

low-level modules.

But how do we do this? Let’s think about how we’d

apply this principle to our Very Dependent PizzaStore
implementation...

you are here » 139

Download at WoweBook.Com

dependency inversion principle

Applying the Principle

Now, the main problem with the Very Dependent PizzaStore is that it depends
on every type of pizza because it actually instantiates concrete types in its
orderPizza() method.

While we’ve created an abstraction, Pizza, we’re nevertheless creating concrete
Pizzas in this code, so we don’t get a lot of leverage out of this abstraction.

How can we get those instantiations out of the orderPizza() method? Well, as
we know, the Factory Method allows us to do just that.

So, after we’ve applied the Factory Method, our diagram looks like this:

& N
PizzaStore now depends only
Aezasrd” on Pizza, the Jbstract elass.

Pizza is an abstract i

elass...an abst . Le pizza tlasses
%\S dttion —y O & 1{-::: \i?::;ca;szrachon too,
implement {he Pizza

) . W«
we e using

\ sense) in the Pizza abstract elass.

Pizza

After applying the Factory Method, you’ll notice that our high-level component,
the PizzaStore, and our low-level components, the pizzas, both depend on Pizza,
the abstraction. Factory Method is not the only technique for adhering to the
Dependency Inversion Principle, but it is one of the more powerful ones.

140 Chapter 4

Download at WoweBook.Com

\n{-,crfSacc (chcvnbcr,
inbecface” in the 5cncra\

the factory pattern

Okay, I get the dependency
part, but why is it called
dependency inversion?

Where’s the “inversion” in Dependency
Inversion Principle?

The “inversion” in the name Dependency Inversion
Principle is there because it inverts the way you
typically might think about your OO design. Look
at the diagram on the previous page, notice that the
low-level components now depend on a higher level
abstraction. Likewise, the high-level component

1s also tied to the same abstraction. So, the top-to-
bottom dependency chart we drew a couple of pages
back has inverted itself, with both high-level and low-
level modules now depending on the abstraction.

L Let’s also walk through the thinking behind the typical
) design process and see how introducing the principle
can invert the way we think about the design...

141

Download at WoweBook.Com

invert your

Inverting your thinking...

Hmmm, Pizza Stores prepare, bake and
box pizzas. So, my store needs to be

oo able to make a bunch of different
pizzas: CheesePizza, VeggiePizza,
ClamPizza, and so on...
\ Y
.
[
g .

Well, a CheesePizza and a
VeggiePizza and a ClamPizza

are all just Pizzas, so they

should share a Pizza interface.

Since I now have a Pizza
abstraction, I can design my

Pizza Store and not worry about
the concrete pizza classes.

142

Okay, so you need to implement a PizzaStore.
What’s the first thought that pops into your head?

Right, you start at top and follow things down to
the concrete classes. But, as you’ve seen, you don’t
want your store to know about the concrete pizza
types, because then it’'ll be dependent on all those
concrete classes!

Now, let’s “invert” your thinking... instead of
starting at the top, start at the Pizzas and think
about what you can abstract.

Right! You are thinking about the abstraction
Pizza. So now, go back and think about the design
of the Pizza Store again.

Close. But to do that you’ll have to rely on a
factory to get those concrete classes out of

your Pizza Store. Once you’ve done that, your
different concrete pizza types depend only on an
abstraction and so does your store. We’ve taken
a design where the store depended on concrete
classes and inverted those dependencies (along
with your thinking).

Download at WoweBook.Com

the factory pattern

A few guidelines to help you follow the
Principle...

The following guidelines can help you avoid OO designs that violate
the Dependency Inversion Principle:

|£ you use new, \/ou’\\ be holding
a r\{cgcrcnt,c toa contrete tlass:

|
F Use a kaetory o get avound that!

= No variable should hold a reference to a concrete class.

£ you devive from a tontrete tlass,
ouw've depending on 3 tontrete tlass.
"= No class should derive from a concrete class. 4/ Ecrivc from an abstrattion, like an

interfate or an abstract ¢lass.

® No method should override an implemented method of

any of its base classes. abstraction to s

methods implemented

meant {o be shaved b i the base elas are

y all Your subelasses.

But wait, aren't these
guidelines impossible to follow?
If I follow these, I'll never be

able to write a single program!

You’re exactly right! Like many of our principles, this is a guideline
you should strive for, rather than a rule you should follow all the time.
Clearly, every single Java program ever written violates these guidelines!

But, if you internalize these guidelines and have them in the back of

your mind when you design, you’ll know when you are violating the ’
principle and you’ll have a good reason for doing so. For instance, if you £ |
have a class that isn’t likely to change, and you know it, then it’s not the

end of the world if you instantiate a concrete class in your code. Think

about it; we instantiate String objects all the time without thinking twice.

Does that violate the principle? Yes. Is that okay? Yes. Why? Because

String is very unlikely to change.

If; on the other hand, a class you write is likely to change, you have some
good techniques like Factory Method to encapsulate that change.

you are here » 143

Download at WoweBook.Com

families of ingredients

Meanwhile, back at the PizzaStore...

The design for the PizzaStore is really shaping up: it’s got a
flexible framework and it does a good job of adhering to Dough
design principles.

PcPPe\roni

Now, the key to Objectville Pizza’s success has
always been fresh, quality ingredients, and
what you've discovered is that with the

new framework your franchises have been
following your procedures, but a few franchises
have been substituting inferior ingredients

in their pies to lower costs and increase

their margins. You know you’ve got to do
something, because in the long term this is
going to hurt the Objectville brand!

\/ cs%'\cs

Ensuring consistency in your
ingredients

So how are you going to ensure each franchise is usin

you going g
quality ingredients? You’re going to build a factory that
produces them and ships them to your franchises!

Cheese

Now there is only one problem with this plan: the franchises are located in
different regions and what is red sauce in New York is not red sauce in Chicago.
So, you have one set of ingredients that need to be shipped to New York and a
different set that needs to shipped to Chicago. Let’s take a closer look:

Chicago | weesoe | Plow Yok

same produect

PizzaMenu Faniles (o Prizza Menu

Cheese Pizza veggies, meats) .
Plum Tomato Sauce, Mozzarella, Parmesan, b) £ £ t Cheesg Pizza
Oregano u{: ditteren Marinara Sauce, Reggiano, Garlic
implementations I
Veggie Pizza mp) Veggie Pizza
Plum Tomato Sauce, Mozzarella, Parmesan, based on region. Mqrmara Sauce, Reggiano, Mushrooms,
Eggplant, Spinach, Black Olives Onions, Red Peppers
Clam Pizza >) Clam Pizza
Plum Tomato Sauce, Mozzarella, Parmesan, Clams Marinara Sauce, Reggiano, Fresh Clams
Pepperoni Pizza Pepperoni Pizza
Plum Tomato Sauce, Mozzarella, Parmesan, Marinara Sauce, Reggiano, Mushrooms,

Onions, Red Peppers, Pepperoni

Eggplant, Spinach, Black Olives, Pepperoni

144 Chapter 4

Download at WoweBook.Com

the factory pattern

Fawilies of ingredients...

New York uses one set of Chlcago
ingredients and Chicago another.

Given the popularity of Objectville FrozenClams
Pizza it won’t be long before you

also need to ship another set of

regional ingredients to California, PlumTomatoSauce ThickCrustDough
and what’s next? Seattle?

For this to work, you are going to MozzarellaCheese

have to figure out how to handle

families of ingredients.

§
New York . R

o wmad:
Al o\,\-)cc{-,v'\\\cs Pizzas ave made d_‘ﬂ:crm{:

ion has 8
\on
FreshClams | components but Zai\;\ chcomvohﬂ‘ ts.
; Lion © ose
.m\a\cmcﬂ'ﬁ
MarinaraSauce ThinCrustDough g
California
ReggianoCheese
Calamari |

BruschettaSauce l VeryThinCrust I
GoatCheese
Eath Pamily tonsists of a type of dough,
a type of sauce, a type of theese, and a

seatood {:oﬂ?ing (alowg with a few more we j
haven't shown, like veggies and spices).

S Y i 5 e ‘t a! .\.C) {
n hoha\ HICSC H\\ ee ve ons W\akc uwp n ‘f' Cdl 1) V £ an-l S, ‘N. \ \\
| af)\ C%loh [?\C"\Ch{jhs COW\Y\C{C ‘c "\l\\l \ 5 Cd (4 {5

(4 \d m a a °£ novreaen

you are here » 145

Download at WoweBook.Com

ingredient

Building the ingredient factories

Now we’re going to build a factory to create our ingredients; the
factory will be responsible for creating each ingredient in the
ingredient family. In other words, the factory will need to create
dough, sauce, cheese, and so on... You’ll see how we are going to
handle the regional differences shortly.

Let’s start by defining an interface for the factory that is going to
create all our ingredients:

public interface PizzalngredientFactory {

public Dough createDough() ; /\ . d\cn{i we dcg'mc 3
public Sauce createSauce(); For eath inoyve e -m-\;crgaéb
public Cheese createCheese(); crca{:c "\Cﬂwd @

public Veggies|[] createVeggies();

public Pepperoni createPepperoni () ;
public Clams createClam() ;

|)
Lots of new tlasses here,
one per ingredicn{:.

[£ we'd had some ommon “machincr\/"
to imylcmcn{: in eath instance o(:
faetory, we tould have made this an
abstract elass instead...

Here’s what we’re going to do:

0 Build a factory for each region. To do this, you’ll create a subclass of
PizzalngredientFactory that implements each create method

Q Implement a set of ingredient classes to be used with the factory, like
ReggianoCheese, RedPeppers, and ThickCrustDough. These classes can be
shared among regions where appropriate.

6 Then we still need to hook all this up by working our new ingredient
factories into our old PizzaStore code.

146

Download at WoweBook.Com

the factory pattern

Building the New York ingredient factory

Okay, here’s the implementation for
the New York ingredient factory. This
factory specializes in Marinara sauce,

[i implements
- The NY ingredient faetory imp
regsiano Eheese, Frosh Hame.- {:h: in{ch?;Lc £or all ingrcdicn’c
‘Cat{:orics

public class NYPizzalngredientFactory implements PizzalngredientFactory {

public Dough createDough () {
return new ThinCrustDough () ;

| - For eath ingvcd'\cwh n ‘\:\\c{;c
e— 'mgrcd'\cv& Lamily, we tred
public Sauce createSauce() { el oy e
return new MarinaraSauce () ; /

}
public Cheese createCheese() {
return new ReggianoCheese () ;

}

public Veggies|[] createVeggies () {

Veggies veggies[] = { new Garlic(), new Onion(), new Mushroom(), new RedPepper () };
return veggies;
} Fov vcggics, we veturn an array o‘('\
Veggies. Here we've hardeoded the
public Pepperoni createPepperoni () { veogjes. We could make Hhis n:orc
return new SlicedPepperoni (); so\:his{:’ucaicd, but that doesn't \rca“\/

}
public Clams createClam() {
return new FreshClams () ;

add an\/ﬂ\ing +o learning the ‘(:ac{:or\/
patteen, so we'll keep it simple-

}

j The best sliced pepperoni. This
Lt s shaved between New York
New York is on the ¢oast; i and Chicago. Make sure you
gets £resh tlams. Chicago has wse it on Lhe next page when
%o settle for frozen Jou gk o implement the
Chicago (:ad:o\r\/ \/owscl(:

you are here » 147

Download at WoweBook.Com

build a factory

Write the ChicagoPizzalngredientFactory. You can
reference the classes below in your implementation:

@ dharpen vour pencil
i y

EggPlant
Spinach
ThickCrustDough
BlackOlives SlicedPepperoni
—? PlumTomatoSauce i
FrozenClams i

Mozzarella

148 Chapter 4

Download at WoweBook.Com

the factory pattern

Reworking the pizzas...

We’ve got our factories all fired up and ready to produce quality ingredients; now we
just need to rework our Pizzas so they only use factory-produced ingredients. We’ll
start with our abstract Pizza class:

public abstract class Pizza {) .
String name; Each pizza holds a set of “"SVCd'"'{;

Dough dough; [- that are used in its ?rcyara{:iow
Sauce sauce;

Veggies veggies|[];
Cheese cheese;

Pepperoni pepperoni; We've now made the prepare method abstract.
Clams clam; /\ This is where we are going £o collect +he
ingredients needed for the Pizza, which of

abstract void prepare () ; eourse will tome from the ingredient Facfo‘f‘/.
void bake () {
System.out.println (“Bake for 25 minutes at 3507);

void cut () {
System.out.println (“Cutting the pizza into diagonal slices”);

void box () {
System.out.println (“Place pizza in official PizzaStore box”);

void setName (String name) {
this.name = name; F‘

| methods remain Lhe same, with

NN
&— Our other thod.

String getName () { / fhe exteption of the prepare me
return name;

}

public String toString() {
// code to print pizza here

}

you are here » 149

Download at WoweBook.Com

decoupling ingredients

Reworking the pizzas, continued...

Now that you’ve got an abstract Pizza to work from, it’s time to create
the New York and Chicago style Pizzas — only this time around they will
get their ingredients straight from the factory. The franchisees’ days of
skimping on ingredients are over!

When we wrote the Factory Method code, we had a NYCheesePizza and
a ChicagoCheesePizza class. If you look at the two classes, the only thing
that differs is the use of regional ingredients. The pizzas are made just
the same (dough + sauce + cheese). The same goes for the other pizzas:
Veggie, Clam, and so on. They all follow the same preparation steps; they
just have different ingredients.

So, what you’ll see 1s that we really don’t need two classes for each pizza;
the ingredient factory is going to handle the regional differences for us.
Here’s the Cheese Pizza:

. we need
public class CheesePizza extends Pizza ({ To makea\"ua novh

PizzaIngredientFactory ingredientFactory; a fattory {o provide {,-hc
K . B So ca()\ P|7_23
msrcd\th d
public CheesePizza (PizzalngredientFactory ingredientFactory) { class 55{"5 a -(:atjtor\l passe ,
this.ingredientFactory = ingredientFactory; inko tts t,ons{'xuc{:or, and it's
W

stored in an instante vaviable:

}

void prepare() {
System.out.println (“Preparing “ + name)
dough = ingredientFactory.createDough ()
sauce = ingredientFactory.createSauce ()
cheese = ingredientFactory.createCheese

’

’

’ € Heres where the magie. happens!
(0N

The ?rc?arc() method steps through ereating
a theese pizz3, and eath time it needs an .
ing\rcdicn{;, it asks the Qat{:or\/ to produte it

150 Chapter 4

Download at WoweBook.Com

the factory pattern

/@ Code Up Clsse

The Pizza code uses the factory it has been composed with to produce the ingredients used in the
pizza. The ingredients produced depend on which factory we’re using. The Pizza class doesn’t care;
it knows how to make pizzas. Now, it’s decoupled from the differences in regional ingredients and
can be easily reused when there are factories for the Rockies, the Pacific Northwest, and beyond.

/-7 sauce = ingredientFactory.createSauce() ;

I’\

We're scf{;;hs the

he saute
1223 instane This is our ihS"Cdi‘“{: (:ac{:o\'\/- The CYca{:‘Sa““O mc{-”md YE i}:’s‘s\s{: ach‘/
variable {5 \, z‘ The Pizza doesn't tare which that is used in its vegon | 1 mavinara saute:
the specific S:u;: to faetory is vsed, as long as it is ‘mn_ycd'uen{i factory, then we 3L ™
used in this Pizz3. an ing\rcdicn{ (—'ac{:or\/-

Let’s check out the ClamPizza as well:

public class ClamPizza extends Pizza {
PizzaIngredientFactory ingredientFactory;

public ClamPizza (PizzalngredientFactory ingredientFactory) {
this.ingredientFactory = ingredientFactory; ClamPizza also stashes an

} ingredient faetory.

void prepare () {
System.out.println (“Preparing “ + name)
dough = ingredientFactory.createDough () ;
sauce = ingredientFactory.createSauce();
cheese = ingredientFactory.createCheese

’

0 S\ To make a ¢lam pizza, the

clam = ingredientFactory.createClam(); & prepave method collects the righ{:
} ingredients Leom ks local Factory.

1§ it's a New York ‘Ca(.{:or\/,,
the clams will be Lresh; if it's
Chicago, 'H\C\/'ll be frozen.

you are here » 151

Download at WoweBook.Com

use the right ingredient factory

Revisiting our pizza stores

We’re almost there; we just need to make a quick trip to our
franchise stores to make sure they are using the correct
Pizzas. We also need to give them a reference to their local
ingredient factories:

public class NYPizzaStore extends PizzaStore { The

protected Pizza createPizza (String item) { e used J‘*°"{:\c Y\-,J_as
Pizza pizza = null; for all N\(sty

PizzalIngredientFactory ingredientFactory =
new NYPizzaIngredientFactory();

G chow?ascad\ﬁzza{hc
pizza = new CheesePizza(ingredientFactory); factory that should be used to
pizza.setName (“New York Style Cheese Pizza”); yroducc its ingvcdia\{:sv

} else if (item.equals (“veggie”)) { /K

Look back one page and make sure

D irrn semmame (mow York Sane Vemgie oeein: ow understand how the pizza and

pizza.setName (“New York Style Veggie Pizza”);

the faetory work {:osc{hcr!

} else if (item.equals(“clam”)) {

pizza = new ClamPizza (ingredientFactory); SN \
pizza.setName (“New York Style Clam Pizza”);
&— For eath type of Pizza, we

} else if (item.equals (“pepperoni”)) { _i"sfa'\'(:ia‘l:c a new Piz23 and 9ive
pizza = new PepperoniPizza (ingredientFactory); it the \cac{;oy-\/ it needs to get
pizza.setName (“New York Style Pepperoni Pizza”); its ihgrcdicn{s.

}

return pizza;

RANN

PQWEWR

Compare this version of the createPizza() method
to the one in the Factory Method implementation
earlier in the chapter.

152 Chapter 4

Download at WoweBook.Com

the factory pattern

What have we done?

That was quite a series of

code changes; what exactly An Abstract Factory provides an interface for

did we do? a family of products. What's a family? In our
case it’s all the things we need to make a pizza:
We provided a means dough, sauce, cheese, meats and veggies.

of creating a family of
ingredients for pizzas by
introducing a new type of
factory called an Abstract
Factory.

An Abstract Factory gives
us an interface for creating
a family of products. By
writing code that uses this
interface, we decouple our
code from the actual factory
that creates the products.
That allows us to implement
a variety of factories that
produce products meant for
different contexts - such as New Yok Chicago
different regions, different
operating systems, or
different look and feels.

From the abstract factory, we
derive one or more concrete
factories that produce the same
products, but with different

Because our code is implementations.

decoupled from the actual

products, we can substitute Piaza made w\‘c;\vud by
different factories to get .m%nd\cn’cz \7*): Y\!

ony-
different behaviors (like contveke Y36

getting marinara instead of '0/'2205‘-0(0

plum tomatoes).
We then write our code so that it uses the
factory to create products. By passing in
a variety of factories, we get a variety of
implementations of those products. But
our client code stays the same.

153

Download at WoweBook.Com

order some more pizza

More pizza for Ethan and Joel...

Behind
Ethan and Joel cant get enough Objectville Pizza! What they the Scenes

don’t know is that now their orders are making use of the
I'm stickin’
with Chicago.

new ingredient factories. So now when they order...

I'm still lovin' NY Style.

The first part of the order process hasn’t changed at
all. Let’s follow Ethan’s order again:

o First we need a NY PizzaStore:

PizzaStore nyPizzaStore = new NYPizzaStore();

\ Creates an instance of

N YPimg'l:orc. —_—
v
e ’7)’1"izzo5"°<

Now that we have a store, we can take an order:
nyPizzaStore.orderPizza (“cheese”) ; /

K the ordecPizzal) method is called on
the n\/PizzaS{:orc instante.

heese”)

createpizza ("¢

e The orderPizza() method first calls the cre-
atePizza() method:

Pizza pizza = createPizza (“cheese”);

154 Chapter 4

Download at WoweBook.Com

the factory pattern

From here things change, because we
are using an ingredient factory

g

the Scenes

e When the createPizza() method is called, that’s

when our ingredient factory gets involved:
edient Fattory is thosen and

. d then
the P,u;gS{:orc an '
shruetor of eath pizzd:

The inge
inS{‘,aV\{'«.‘a{"Cd n
passed into the ton

nolds

new CheesePizza (nyIngredientFactory);

\ C\rcafcs a insﬁl:ancc O‘F

Pizzg that is tomposed

with the New York ~— >
ingredient -Fac{:ory,

Pizza pizza =

Cory

Poredient®

e Next we need to prepare the pizza. Once the

prepare() method is called, the factory is asked g
to prepare ingredients: §
Q,
. c(\lﬁ’c
void prepare() { T
dough = factory.createDough () ; " 5 Mavinava
sauce = factory.createSauce();

cheese = factory.createCheese(); \
) Reggiano

For Ethan’s pizza the New York
’m(_ycd’ucn{: faetory is used, and so we
get the NY ingredients.

Finally we have the prepared pizza in hand and the
orderPizza() method bakes, cuts, and boxes the pizza.

you are here » 155

Download at WoweBook.Com

abstract factory defined

Abstract Factory Pattern defined

We’re adding yet another factory pattern to our pattern family, one that lets us create families
of products. Let’s check out the official definition for this pattern:

The Abstract Factory Pattern provides an interface
for creating families of related or dependent objects
without specifying their concrete classes.

We’ve certainly seen that Abstract Factory allows a client to use an abstract interface to
create a set of related products without knowing (or caring) about the concrete products that
are actually produced. In this way, the client is decoupled from any of the specifics of the
concrete products. Let’s look at the class diagram to see how this all holds together:

The AbstractFactory defines the
interface that all Conerete Lactories
must imﬂcmcn{:, whith consists of aset
of methods for produting \vroduc{:&

The Client is written against the
abstract factory and then tomposed at
vuntime with an actual factory.

J

<<interface>> r

This is the product

£amily. Each eonerete
‘cat{‘,or\/ ¢an produte an
entive set of products.

7

Client

<<interface>>
AbstractProductA

AbstractFactory
CreateProductA()
CreateProductB()
.&\ e
—1 ConcreteFactory1 ConcreteFactory2
CreateProductA() CreateProductA()
CreateProductB() CreateProductB()

C The contrete factories implement {:\nc\
dif fevent product Lamilies. To eveate a
product, the tlient uses one of these Factories,
so it never has 4o instantiate a product object.

ProductA2 3 ProductA1 N
<<interface>>
AbstractProductB
B
—> ProductB2 ProductB1

156 Chapter 4

Download at WoweBook.Com

the factory pattern

That’s a fairly complicated class lLients of the
diagram; let’s look at it all in terms of The clier

‘ Pbstract Factory ave
our PizzaStore: Lhe tontrete instantes of

the Pizza abstract elass.

Pizza i_

prepare()

Il other methods

The abstract PizzalngredientFactory
is the interface that defines how to
make 3 Family of velated products

- cvcry{hing we need to make a pizza.

<<interface>>
Dough

ThinCrustDough

ThlckCrustDough
<<interface>> l
PizzalngredientFactory
createDough()
createSauce() <<interface>>
createCheese() Sauce
createVeggies()
createPepperoni() : :
createClam() > PIumTomatoSauce MarinaraSauce i(_
NYPizzalngredientFactory ChicagoPizzalngredientFactory <<interface>>
createDough() createDough() Cheese
createSauce() createSauce()
createCheese() createCheese() o -
createVeggies() createVeggies() > Mozzarella Cheese ReggianoCheese
createPepperoni() createPepperoni() l
createClam() createClam()

<<interface>>
Clams

N>

The \)02 oio{:hc COn:\'chC > FrozenCIams. l'FreshCIams a
pizza ractories is to
make pizza lng'r'Cd'C'\{?S B —

Eath ‘cat{or\/ knows
how to eveate the vight

objetts for their vegion. Each fattory produces a different §
implementation for the £amily of products.

you are here » 157

Download at WoweBook.Com

interview factory patterns

I noticed that each method in the
Abstract Factory actually looks like a Factory
Method (createDough(), createSauce(), etc.).
Each method is declared abstract and the
subclasses override it to create some
object. Isn't that Factory Method?

Is that a Factory Method lurking inside the
Abstract Factory?

Good catch! Yes, often the methods of an Abstract Factory are

implemented as factory methods. It makes sense, right? The job of an

Abstract Factory is to define an interface for creating a set of products.

Each method in that interface is responsible for creating a concrete

product, and we implement a subclass of the Abstract Factory to

| i . supply those implementations. So, factory methods are a natural way to
) ‘ implement your product methods in your abstract factories.

Patterns Exposed

This week’s interview:
Factory Method and Abstract Factory, on each other

HeadFirst: Wow, an interview with two patterns at once! This is a first for us.

Factory Method: Yeah, I'm not so sure I like being lumped in with Abstract Factory,

you know. Just because we’re both factory patterns doesn’t mean we shouldn’t get our own
interviews.

HeadFirst: Don’t be miffed, we wanted to interview you together so we could help clear up
any confusion about who’s who for the readers. You do have similarities, and I've heard that
people sometimes get you confused.

Abstract Factory: Itis true, there have been times I've been mistaken for Factory Method,
and I know you’ve had similar issues, Factory Method. We’re both really good at decoupling
applications from specific implementations; we just do it in different ways. So I can see why
people might sometimes get us confused.

Factory Method: Well, it still ticks me off. After all, I use classes to create and you use
objects; that’s totally different!

158

Download at WoweBook.Com

HeadFirst: Can you explain more about that, Factory
Method?

Factory Method: Sure. Both Abstract Factory and
I create objects — that’s our jobs. But I do it through
inheritance...

Abstract Factory: ...and I do it through object
composition.

Factory Method: Right. So that means, to create
objects using Factory Method, you need to extend a class
and override a factory method.

HeadFirst: And that factory method does what?

Factory Method: It creates objects, of course! I mean,
the whole point of the Factory Method Pattern is that
you’re using a subclass to do your creation for you. In
that way, clients only need to know the abstract type they
are using, the subclass worries about the concrete type.
So, in other words, I keep clients decoupled from the
concrete types.

Abstract Factory: AndIdo too, onlyIdoitina
different way.

HeadFirst: Go on, Abstract Factory... you said
something about object composition?

Abstract Factory: 1 provide an abstract type for
creating a family of products. Subclasses of this type
define how those products are produced. To use the
factory, you instantiate one and pass it into some code
that is written against the abstract type. So, like Factory
Method, my clients are decoupled from the actual
concrete products they use.

HeadFirst: O, I see, so another advantage is that you
group together a set of related products.

Abstract Factory: That’s right.

HeadFirst: What happens if you need to extend that
set of related products, to say add another one? Doesn’t
that require changing your interface?

Abstract Factory: That’s true; my interface has to
change if new products are added, which I know people
don’t like to do....

Factory Method: <snicker>

Abstract Factory: What are you snickering at,
Factory Method?

the factory pattern

Factory Method: Oh, come on, that’s a big deal!
Changing your interface means you have to go in and
change the interface of every subclass! That sounds like a
lot of work.

Abstract Factory: Yeah, but I need a big interface
because I am used to create entire families of products.
You’re only creating one product, so you don’t really need
a big interface, you just need one method.

HeadFirst: Abstract Factory, I heard that you often use
factory methods to implement your concrete factories?

Abstract Factory: Yes, I'll admit it, my concrete
factories often implement a factory method to create
their products. In my case, they are used purely to create
products...

Factory Method: ...while in my case I usually
implement code in the abstract creator that makes use of
the concrete types the subclasses create.

HeadFirst: It sounds like you both are good at what
you do. I'm sure people like having a choice; after all,
factories are so useful, they’ll want to use them in all
kinds of different situations. You both encapsulate
object creation to keep applications loosely coupled

and less dependent on implementations, which is really
great, whether you’re using Factory Method or Abstract
Factory. May I allow you each a parting word?

Abstract Factory: Thanks. Remember me, Abstract
Factory, and use me whenever you have families of
products you need to create and you want to make sure
your clients create products that belong together.

Factory Method: And I’'m Factory Method; use me to
decouple your client code from the concrete classes you
need to instantiate, or if you don’t know ahead of time
all the concrete classes you are going to need. To use me,
just subclass me and implement my factory method!

159

Download at WoweBook.Com

patterns compared

Factory Method and Abstract Factory compared

Provides an abs{'xat‘t
inkecfate for

breating one produtt 1

Eath subtlass detides which

contrete tlass to instantiate.

PizzaStove is implemented as Factory
Method betause we want to be able #o
treate a product that varies by vegion
With the Factory Method, eath vegion
gets its own contrete factory that
knows how to make pizzas whith are
appropriate for the avea.

\[\
i

PizzaStore

createPizza()

v
Ncw York Store NYPizzaStore i ChicagoPizzaStore \
/ createPizza() | createPizza() Chicago S{',OV'C
The Faetory Method

The NYPizzaStore subelass only
instantiates NY style pizzas.

The Faetory Method

This is the Produc{: of the
PizzaStore. Clients only

vely on this abstract type. The ChicagaoPizzaStore
subtlass instantiates only
\L Chicago style pizzas.

Pizza

NYStyleCheesePizza
NYStylePepperoniPizza

Subelasses are instaniated

ChicagoStyleCheesePizza

| ChicagoStylePepperoniPizza h
NYStyleClamPizza by the Factory Methods. [ChicagoStyleClamPizza |
NYStyleVeggiePizza (-? | ChicagoStyleVeggiePizza |
((‘ //', New York Chicago

The eveatePizza() method is parameterized by pizza
type, so we tan veturn many types of pizza produtts.

160 Chapter 4

Download at WoweBook.Com

the factory pattern

. s an
P\ua|n5rcdicv\£\:ac£ov‘l s ""\’“"‘"‘td;sca te
Postrack Fattory because ve me dg) Eath
<<interface>> Lamilies of \’roduc{:s (Jc\r\ic "‘SY.C ‘i: using) its own
PizzalngredientFactory ubelass imv\c"‘"‘{:s the mgrcdlm
s!
createDough() onal lievs.
al sw
Provides avi: a\)s{'xalé‘: , Z: createSauce() vegonal sUpP
'm{',cv(:acc or treating d —m createCheese()
Lamil o(: voduc{:s. § createVeggies()
____Y___Y_—’ createPepperoni()
createClam() Each “""‘"d”c subtlass
= = eveates a family of products.
Ncw ‘/ork] E_\
NYPizzalngredientFactory ChicagoPizzalngredientFactory Ckicago
createDough() createDough()
createSauce() createSauce() 5
e S N Wethods ko ereate products
createVeggies() createVeggies()
createPepperoni() createPepperoni() in an Abs{vac{: Fat,‘h.?‘f'y are
createClam() createClam() o‘(:‘{‘,CV\ im\"tmcn{:cd with a
S Fad;or\/ Method..-
————r

for instante, the subtlass
detides the type of dough...

<<interface>>
Dough

.. or the type of clams.

N

ThinCrustDough |

ThickCrustDough |

<<interface>>
Clams

<<interface>>
Sauce

FrozenClams

Eath 'mgrcd'mn{:
vepresen a)
Vrodw«{‘« H‘;a{" s
duced by 3
Fackory Method

MarinaraSauce h

PlumTomatoSauce

in the bstract

Faetory:

The product subelasses eveate parallel sets of produet £amilies.
Heve we have a New York ingredient ‘c3mi|\/ and a Chicago ‘(“amil\[

Download at WoweBook.Com

FreshClams I

<<interface>>
Cheese

ReggianoCheese Mozzarella Cheese

you are here »

161

your design toolbox

In this chapter, we added two more tools to your
toolbox: Factory Method and Abstract Factory. Both
patterns encapsulate object creation and allow you to
decouple your code from concrete types.

00 Printiples

i w\\a’c vavies:

Encapsd |
nher
Favor LOmYos'\‘E\on over '\
av

Progyram to ‘mkcrgaccs, not

\m?\tmcv&a{',\ons.

\ed desians
e £ \oosely ¢ovY! "

Sk?cmo;bwb o We have a new principle that

betwe \d e open for extension e e ol
C\a::\s ::ougor e abstract whenever possible.

b\l O

a\as’cxac{:\ons‘ Do not

I();s::: o pontreke lasse
(4

{',“‘,Crns
Both of these new pa o

{*’ \ c:LaYsu\aJr,c dbjeet ereati

S -

00 Patrern ‘

and lead Lo more detoupled;
Llexible designs:

s : - :

448 Nas‘cxac’c Factory Pl
in v interkat \ _

11D \ated of dc"cd
() e\d 8
i3 Ys\?cc\?‘l""‘b kheic £
¢

-l Fattory
'm‘\‘,c\"c ace

‘Q'mc an
C‘\',\\od _De . .
;I;/Y\ ereating 37 ob)ec‘(., v

3¢ whith £13s8
detide 1 ckpod lets

Lo the

162 Chapter 4

Download at WoweBook.Com

BULLET POINT&

All factories encapsulate object
creation.

Simple Factory, while not a bona
fide design pattern, is a simple
way to decouple your clients
from concrete classes.

Factory Method relies on
inheritance: object creation is
delegated to subclasses which
implement the factory method to
create objects.

Abstract Factory relies on object
composition: object creation

is implemented in methods
exposed in the factory interface.

All factory patterns promote
loose coupling by reducing the
dependency of your application
on concrete classes.

The intent of Factory Method
is to allow a class to defer
instantiation to its subclasses.

The intent of Abstract Factory

is to create families of related
objects without having to depend
on their concrete classes.

The Dependency Inversion
Principle guides us to avoid
dependencies on concrete types
and to strive for abstractions.

Factories are a powerful
technique for coding to
abstractions, not concrete
classes

the factory pattern

It’s been a long chapter. Grab a slice of Pizza and relax while doing
this crossword, all of the solution words are from this chapter.

| |
ANEEEEN ANEEEEEE
AEEEEEEEEEEENG

NN

|
" |

iEEEEEEEEEEE BN

EEEEEEEE

Across
1. In Factory Method, each franchise is a

4. In Factory Method, who decides which class
to instantiate?

6. Role of PizzaStore in Factory Method Pattern
7. All New York Style Pizzas use this kind of
cheese

8. In Abstract Factory, each ingredient factory is
a

9. When you use new, you are programming to
an

11. createPizza() is a (two
words)

12. Joel likes this kind of pizza

13. In Factory Method, the PizzaStore and the
concrete Pizzas all depend on this abstraction
14. When a class instantiates an object from a
concrete class, it's on that object
15. All factory patterns allow us to

object creation

Down

2. We used in Simple Factory
and Abstract Factory and inheritance in Factory
Method

3. Abstract Factory creates a of
products

5. Not a REAL factory pattern, but handy
nonetheless
10. Ethan likes this kind of pizza

163

you are here »

Download at WoweBook.Com

exercise solutions

@dharpen vour pencil
i your p

Exercise solutions

We’ve knocked out the NYPizzaStore; just two more to go and we’ll be ready to franchise!
Write the Chicago and California PizzaStore implementations here:

like the New York
h of these stores are almost exactly :
g\ o . {:hc\;s\;us{: eveate diffevent kinds of pizzas

stove..

public class ChicagoPizzaStore extends PizzaStore {
protected Pizza createPizza (String item) {
if (item.equals (“cheese”)) {)
return new ChicagoStyleCheesePizza(); < For&thhM35°Yu13
} else if (item.equals (“veggie”)) { shmm,wcyﬁhhmc °
return new ChicagoStyleVeggiePizza(); make sure We eeeate
} else if (item.equals(“clam”)) { o Chitage s‘b[\c pizzas-
return new ChicagoStyleClamPizza () ; Z/
} else if (item.equals (“pepperoni”)) {
return new ChicagoStylePepperoniPizza () ;
} else return null;

public class CaliforniaPizzaStore extends PizzaStore {
protected Pizza createPizza (String item) {
if (item.equals (“cheese”)) { . .
return new CaliforniaStyleCheesePizzal(); . and for the Ca\\{:o‘m:c
} else if (item.equals (“veggie”)) { Ynlashmt,wcu1a
return new CaliforniaStyleVeggiePizza () ; 'Y CdﬂorﬂasﬁﬂcvﬂJAs
} else if (item.equals(“clam”)) { K/
return new CaliforniaStyleClamPizza () ; /
} else if (item.equals (“pepperoni”)) {
return new CaliforniaStylePepperoniPizzal();
} else return null;

164

Chapter 4

Download at WoweBook.Com

Design Puzzle Solution

We need another kind of pizza for those crazy Californians (crazy in a GOOD way of
course). Draw another parallel set of classes that you’d need to add a new California

region to our PizzaStore.

PizzaStore

createPizza()
orderPizza()

[\~

Beve's everything

NYPizzaStore h

ChicagoPizzaStore

\

CaliforniaPizzaStore

NYStyleCheesePizza h

NYStylePepperoniPizza h
|
- NYStyleClamPizza |}

createPizza()

createPizza()

ChicagoSterCheesePizzah

NYStyleVeggiePizza

—

ChicagoStylePepperoniPizza
- ChicagoStyleClamPizza

- ChicagoStyleVeggiePizza

—

createPizza()

CaliforniaStyleCheesePizza h

CaliforniaStylePepperoniPizza h
| 4

tontye : ‘
?v\:i :&:\c California style pizzas

T—

the factory pattern

\Iou V\CCd %o
. 1223 s{',oY'Cr

CaliforniaStyleClamPizza |\

CaliforniaStyleVeggiePizza

—

Okay, now write the five silliest things you can think of to put on a pizza. Then, you’ll
be ready to go into business making pizza in California!

Hevre are oUW
sw gchC\O"S"'

Mashed Potatoes with Roasted Garlie

BBQ Saute

Avtichoke Hearts

MEM's

Peanuts

you are here »

Download at WoweBook.Com

165

exercise solutions

A very dependent PizzaStore

@ harpen Your pencul

Let’s pretend you’ve never heard of an OO factory. Here’s a version of the PizzaStore
that doesn’t use a factory; make a count of the number of concrete pizza objects this
class is dependent on. If you added California style pizzas to this PizzaStore, how many
objects would it be dependent on then?

public class DependentPizzaStore ({

public Pizza createPizza (String style, String type) {
Pizza pizza = null;
if (style.equals (“™NY”)) {
if (type.equals (“cheese”)) {

pizza = new NYStyleCheesePizzal();
}else if (type.equals (tweggler)) { trandles all the NY
pizza = new yleVeggiePizza() ; .
} else if (type.equals(“clam”)) { s %cyuzas
pizza = new NYStyleClamPizza();
} else if (type.equals (“pepperoni”)) {
pizza = new NYStylePepperoniPizza () ;
}
} else if (style.equals(“Chicago”)) {
if (type.equals (“cheese”)) {
pizza = new ChlcagoStyleCheesePlzza(Hadksa“{hc
} else if (type.equals (“wveggie”)) é(//—~ Chmagostﬁt
pizza = new ChlcagoStyleVegglePlzza X
} else if (type.equals(“clam”)) { pizzas
pizza = new ChicagoStyleClamPizza() ;
} else if (type.equals (“pepperoni”)) {
pizza = new ChicagoStylePepperoniPizzal();
}
} else {

System.out.println (“Error: invalid type of pizza”);
return null;

}

pizza.prepare();

pizza.bake();

pizza.cut();

pizza.box () ;

return pizza;

‘/ou tan write

ifornia too
Your answers hevre: /] number |12 !

number with Cal

166 Chapter 4

Download at WoweBook.Com

the factory pattern

@ dharpen your pencl
i y

Go ahead and write the ChicagoPizzalngredientFactory; you can reference the
classes below in your implementation:

public class ChicagoPizzalngredientFactory
implements PizzalngredientFactory

public Dough createDough() {
return new ThickCrustDough () ;

public Sauce createSauce () {
return new PlumTomatoSauce() ;

public Cheese createCheese() {
return new MozzarellaCheese();

public Veggies|[] createVeggies() {
Veggies veggies[] = { new BlackOlives(),
new Spinach(),
new Eggplant() };
return veggies;

public Pepperoni createPepperoni () {
return new SlicedPepperoni () ;

public Clams createClam() {
return new FrozenClams () ;

EggPlant h
Spinach I

ThickCrustDough |

SlicedPepperon

BlackOlives
l PlumTomatoSauce

FrozenClams i

MozzarellaCheese

you are here » 167

Download at WoweBook.Com

crossword puzzle solution

<5 Puzzle Solution

|
‘slulelclifals]s]
Eﬂﬁﬂﬂﬂﬂ " elelolr]alnlol

7| L |
‘clolnlclrlelr]elrlalciTlolrly

168 Chapter 4

Download at WoweBook.Com

5 the Singleton Pattern

*
+ One of a Kind Objects

T tell ya she's ONE OF A
KIND. Look at the lines,

- 5
the curves, the body, You talkin' to me or the car? Oh,

and when can I get my oven mitt

the headlights! back?

Our next stop is the Singleton Pattern, our ticket to creating one-
of-a-kind objects for which there is only one instance. You might be
happy to know that of all patterns, the Singleton is the simplest in terms of its class diagram;
in fact, the diagram holds just a single class! But don’t get too comfortable; despite its
simplicity from a class design perspective, we are going to encounter quite a few bumps and

potholes in its implementation. So buckle up.

this is a new chapter 169

Download at WoweBook.Com

one and only

What is this? An
entire chapter about how to

instantiate just
ONE OBJECT!

That's one and ONLY
ONE object.

Developer: What use is that?

Guru: There are many objects we only need one of: thread pools, caches, dialog boxes, objects that handle
preferences and registry settings, objects used for logging, and objects that act as device drivers to devices
like printers and graphics cards. In fact, for many of these types of objects, if we were to instantiate

more than one we'd run into all sorts of problems like incorrect program behavior, overuse of resources, or
inconsistent results.

Developer: Okay, so maybe there are classes that should only be instantiated once, but do I need a whole
chapter for this? Can't I just do this by convention or by global variables? You know, like in Java, I could do it
with a static variable.

Guru: In many ways, the Singleton Pattern is a convention for ensuring one and only one object is instantiated
for a given class. If you've got a better one, the world would like to hear about it; but remember, like all
patterns, the Singleton Pattern is a time-tested method for ensuring only one object gets created. The
Singleton Pattern also gives us a global point of access, just like a global variable, but without the downsides.

Developer: What downsides?

Guru: Well, here's one example: if you assign an object to a global variable, then that object might be created
when your application begins. Right? What if this object is resource intensive and your application never ends
up using it? As you will see, with the Singleton Pattern, we can create our objects only when they are needed.
Developer: This still doesn't seem like it should be so difficult.

Guru: If you've got agood handle on static class variables and methods as well as access modifiers, it's not.
But, in either case, it is interesting to see how a Singleton works, and, as simple as it sounds, Singleton code is

hard to get right. Just ask yourself: how do I prevent more than one object from being instantiated? It's not
so obvious, is it?

170

Download at WoweBook.Com

The Little Singleton

the singleton pattern

A small Socratic exercise in the style of The Little Lisper

How would you create a single object?

new MyObject () ;

And, what if another object wanted to create a
MyObject? Could it call new on MyObject again?

Yes, of course.

So as long as we have a class, can we always
instantiate it one or more times?

Yes. Well, only if it’s a public class.

And if not?

Well, if it’s not a public class, only classes in the same
package can instantiate it. But they can still instantiate
it more than once.

Hmm, interesting.

Did you know you could do this?

public MyClass {

private MyClass() {}

No, I'd never thought of it, but I guess it makes
sense because it 1s a legal definition.

What does it mean?

I suppose it is a class that can’t be instantiated
because it has a private constructor.

Well, is there ANY object that could use
the private constructor?

Hmm, I think the code in MyClass is the only
code that could call it. But that doesn’t make
much sense.

you are here » 171

Download at WoweBook.Com

creating a singleton

Why not ?

Because I'd have to have an instance of the
class to call it, but I can’t have an instance
because no other class can instantiate it. It’s
a chicken and egg problem: I can use the
constructor from an object of type MyClass,
but I can never instantiate that object because
no other object can use “new MyClass()”.

Okay. It was just a thought.

What does this mean?

public MyClass {

public static MyClass getInstance ()
}

{

MyClass is a class with a static method. We can
call the static method like this:

MyClass.getInstance();

Why did you use MyClass, instead of
some object name?

Well, getInstance() is a static method; in other
words, it is a CLASS method. You need to use
the class name to reference a static method.

Very interesting. What if’ we put things together.

Now can I instantiate a MyClass?

public MyClass {
private MyClass () {}

public static MyClass getInstance ()
return new MyClass();

Wow, you sure can.

So, now can you think of a second way to instantiate

an object?

MyClass.getInstance();

Can you finish the code so that only ONE instance
of MyClass is ever created?

172 Chapter 5

Yes, I think so...

(You’ll find the code on the next page.)

Download at WoweBook.Com

Dissecting the classic Singleton
Pattern implementation

Let's rename M\IC\ass e . st .
e
to Sihg\d:ow ‘,3«\3\0\5 ko ¥ '{ e
pskantt
O rivare static Singl <& o:\:: €O

private static Singleton uniquelnstance;

// other useful instance variables here

& Que tonstruttor is

private Singleton() {} detlared vriva{c;

on\\/ S'mglc{:oh tan
instantiate this elass!

ot ingleton ge
(uniqueInstance == null
uniqueInstance = new Singleton

The getlnstance()

urn uniquelnstance; .
d method gives us a wa

instante of it.

0‘(" Course,

a normal tlass; it has
other usefu) instance

variables and methods.

the singleton pattern

Watch it!

If you're just
flipping through
the book, don't
blindly type in this
code, you'll see a

it has a few issues
later in the chapter.

to instantiate the elass
and also ‘bo rc{:u\rn an

Sing'cfon is

/@ Code Up Close

|£ w\\a\ucl'\s

if (unigquelInstance == null) {
uniquelInstance = new MyClass () ;

instante; vemember, it is a
static variable. /

}

return uniquelnstance;

&~

B\/ the time we hit this code, we
have an instance and we vetuen it

tance is null, then we
winpelrstance holds our ONE havent created the instante ych.-

.and, if it doesn't exist, we
instantiate Singlc{on Jd\!rough its
private construetor and assign
it to uniquelnstance. Note that
if we never need the instante, it
never gets treated; this is lazy
instantiation.

|£ uniu\vclns{:ancc wasn't null,
then it was previously treated.
We just £all through to the
veturn statement.

Download at WoweBook.Com

you are here » 173

interview with

Patkerns: Ex;wosed'

This week’s interview:
Confessions of a Singleton

HeadFirst: Today we are pleased to bring you an interview with a Singleton object. Why don’t
you begin by telling us a bit about yourself.

Singleton: Well, ’'m totally unique; there is just one of me!
HeadFirst: One?

Singleton: Yes, one. I'm based on the Singleton Pattern, which assures that at any one time
there is only one instance of me.

HeadFirst: Isn’t that sort of a waste? Someone took the time to develop a full-blown class and
now all we can get is one object out of it?

Singleton: Not at all! There is power in ONE. Let’s say you have an object that contains
registry settings. You don’t want multiple copies of that object and its values running around
— that would lead to chaos. By using an object like me you can assure that every object in your
application is making use of the same global resource.

HeadFirst: Tell us more...

Singleton: Oh, I'm good for all kinds of things. Being single sometimes has its advantages you
know. I'm often used to manage pools of resources, like connection or thread pools.

HeadFirst: Still, only one of your kind? That sounds lonely.

Singleton: Because there’s only one of me, I do keep busy, but it would be nice if more
developers knew me — many developers run into bugs because they have multiple copies of
objects floating around they’re not even aware of.

HeadFirst: So, if we may ask, how do you know there is only one of you? Can’t anyone with a
new operator create a “new you”?

Singleton: Nope! I'm truly unique.
HeadFirst: Well, do developers swear an oath not to instantiate you more than once?

Singleton: Of course not. The truth be told... well, this is getting kind of personal but... I
have no public constructor.

HeadFirst: NO PUBLIC CONSTRUCTOR! Oh, sorry, no public constructor?
Singleton: That’s right. My constructor is declared private.
HeadFirst: How does that work? How do you EVER get instantiated?

Singleton: You see, to get a hold of a Singleton object, you don’t instantiate one, you just ask
for an instance. So my class has a static method called getInstance(). Call that, and I'll show up
at once, ready to work. In fact, I may already be helping other objects when you request me.

HeadFirst: Well, Mr. Singleton, there seems to be a lot under your covers to make all this work.
Thanks for revealing yourself and we hope to speak with you again soon!

174

Download at WoweBook.Com

the singleton pattern

The Chocolate Factory

Everyone knows that all modern chocolate factories have computer controlled
chocolate boilers. The job of the boiler is to take in chocolate and milk, bring them
to a boil, and then pass them on to the next phase of making chocolate bars.

Here’s the controller class for Choc-O-Holic, Inc.’s industrial strength Chocolate
Boiler. Check out the code; you’ll notice they’ve tried to be very careful to ensure
that bad things don’t happen, like draining 500 gallons of unboiled mixture, or
filling the boiler when it’s already full, or boiling an empty boiler!

public class ChocolateBoiler {
private boolean empty;
private boolean boiled;

public ChocolateBoiler () { This tode is only stavted
empty = true; J when the bailer is cm?{:\/!
boiled = false;

}
' boiler it must be
PE Gaknpty 0) f P i:[\ ?v\:i :;Le s full, we set
if (isEmpty()) { empty, ands . '
) ;;prgl; Z false; the CM\V{:Y and boiled ﬂaﬁ‘

boiled = false;
// fill the boiler with a milk/chocolate mixture

}

public void drain() { /_\
To drain the boiler, it must be full

if (lisEmpty() && isBoiled()) { -
// drain the boiled milk and chocolate (non empty) and also boiled. Once it is
empty = true; drained we set cm?*{:y back to true.

}

public void boil () {
if (!isEmpty () && !isBoiled()) { To boil .
oil th :
// bring the contents to a boilJ has +o b fc'ﬁm{-'wc’ the boiler
boiled = true; o be tull and not already

} boiled. Once it's boiled we set
} the boiled flag to true.

public boolean isEmpty () {
return empty;

}

public boolean isBoiled() {
return boiled;

}

you are here » 175

Download at WoweBook.Com

chocolate singleton

@vnuw
TPOAWEW

Choc-O-Holic has done a decent job of ensuring bad things don’t happen, don’t ya think? Then
again, you probably suspect that if two ChocolateBoiler instances get loose, some very bad
things can happen.

How might things go wrong if more than one instance of ChocolateBoiler is created in an
application?

G harpen your Pengil Can you help Choc-O-Holic improve their ChocolateBoiler class
\\& by turning it into a singleton?

public class ChocolateBoiler {
private boolean empty;
private boolean boiled;

[::::::]ChocolateBoiler() {

empty = true;
boiled = false;

public void fill() {
if (isEmpty()) {
empty = false;
boiled = false;
// fill the boiler with a milk/chocolate mixture
}
}

// rest of ChocolateBoiler code...

176

Download at WoweBook.Com

the singleton pattern

Singleton Pattern defined

Now that you’ve got the classic implementation of Singleton
in your head, it’s time to sit back, enjoy a bar of chocolate,
and check out the finer points of the Singleton Pattern.

Let’s start with the concise definition of the pattern:

The Singleton Pattern ensures a class has only one
instance, and provides a global point of access to it.

No big surprises there. But, let’s break it down a bit more:

® What’s really going on here? We’re taking a class and letting it manage a
single instance of itself. We’re also preventing any other class from creating a
new instance on its own. To get an instance, you’ve got to go through the class
itself.

® We’re also providing a global access point to the instance: whenever you
need an instance, just query the class and it will hand you back the single
instance. As you’ve seen, we can implement this so that the Singleton is created
in a lazy manner, which is especially important for resource intensive objects.

Okay, let’s check out the class diagram:

; e The uniquelnstante
d s ska € uniq
lc\ns’ca"“o methe ¢thody 0 Y ¢lass vaviable holds our
The 02 s d tlass ™¢ Ihod d only instante
Jhith means ! Xy attess nis w€’ 9 :Zcéh l‘j:\/
i usin inaleton.
feom r\i ‘561(,\"5 \, \ vaidole vt static uniquelnstance
gm(_))\c 0 < \or)) “-E\Q‘E‘o“)
2y as at es ' hke \37—\{ ns I/ Other useful Singleton data...
e ke W
we 45e’c be“gv:%\&o“_ w static getinstance()
he >
feom Y /I Other useful Singleton methods...

i i Singleton

tlass implementing the Singieton

— éaH:crn is more than a Smg\c.{:on,.
it is a geneval purpose elass with its

own set of data and methods.

you are here » 177

Download at WoweBook.Com

threads are a

Bershey: oA
—Houston-we have a problew...

It looks like the Chocolate Boiler has let us down; despite
the fact we improved the code using Classic Singleton,
somehow the ChocolateBoiler’s fill() method was able

to start filling the boiler even though a batch of milk and
chocolate was already boiling! That’s 500 gallons of spilled
milk (and chocolate)! What happened!?

We don't know what happened! The
new Singleton code was running fine. The only
thing we can think of is that we just added some
optimizations to the Chocolate Boiler Controller
that makes use of multiple threads.

Could the addition of threads have caused
this? Isn’t it the case that once we’ve set
the uniquelnstance variable to the sole
instance of ChocolateBoiler, all calls to
getinstance() should return the same
instance? Right?

178

Download at WoweBook.Com

the singleton pattern

BE the JVM

We have two threads, each executing this code. Your job is to play the JVM
and determine whether there is a case in which two threads might get ahold
of different hoiler ohjects. Hint:

& YOH PeaIIYjUS’t need to 100](at ﬂle ChocolateBoiler boiler =
5\ Sequence O'P OPeI’aﬁOIIS ChocolateBoiler.getInstance () ;
in the getInstance() H11O 7
method and the value of (SIS
unjquelnstance to see

how they might over]ap.

Use the code Magnets to help

you study how the code might interleave to create two hoiler ohjects.

o

public static ChocolateBoiler
getInstance () {

Make sure you check your answer on
page 188 before turning the page!

e Chocoracepoiter ;| Thread Thread Value of
One Two || uniqueInstance

| return uniquelnstance; .
179

Download at WoweBook.Com

multithreading and singleton

Pealing with multithreading

Our multithreading woes are almost trivially fixed by making
getinstance() a synchronized method:

thronized kcyworddjc;
threa
Lante(), we forte every
ac:t\ ?{-,sn{;wn before it tan enter the

i ds may
_That is, no Lwo thred :
e od at the same Lime.

public class Singleton {
private static Singleton uniquelnstance;

By adding the syn

// other useful instance variables here

private Singleton() {} Chkﬂ-thcwtﬁh
public static synchronized Singleton getInstance() {
if (uniquelInstance == null) {

uniquelnstance = new Singleton () ;

}

return uniquelnstance;

}

// other useful methods here

T agree this
fixes the problem.
But synchronization
is expensive; is this an
issue?

Good point, and it’s actually a little worse than you make out: the only
time synchronization is relevant is the first time through this method. In
other words, once we’ve set the uniquelnstance variable to an instance
of Singleton, we have no further need to synchronize this method. After
the first time through, synchronization is totally unneeded overhead!

180 Chapter 5

Download at WoweBook.Com

the singleton pattern

Can we improve multithreading?

Tor most Java applications, we obviously need to ensure that the Singleton works in the presence
of multiple threads. But, it looks fairly expensive to synchronize the getInstance() method, so what
do we do?

Well, we have a few options...

1. Do nothing if the performance of getlnstancel() isn’t critical to
your application

That’s right; if calling the getInstance() method isn’t causing substantial overhead for your
application, forget about it. Synchronizing getInstance() is straightforward and effective. Just keep
in mind that synchronizing a method can decrease performance by a factor of 100, so if a high
traffic part of your code begins using getInstance(), you may have to reconsider.

2. Move to an eagerly created instance rather than a lazily
created one

If your application always creates and uses an instance of the Singleton or the overhead of
creation and runtime aspects of the Singleton are not onerous, you may want to create your
Singleton eagerly; like this:

public class Singleton {

o ahead and er
private static Singleton uniqueInstance = new Singleton() ; eate an

instante of Singleton in
a static initializer. This

private Singleton() {} .
tode is S“B\fan{ecd ‘(Zo be
public static Singleton getlInstance() { ‘H"'ead Sa‘FC.I
return uniquelInstance;
} ! S Weve alveady ot ar it
) mskante, so Just vetuen ¢

Using this approach, we rely on the JVM to create the unique instance of the Singleton when
the class is loaded. The JVM guarantees that the instance will be created before any thread
accesses the static uniquelnstance variable.

181

Download at WoweBook.Com

double-checked

3. Use ‘double-checked locking” to reduce the use of
synchronization in getlnstance()

With double-checked locking, we first check to see if an instance is created, and if not, THEN we
synchronize. This way, we only synchronize the first ime through, just what we want.

Let’s check out the code:
public class Singleton {
private *static Singleton uniquelInstance;
private Singleton() {}
Chetk for an instance and
public static Singleton getInstance() { - £ theve isnt one, enter 3
if (uniquelInstance == null) { (,\won’\ud blotk.
synchronized (Singleton.class) { syn
if (uniquelnstance == null) { Note we on|\/ synch\roniu

uniquelnstance = new Singleton(); the fivst Lime 'Uwough’

; .
1

}

return uniquelnstance;

Once in the block, eheck 393in and
it still null, eveate an instance.

* The volatile keyword ensures that multiple threads
handle the uniquelnstante variable eorveetly when it
is being initialized to the Singleton instance.

If performance is an issue in your use of the getInstance() method then this method of
implementing the Singleton can drastically reduce the overhead.

B Double-checked Iocking_ doesn’t
Watch it! work in Java 1.4 or earlier!

version 1.4 and earlier, many
ations of the volatile keyword
hronization for double-checked
JVM other than Java 5,
plementing your Singleton.

Unfortunately, in Java
JVMs contain implement
that allow improper Sync
Jocking. If you must use a <
consider other methods of im

182

Download at WoweBook.Com

the singleton pattern

Meanwhile, back at the Chocolate Factory...

While we’ve been off diagnosing the multithreading problems, the chocolate boiler
has been cleaned up and is ready to go. But first, we have to fix the multithreading
problems. We have a few solutions at hand, each with different tradeofls, so which
solution are we going to employ?

L0 harpen our pencil
L y

For each solution, describe its applicability to the problem of fixing the Chocolate
Boiler code:

Synchronize the getinstance() method:

Use eager instantiation:

Double-checked locking:

Congratulations!

At this point, the Chocolate Factory is a happy customer and Choc-O-Holic was glad to have some
expertise applied to their boiler code. No matter which multithreading solution you applied, the boiler
should be in good shape with no more mishaps. Congratulations. You’ve not only managed to escape
5001bs of hot chocolate in this chapter, but you’ve been through all the potential problems of the Singleton.

183

Download at WoweBook.Com

q&a about

Q: For such a simple pattern
consisting of only one class,
Singletons sure seem to have some
problems.

A: Well, we warned you up
front! But don't let the problems

discourage you; while implementing
Singletons correctly can be tricky, after
reading this chapter you are now

well informed on the techniques for
creating Singletons and should use
them wherever you need to control
the number of instances you are
creating.

Relax

DU QOtiestions

Q; Can't |l just create a class in
which all methods and variables are
defined as static? Wouldn’t that be
the same as a Singleton?

A: Yes, if your class is self-
contained and doesn’t depend on
complex initialization. However,
because of the way static
initializations are handled in Java,
this can get very messy, especially if
multiple classes are involved. Often
this scenario can result in subtle,
hard to find bugs involving order

of initialization. Unless thereis a
compelling need to implement your
“singleton” this way, it is far better to
stay in the object world.

Q: What about class loaders?

I heard there is a chance that two
class loaders could each end up with
their own instance of Singleton.

A: Yes, that is true as each class
loader defines a namespace. If you
have two or more classloaders, you
can load the same class multiple times
(once in each classloader). Now, if that
class happens to be a Singleton, then
since we have more than one version
of the class, we also have more than
one instance of the Singleton. So, if
you are using multiple classloaders
and Singletons, be careful. One way
around this problem is to specify the
classloader yourself.

Rumors of Singletons being eaten by the garbage

collectors are greatly exaggerated

Prior to Java 1.2, a bug in the garbage collector allowed Singletons
to be prematurely collected if there was no global reference to them. In other
words, you could create a Singleton and if the only reference to the Singleton
was in the Singleton itself, it would be collected and destroyed by the garbage
collector. This leads to confusing bugs because after the Singleton is

“collected,” the next call to getinstance() produced a shiny new Singleton. In
many applications, this can cause confusing behavior as state is mysteriously
reset to initial values or things like network connections are reset.

Since Java 1.2 this bug has been fixed and a global reference is no longer
required. If you are, for some reason, still using a pre-Java 1.2 JVM, then be
aware of this issue, otherwise, you can sleep well knowing your Singletons
won'’t be prematurely collected.

184

Download at WoweBook.Com

Q: I've always been taught that
a class should do one thing and one
thing only. For a class to do two
things is considered bad OO design.
Isn’t a Singleton violating this?

A: You would be referring to

the “One Class, One Responsibility”
principle, and yes, you are correct,

the Singleton is not only responsible
for managing its one instance (and
providing global access), it is also re-
sponsible for whatever its main role is
in your application. So, certainly it can
be argued it is taking on two respon-
sibilities. Nevertheless, itisn't hard

to see that there is utility in a class
managing its own instance; it certainly
makes the overall design simpler. In
addition, many developers are familiar
with the Singleton pattern as it is in
wide use. That said, some developers
do feel the need to abstract out the
Singleton functionality.

Q: I wanted to subclass my
Singleton code, but | ran into
problems. Is it okay to subclass a
Singleton?

A: One problem with subclassing
Singleton is that the constructor is
private. You can’t extend a class with
a private constructor. So, the first
thing you'll have to do is change
your constructor so that it’s public

or protected. But then, it's not really
a Singleton anymore, because other
classes can instantiate it.

If you do change your constructor,
there’s another issue. The
implementation of Singleton is based
on a static variable, so if you do a
straightforward subclass, all of your
derived classes will share the same
instance variable. This is probably
not what you had in mind. So, for
subclassing to work, implementing
registry of sorts is required in the base
class.

Before implementing such a scheme,
you should ask yourself what you

are really gaining from subclassing

a Singleton. Like most patterns, the
Singleton is not necessarily meant
to be a solution that can fitinto a

library. In addition, the Singleton code

is trivial to add to any existing class.
Last, if you are using a large number
of Singletons in your application,
you should take a hard look at your
design. Singletons are meant to be
used sparingly.

Download at WoweBook.Com

the singleton pattern

Q: I still don’t totally understand
why global variables are worse than
a Singleton.

A: In Java, global variables are
basically static references to objects.
There are a couple of disadvantages
to using global variables in this
manner. We've already mentioned
one:the issue of lazy versus eager
instantiation. But we need to keep

in mind the intent of the pattern:to
ensure only one instance of a class
exists and to provide global access. A
global variable can provide the latter,
but not the former. Global variables
also tend to encourage developers
to pollute the namespace with lots
of global references to small objects.
Singletons don’t encourage this in
the same way, but can be abused
nonetheless.

185

your design toolbox

Tools for your Pesign Toolbox

You’ve now added another pattern to your
toolbox. Singleton gives you another method
of creating objects - in this case, unique
objects.

00 Printiples

Encapsulate what vavies

Favor to position over inhevitance:
avov tom

Program to nkeckates: ot
o

'\mY\cmC"ka{‘o'\s'

Ghyive for _°
between ob)l

osely tovyled designs
cks that ntevatt

open for e*\‘x.v\s'\on
od\;'\LB‘E\on.

Classes should be
Loc m
Do v\o‘\"

\)V‘J‘« L\oscd

d on abs{',r ac{’,'\ons.

Dcvcnd on Lontxd:e ¢lasses:

deyen d ko ensure YO

\ass
e instante o£ a c
‘:‘v\;\v\\ln\‘:\z;l;r?wd your ay\a\\cahon,
fwen Lo the S\ng\c’c,on.

00 Patter® =X

s (, e
o ‘E\P‘F_.l AA—“"I]
T ‘:‘ W S'm‘b\c‘\'ﬁ"’g“w

¢ and '\’“’\Adc 2

When Yyou nee

~ r ‘
\ass only h3*
G 5\°\’a\ Yo’m“:

n oy

Vi ¢ -
Lal Vi one nstant

30 N of avtess to?

As you've seen, despite its appavent simplicity, there are 3 lcfc of details
involved in the Singleton’s implementation. Alter veading ‘U.us chapter,
though, you are veady 1o 9o out and use Singleton in the wild.

186 Chapter 5

Download at WoweBook.Com

BULLET POIN&

The Singleton Pattern ensures
you have at most one instance
of a class in your application.

The Singleton Pattern also
provides a global access point
to that instance.

Java’s implementation of the
Singleton Pattern makes use
of a private constructor, a static
method combined with a static
variable.

Examine your performance
and resource constraints and
carefully choose an appropriate
Singleton implementation for
multithreaded applications

(and we should consider all
applications multithreaded!).

Beware of the double-checked
locking implementation; it is not
thread-safe in versions before
Java 2, version 5.

Be careful if you are using
multiple class loaders; this
could defeat the Singleton
implementation and result in
multiple instances.

If you are using a JVM earlier
than 1.2, you'll need to create a
registry of Singletons to defeat
the garbage collector.

chapter.

the singleton pattern

Sit back, open that case of chocolate that you were sent for solving
the multithreading problem, and have some downtime working on
this little crossword puzzle; all of the solution words are from this

Across

1. It was "one of a kind"

2. Added to chocolate in the boiler

8. An incorrect implementation caused this to

overflow

10. Singleton provides a single instance and

(three words)

12. Flawed multithreading approach if not using

Java 1.5

13. Chocolate capital of the US

14. One advantage over global variables:
creation

15. Company that produces boilers

16. To totally defeat the new constructor, we

have to declare the constructor

Down

1. Multiple can cause problems
3. A Singleton is a class that manages an
instance of

4. If you don't need to worry about lazy
instantiation, you can create your instance

5. Prior to 1.2, this can eat your Singletons (two
words)

6. The Singleton was embarassed it had no
public

7. The classic implementation doesn't handle
this

9. Singleton ensures only one of these exist
11. The Singleton Pattern has one

you are here » 187

Download at WoweBook.Com

exercise solutions

Exercise
solutions

BE the JVM

Thead Thead Value of
One Two || uniqueInstance
public static ChocolateBoiler null
getInstance() {

public static ChocolateBoiler null

getInstance () {

(uniqueInstance == null)

{

if (uniquelnstance == null) {

uniquelnstance =
new ChocolateBoiler();

return uniquelnstance;i

<objectl>

uniquelInstance =

<object2>
new ChocolateBoiler();

\

<object2>
return uniquelInstance;

<objectl> <~

Uh oh, this doesnt

e ook 5°°d!

L Two diffevent
obJet{:s are
veturned! We have
two ChotolateBoiler

G harPen your Penc“ Can you help Choc-O-Holic improve their ChocolateBoiler class
A by turning it into a singleton?

public class ChocolateBoiler {
private boolean empty;
private boolean boiled;

private static ChocolateBoiler uniquelnstance;

ChocolateBoiler () {

empty = true;
boiled = false;

public static ChocolateBoiler getInstance() {
if (uniqueInstance == null) {
uniquelInstance = new ChocolateBoiler();
}
return uniqueInstance;

}

public void fill() {
if (isEmpty()) {
empty = false;
boiled = false;
// fill the boiler with a milk/chocolate mixture

}
// rest of ChocolateBoiler code...

188

Chapter 5

Download at WoweBook.Com

ins{‘,ahces!_l_l

the singleton pattern

Exercise sojutions

0 harpen our pencil
S y

For each solution, describe its applicability to the problem of fixing the Chocolate
Boiler code:

Synchronize the getinstance() method:

A straightforward technique that is auaranteed to work. We don't seem fo have any

?cr‘Formance tonterns with the thotolate boiler, so this would be a good thoite.

Use eager instantiation:

We are always going to instantiate the thotolate boiler in our tode, so statically inializing the

instante would tause no tonterns. This solution would work as well as the synchronized method,

although perhaps be less obvious £o a developer familar with the standard pattern.

Double checked locking:

Given we have no performante tonterns, dovble—cheeked lotking seems like ovevkill. [n addition, we'd

have to ensure that we are vunning at least Java 5.

you are here » 189

Download at WoweBook.Com

crossword puzzle solution

5
5
o
Uy
QL
Z
=~
=
=

N[T

mEn
o

N

K
K
W
B E
0 —
o
[<
=

(L T

s [hlely

|
&R

Chapter 5

190

Download at WoweBook.Com

6 the Command Pattern *
+ Encapsulating Invocation *

These top secret drop
boxes have revolutionized the spy
industry. I just drop in my request
and people disappear, governments
change overnight and my dry cleaning
gets done. I don't have to worry
about when, where, or how; it
Jjust happens!

In this chapter, we take encapsulation to a whole new level:
we’re going to encapsulate method invocation. That's right, by
encapsulating method invocation, we can crystallize pieces of computation so that the
object invoking the computation doesn’t need to worry about how to do things, it just uses
our crystallized method to get it done. We can also do some wickedly smart things with
these encapsulated method invocations, like save them away for logging or reuse them to

implement undo in our code.

this is a new chapter 191

Download at WoweBook.Com

home automation

Home Rutomation or Bust, inc.
1221 industrial Rvenue, Suite 2000
Future City, L 62914

Greetings!

I recently received a demo and briefing from Johnny
Hurricane, CEO of Weather-O-Rama, on their new
expandable weather station. Ihave to say, Iwas so
impressed with the software architecture that I'd like to
ask you to design the API for our new Home Automation
Remote Control. In return for your services we’d be happy
to handsomely reward you with stock options in Home
Automation or Bust, Inc.

T'm enclosing a prototype of our ground-breaking remote
control for your perusal. The remote control features seven
programmable slots (each can be assigned to a different
household device) along with corresponding on/off buttons
for each. The remote also has a global undo button.

T'm also enclosing a set of Java classes on CD-R that were
created by various vendors to control home automation
devices such as lights, fans, hot tubs, audio equipment, and
other similar controllable appliances.

We’d like you to create an API for programming the remote
so that each slot can be assigned to control a device or set of
devices. Note that it is important that we be able to control
the current devices on the disc, and also any future devices
that the vendors may supply.

Given the work you did on the Weather-O-Rama weather
station, we know you'll do a great job on our remote control!

We look forward to seeing your design.

Sincerely,

By [hmpan

Bill “X-10” Thompson, CEO

192

Download at WoweBook.Com

the command pattern

Free hardware! Let$ check out the Remote Control...

Theve are “on” and “of "

buttons for each of the
seven Slo{-,s,
We /
! slots Lo program 2
e EO: (;\?E:vcn{: devite n eath stot
iy it via the buttons:

and tontrol

These two buttons are
used to contyof the
.houscho’d device stored
In S'O{ one...

- and these {yo tontrol

the household device
stored in slot two...

i ahd S0 on.

Qet your Shavpie out and
write your devite names heve:

Here’s the global “undo” button that
undoes the last button pressed.

you are here » 193

Download at WoweBook.Com

vendor classes from home automation

Taking a look at the vendor classes

Check out the vendor classes on the CD-R. These should give
you some idea of the interfaces of the objects we need to control

from the remote.

ApplianceControl

on()
off()
Stereo .
on()
CeilingLight off()
setCd()
028 setDvd()
[.
setRadiol
dim() v 0
i setVolume()
OutdoorLight onl) FaucetControl
on() off() openValue()
off() setinputChannel() closeValue()
setVolume() —
CeilingFan » Hottub
high() circulate()
GardenLight medium() GarageDoor jetsOn()
, low() up() jetsOff()
setDuskTime() off() down() setTemperaturet()
setDawnTime() getSpeed() o
| ——
manualOn() Iigh‘:gn() Thermostat
manualOff() I lightOff() setTemperature()
Sprinkler
P SecurityControl .—
waterOn() .
waterOff() Light arm)
disarm()
on()
off()
It looks like we have quite a set of classes here, and not a lot of
industry effort to come up with a set of common interfaces. Not
only that, it sounds like we can expect more of these classes in the
future. Designing a remote control API is going to be interesting.
Let’s get on to the design.
194 Chapter 6

Download at WoweBook.Com

the command pattern

Cubicle Conversation

Your teammates are already discussing how to design the remote control API...

Well, we've got another design to do.
My first observation is that we've got a

simple remote with on and off buttons but
a set of vendor classes that are quite

Mary: Yes, I thought we’d see a bunch of classes with on()
and off{) methods, but here we’ve got methods like dim(),
set Temperature(), setVolume(), setDirection().

Sue: Not only that, it sounds like we can expect more vendor
classes in the future with just as diverse methods.

Mary: I think it’s important we view this as a separation of
concerns: the remote should know how to interpret button presses
and make requests, but it shouldn’t know a lot about home
automation or how to turn on a hot tub.

Sue: Sounds like good design. But if the remote is dumb and
just knows how to make generic requests, how do we design the
remote so that it can invoke an action that, say, turns on a light or
opens a garage door?

Mary: I'm not sure, but we don’t want the remote to have to
know the specifics of the vendor classes.

Sue: What do you mean?

Mary: We don’t want the remote to consist of a set of if
statements, like “if slot]l == Light, then light.on(), else if slotl =
Hottub then hottub.jetsOn()”. We know that is a bad design.

Sue: [agree. Whenever a new vendor class comes out, we’d have
to go in and modify the code, potentially creating bugs and more
work for ourselves!

195

Download at WoweBook.Com

command pattern

196

Hey, T couldn't help
overhearing. Since Chapter 1
T've been boning up on Design

Patterns. There's a pattern
called "Command Pattern” I think
might help.

Mary: Yeah? Tell us more.

Joe: The Command Pattern allows you to decouple the requester of an action
from the object that actually performs the action. So, here the requester would be
the remote control and the object that performs the action would be an instance
of one of your vendor classes.

Sue: How is that possible? How can we decouple them? After all, when I press a
button, the remote has to turn on a light.

Joe: You can do that by introducing “command objects” into your design. A
command object encapsulates a request to do something (like turn on a light) on
a specific object (say, the living room light object). So, if we store a command
object for each button, when the button is pressed we ask the command object to
do some work. The remote doesn’t have any idea what the work is, it just has a
command object that knows how to talk to the right object to get the work done.
So, you see, the remote is decoupled from the light object!

Sue: This certainly sounds like it’s going in the right direction.
Mary: Still, I'm having a hard time wrapping my head around the pattern.

Joe: Given that the objects are so decoupled, it’s a little difficult to picture how the
pattern actually works.

Mary: Let me see if I at least have the right idea: using this pattern we, could
create an API in which these command objects can be loaded into button

slots, allowing the remote code to stay very simple. And, the command objects
encapsulate how to do a home automation task along with the object that needs
to do it.

Joe: Yes, I think so. I also think this pattern can help you with that Undo button,
but I haven’t studied that part yet.

Mary: This sounds really encouraging, but I think I have a bit of work to do to
really “get” the pattern.

Sue: Me too.

Download at WoweBook.Com

Meanwhile, back at the Piner...,

the command pattern

or, . .
A brief introduction to the Command Pattern

As Joe said, it is a little hard to understand the Command Pattern by just hearing

its description. But don’t fear, we have some friends ready to help:
remember our friendly diner from Chapter 1? It’s been a while since we
visited Alice, Flo, and the short-order cook, but we’ve got good reason
for returning (well, beyond the food and great conversation): the diner is
going to help us understand the Command Pattern.

So, let’s take a short detour back to the diner and study the interactions
between the customers, the waitress, the orders and the short-order
cook. Through these interactions, you’re going to understand the
objects involved in the Command Pattern and also get a feel for how

the decoupling works. After that, we’re going to knock out that remote
control API.

Checking in at the Objectville Diner...

Okay, we all know how the Diner operates:

You, the Customer,
give the Waitress
your Order.

O[;)ject*ille Diner

——

g =

L bl L

x

\ P et
[\“\“’ish you wee here

e The Waitress
takes the Order,
places it on the
order counter
and says “Order
up!”

e The Short-Order Cook prepares your meal

from the Order.

Download at WoweBook.Com

197

the diner

Let’s study the interaction in a little more detail...

...and given this Diner is in Objectville, let’s think
about the object and method calls involved, too!

The Ovder consists ol:, an order
slip and the tustomer's "\CN-A{:
tems Lhat ave weitten on 't

T'll have a Burger
with Cheese and a
Malt Shake.

The tustomer knows
what he wants and
treates an order.

The Waitress takes

e 56“‘.5 around 1o it, s
‘." method {o begin

the Ovder, and when she
he calls its orderldp()
the Order’s preparation.

L The Short Ordey
= % Cook follows the

g instrue tions of

the Order and
J Produtes the meg.

/&
/
~ o\’)\'

198 Chapter 6

Download at WoweBook.Com

the command pattern

The Objectville Diner roles and responsibilities

An Order Slip encapsulates a request to prepare a meal.

Think of the Order Slip as an object, an object that acts__/

as a request to prepare a meal. Like any object, it can be
passed around — from the Waitress to the order counter, or to the
next Waitress taking over her shift. It has an interface that consists
of only one method, orderUp(), that encapsulates the actions
needed to prepare the meal. It also has a reference to the object
that needs to prepare it (in our case, the Cook). It’s encapsulated

in that the Waitress doesn’t have to know what’s in the order 4/‘3
or even who prepares the meal; she only needs to pass the slip
through the order window and call “Order up!” Oka)’: in real |if
care what ;o . z 9 Waitye, woulg
it, but this ;. Ohb'hc Orde, Slip 4 dPVObably
The Waitress’s job is to take Order Slips and ectvill o "d Who £ooks
invoke the orderUp() method on them. Yith us hee/
The Waitress has it easy: take an order from the customer,
continue helping customers until she makes it back to the Don't ask me to cook,
order counter, then invoke the orderUp() method to have I just fake ordersand) O,

the meal prepared. Aswe've already discussed, in Objectville, the yell "Order upl”

Waitress really isn’t worried about what’s on the order or who is going to
prepare it; she just knows order slips have an orderUp() method she can
call to get the job done.

Now, throughout the day, the Waitress’s takeOrder() method gets
parameterized with different order slips from different customers, but
that doesn’t phase her; she knows all Order slips support the orderUp()
method and she can call orderUp() any time she needs a meal prepared.

The Short Order Cook has the knowledge
required to prepare the meal.

You

. . definitel
The Short Order Cook is the object that really knows e the ;ﬂr:in;n?f;!e
how to prepare meals. Once the Waitress has invoked - decoupled. She'ls not
= -] even m e!
the orderUp() method; the Short Order Coook takes over and w Y TP
implements all the methods that are needed to create meals.

Notice the Waitress and the Cook are totally decoupled: the

Waitress has Order Slips that encapsulate the details of the

meal; she just calls a method on each order to get it prepared.

Likewise, the Cook gets his instructions from the Order Slip; he

never needs to directly communicate with the Waitress. 3

199

Download at WoweBook.Com

the diner command pattern

Okay, we have a

Diner with a Waitress who is
decoupled from the Cook by an
Order Slip, so what? Get to
the point!

Patience, we’re getting there...

Think of the Diner as a model for an OO design pattern that allows
us to separate an object making a request from the objects that
receive and execute those requests. For instance, in our remote
control API, we need to separate the code that gets invoked when
we press a button from the objects of the vendor-specific classes
that carry out those requests. What if each slot of the remote held
an object like the Diner’s order slip object? Then, when a button is
pressed, we could just call the equivalent of the “orderUp()” method
on this object and have the lights turn on without the remote
knowing the details of how to make those things happen or what
objects are making them happen.

Now, let’s switch gears a bit and map all this Diner talk to the
Command Pattern...

@RA\N
TAWwWE®wR

to nail the Command Pattern!

//_\,s

Before we move on, spend some time studying
the diagram two pages back along with Diner
roles and responsibilities until you think you’ve
got a handle on the Objectville Diner objects and
relationships. Once you've done that, get ready

200

Download at WoweBook.Com

the command pattern

From the Diner to the Command Pattern

Okay, we’ve spent enough time in the Objectville Diner that we know all the
personalities and their responsibilities quite well. Now we’re going to rework
the Diner diagram to reflect the Command Pattern. You'll see that all the
players are the same; only the names have changed.

The aetions and the
Reteiver are bound together

| ‘ o in the ommand object.
The Commahd ob)c££ public voig:iiij;l(); !) {

recel - '
receiver Laction2 ()

dCs one mc{\\od)

. ¢0), that Cncavsu\a{;cs

exetut ¢
the attions and tan o¢
called to invoke the at

on the Retewer-

o The tlient is vcsvonsiblc for
ereating the tommand ob\')cc{:. The
tommand ob)cc{ consists of a set

of attions on a reteiver:

€ iElEElEE:

Command
Cbmmcrb 1 Obj celic ()
The ¢tlient ealls setCommand()
an [nvoker ob\jcc{: and passes ‘.-{;on qlen.r
the tommand ochC‘E, wheve it gets - g
stored until it is needed. 9

Loading the lnvoker

o The client creates a
command object.

e The client does a
setCommand() to store
the command object in
the invoker.

e Later... the client asks
the invoker to execute

b vesults the command. Note:

~-which vest as you'll see later in

in the actions the chapter, once the

1 Ry being invoked on command is loaded into

A the Reteiver- the invoker, it may be

used and discarded, or

it may remain and be

action1(), action2() ’Qece'wz(‘ used many times.

Ommar®

you are here » 201

Download at WoweBook.Com

who what?

. ¥,

*
WHQ DQES wHaT™

Match the diner objects and methods with the corresponding names from the
Command Pattern.

Diner Command Pattern
Waitress Command

Short Order Cook execute()

orderUp() Client

Order Invoker

Customer Receiver

takeQOrder() setCommand()

202

Download at WoweBook.Com

the command pattern

Our first command object

\ |/
™~ —
Isn’t it about time we build our first command object? Let’s go ahead and write - ~
some code for the remote control. While we haven’t figured out how to design the ~ ~
remote control API yet, building a few things from the bottom up may help us... \

Implementing the Command interface

First things first: all command objects implement the same interface, which
consists of one method. In the Diner we called this method orderUp(); however,
we typically just use the name execute().

Here’s the Command interface:

public interface Command {

public void execute(); f Simple. Al we need is one method ¢alled execute().
}

Implementing a Command to turn a light on

Now, let’s say you want to implement a command for turning a light on. /7 2\ Light
Referring to our set of vendor classes, the Light class has two methods: on() on)
and off{). Here’s how you can implement this as a command: off)

This is a tommand, so we need +o
implement the Command intevfate.

public class LightOnCommand implements Command {
Light light; N
The tonstruttor is passed the sycu‘(:nc

public LightOnCommand (Light light) { 4./_\ ligh{: that this command is going to

this.light = light; tontrol — say the living voom light
: — and stashes it in the light instance
vaviable. When exeeute gets called, this
pubile void execute() | is the light ob\’)cd: that is going to be

Light.on(); the Receiver of the vequest.

| | The exetute method ealls the

() method on the veteiving
Z'\\)")ec{:, whith is the light we
ave tontrolling

Now that you've got a LightOnCommand class, let’s see if we can put it to use...

you are here » 203

Download at WoweBook.Com

using the command object

Using the command object

Okay, let’s make things simple: say we’ve got a remote control with only one
button and corresponding slot to hold a device to control:

{,om"\a“d’
S\O{l to hold owr
public class SimpleRemoteControl ({ We have one | one devite:
Command slot; J whieh will tontrol 0

' i We have a method for setting
public SimpleRemoteControl () {} /_\ e B ot i i
public void setCommand (Command command) { o tontrol. This tould be called

slot = command; wultiple Limes if the elient of
: fhis tode wanted to thange the

behavior of the vemote button.

public void buttonWasPressed() {

slot.execute () ; h This method is talled when the
}

button is pressed. Al we do is take
the turvent tommand bound to {he
slot and eall its execute() method.

Creating a simple test to use the Remote Control

Here’s just a bit of code to test out the simple remote control. Let’s take a look and
we’ll point out how the pieces match the Command Pattern diagram:

L i Command Pattern—speak:
f_\ This is our Client in Comman The vemote is o¥¢ [nvoker;
it will be passed 3

public class RemoteControlTest { Lommand o\)\')cd’- {;\na{: tan
public static void main(String[] args) { be vsed Lo make rco\ucrb.
SimpleRemoteControl remote = new SimpleRemoteControl () ;

Light light = new Light (); =—— Now we treate a Light
LightOnCommand lightOn = new LightOnCommand (light) ; ob\')cc{:, Lhis will be the

Reteiver of the vequest.
remote.setCommand (1ightOn) ; K

Heve, treate a command and

remote.buttonWasPressed() ; D pass the Reteiver 4o it.

Here, pass the tommand

.Eo 'U'IC ,hVOkCh File Edit Window Help DinerFoodYum
%$java RemoteControlTest

And then we simulate the . .
button being pressed. Light is On
Here's the output of % P
vunning this fest code!

204 Chapter 6

Download at WoweBook.Com

the command pattern

@ dharpen your pencil
i’ your p

Okay, it’s time for you to implement the

GarageDoorOpenCommand class. First, supply the code for
the class below. You’ll need the GarageDoor class diagram. ——

GarageDoor

up()
down()

stop()
public class GarageDoorOpenCommand lightOn()

. lightOff
implements Command { 1910

(\ Youe ctode heve

Now that you’ve got your class, what is the output of the following
code? (Hint: the GarageDoor up() method prints out “Garage Door is
Open” when it is complete.)

public class RemoteControlTest ({
public static void main(String[] args) {

SimpleRemoteControl remote = new SimpleRemoteControl () ;
Light light = new Light();
GarageDoor garageDoor = new GarageDoor () ;
LightOnCommand lightOn = new LightOnCommand (light) ;
GarageDoorOpenCommand garageOpen =

new GarageDoorOpenCommand (garageDoor) ;

remote.setCommand (1ightOn) ;
remote.buttonWasPressed () ;
remote.setCommand (garageOpen) ;
remote.buttonWasPressed () ;

File Edit Window Help GreenEggs&Ham

sjava RemoteControlTest

\/ow O“JC\"‘{" heve:

you are here » 205

Download at WoweBook.Com

command pattern defined

The Command Pattern defined

You’ve done your time in the Objectville Diner, you've partly
implemented the remote control API, and in the process you've
got a fairly good picture of how the classes and objects interact in
the Command Pattern. Now we’re going to define the Command
Pattern and nail down all the details.

Let’s start with its official definition:

The Command Pattern encapsulates a request as an
object, thereby letting you parameterize other objects
with different requests, queue or log requests, and support
undoable operations.

Let’s step through this. We know that a command object
encapsulates a request by binding together a set of actions on a
specific receiver. To achieve this, it packages the actions and the
recelver up into an object that exposes just one method, execute().
When called, execute() causes the actions to be invoked on the
receiver. From the outside, no other objects really know what
actions get performed on what receiver; they just know that if they
call the execute() method, their request will be serviced.

We've also seen a couple examples of parameterizing an object with

a command. Back at the diner, the Waitress was parameterized
with multiple orders throughout the day. In the simple remote
control, we first loaded the button slot with a “light on” command
and then later replaced it with a “garage door open” command.
Like the Waitress, your remote slot didn’t care what command
object it had, as long as it implemented the Command interface.

What we haven’t encountered yet is using commands to
implement queues and logs and support undo operations. Don’t worry,
those are pretty straightforward extensions of the basic Command
Pattern and we will get to them soon. We can also easily support
what’s known as the Meta Command Pattern once we have the
basics in place. The Meta Command Pattern allows you to create
macros of commands so that you can execute multiple commands
at once.

206 Chapter 6

Download at WoweBook.Com

An entapsulated vequest.

,Q.H

eceivel

execute () {
receiver.action() ;

<§
C%"ageDde

(\ @fere

‘9/’ TOnCo®

\

e’/Ing Fd‘

'Qemo‘re 5\

An invoker - £or instante
one slot of the vemote
— tan be yavamc{crnud with
diffevent vequests.

The Command Pattern defined:
the class diagram

The Invoker holds
a tommand and at
some point asks the
tommand to earry
out a request by

ealling its execute()
method.

ient i ble for
The Client is vespons!
ereating 3 ContreteCommand and

setting its Receiver-

Client ‘

setCommand()

action()

Invoker .—>

> Receiver F— ConcreteCommand

the command pattern

Command detlares an interface for all Commahds.. As
you alveady know, @ tommand is invoked {:hvouyjc its
exetute() method, which asks a reteiver to pertorm (a)n
ackion. Youll also notice this inkerface has an undo
ethod, which we'll cover a bit later in the thapter.

/

<<interface>>
Command

execute()
undo()

The exetute
mcﬂ»\od \nvokCS
khe attion(s)
on the veteiver
needed to Fulkill
the rcqucs{-
eXeCUte() «rvrrerrerreeee e e

The Reteiver knows how to ‘j

pecform the work needed to
tacey out the vequest. Any tlass
¢an act as a Receiver.

exetute() and
calling one or m

The Contxc{:cCommand defines

wer. The [nvoker ma :
and a Receiver e Ccontxc{:c Command tavries it out by

oce attions on the Reteiver

ol undo() /

public void execute() { |
)

receiver.action(

}

a b'md'mg between an attion
kes a rcv\ucs{: by calling

@RA\N
TaWwWEw

How does the design of the Command Pattern support the decoupling of the invoker of a

request and the receiver of the request?

you are here » 207

Download at WoweBook.Com

where do we

Okay, I think T've got a good feel
for the Command Pattern now. Great
tip Joe, I think we are going to look
like superstars after finishing of f
the Remote Control API.

Mary: Me too. So where do we begin?

Sue: Like we did in the SimpleRemote, we need to provide a way
to assign commands to slots. In our case we have seven slots, each
with an “on” and “off” button. So we might assign commands to
the remote something like this:

onCommands[0] = onCommand;
offCommands[0] = offCommand;

Mary: That makes sense, except for the Light objects. How does
the remote know the living room from the kitchen light?

Sue: Ah, that’s just it, it doesn’t! The remote doesn’t know
anything but how to call execute() on the corresponding
command object when a button is pressed.

Mary: Yeah, I sorta got that, but in the implementation, how do
we make sure the right objects are turning on and oft the right
devices?

Sue: When we create the commands to be loaded into the
remote, we create one LightCommand that is bound to the living
room light object and another that is bound to the kitchen light
object. Remember, the receiver of the request gets bound to

the command it’s encapsulated in. So, by the time the button

is pressed, no one cares which light is which, the right thing just
happens when the execute() method is called.

Mary: I think 've got it. Let’s implement the remote and I think
this will get clearer!

Sue: Sounds good. Let’s give it a shot...

208

Download at WoweBook.Com

the command pattern

Assigning Commands to slots

So we have a plan: We’re going to assign each slot to a command in
the remote control. This makes the remote control our invoker. When
a button is pressed the execute() method is going to be called on the
corresponding command, which results in actions being invoked on the
receiver (like lights, ceiling fans, stereos).

(1) Eath slot 5:{:5 a tommand.

FOnCore®

(2) When the button is pressed, the exeeute()
method is ¢alled on the corvesponding tommand.

7OnCox
-); :
Q 5O &
he)
& % &
Fragenss” Pofrco®
(SN
‘S‘erecﬁ‘\(e//lnng\
Oy
ige DO

we'll worry about the
\rcmaining slots in a bit.

(3) |n the exetute)) method attions
are invoked on the vetiever.

A

The [nvoker

Stereo

you are here » 209

Download at WoweBook.Com

implementing the remote control

Implementing the Remote Control

ound the remote is 9oing to

i is Time av
public class RemoteControl ({ This tim which

Command[] onCommands; @/ handle seven On and 0££ commands,

Command[] offCommands; well hold in torresponding arvays.

public RemoteControl () { In the tonstructor all we need to do is
onCommands = new Command([7]; &, indﬁnfﬁfcandiM£mhzc{hconando££
of fCommands = new Command[7]; é{//
arvays
Command noCommand = new NoCommand () ;
for (int i = 0; 1 < 7; i++) {
onCommands [i] = noCommand;
offCommands[i] = noCommand;

}

public void setCommand (int slot, Command onCommand, Command offCommand) {

zgiggﬁiﬁzs[s[iig]t} :=02§§2H2:;§;d; T The setCommand() method takes a slot position
\ and an On and OFF command £o be stored in

}
that slot. [t puts these commands in the on and

public void onButtonWasPushed (int slot) { ofk arrays for later use.
onCommands [slot] .execute () ;
} R When an On or O£ button is
public void offButtonWasPushed(int slot) { — ?\rcssifd, {:hc. hardware takes]
offCommands [slot] .execute () ; tare Ca”'"S the torresponding
) methods onButtonWasPushed() or
of fButtonWasPushed().

public String toString() {
StringBuffer stringBuff = new StringBuffer();
stringBuff.append (“\n------ Remote Control —--—————-— \n”) ;
for (int 1 = 0; i < onCommands.length; i++) {
stringBuff.append (“[slot + i + “] “ + onCommands[i].getClass () .getName ()

+ W “ + offCommands[i].getClass () .getName () + “\n”);

}
return stringBuff.toString();

} We've overwritien JeoSbringO to print out eath slot and its

) torvesponding tommand. You'll see us use £his when we test the
remote tontrol.

210 Chapter 6

Download at WoweBook.Com

the command pattern
Implementing the Commands

Well, we’ve already gotten our feet wet implementing the LightOnCommand for
the SimpleRemoteControl. We can plug that same code in here and everything

works beautifully. Off commands are no different; in fact the LightOffCommand
looks like this:

public class LightOffCommand implements Command {
Light light;

public LightOffCommand (Light light) {
this.light = light;
} The LightOf£Command works exactly

public void execute () { the same way as the LightOnCommand,
light.off (); u extept that we are binding the veceiver
} 4o a diffevent action: the of £0) method.
}
Stereo
Let’s try something a little more challenging; how about writing on and off onl
commands for the Stereo? Okay, off is easy, we just bind the Stereo to the off() off()
method in the StereoOffCommand. On is a little more complicated; let’s say we setCd()
want to write a StereoOnWithCDCommand... setDvd()
setRadio()
setVolume()

public class StereoOnWithCDCommand implements Command {
Stereo stereo;

public StereoOnWithCDCommand (Stereo stereo) { d ek
this.stereo = stereo; Just like the LightOnCommand, we &

passed the instante of the steveo we
are 9oing +o be tontrolling and we store
itina lotal instance vaviable.

}

public void execute () {
stereo.on();
stereo.setCD() ;

} sreree-sereiune L To tarry out this vequest, we need +o ¢all Lhree

methods on the stereo: fiest, turn it on, then set
} it to play the CD, and £inally set the volume o II.
Why 112 Well, it’s better than 10, vight?

Not too bad. Take a look at the rest of the vendor classes; by now, you can definitely
knock out the rest of the Command classes we need for those.

you are here » 211

Download at WoweBook.Com

testing the remote control

Putting the Remote Control through its paces

Our job with the remote is pretty much done; all we need to do is run some tests and
get some documentation together to describe the API. Home Automation or Bust,
Inc. sure is going to be impressed, don’t you think? We’ve managed to come up with
a design that is going to allow them to produce a remote that is easy to maintain

and they’re going to have no trouble convincing the vendors to write some simple
command classes in the future since they are so easy to write.

Let’s get to testing this code!

public class RemotelLoader {

public static void main(String[] args) {
RemoteControl remoteControl = new RemoteControl ();

Light livingRoomLight = new Light (“Living Room”) ; Iy an{hcdcﬂCa\n
Light kitchenLight = new Light (“Kitchen”); Create lotations.
CeilingFan ceilingFan= new CeilingFan (“Living Room”) ; theiv proper 1o
GarageDoor garageDoor = new GarageDoor (“”);

Stereo stereo = new Stereo (“Living Room”) ;

LightOnCommand livingRoomLightOn =
new LightOnCommand (livingRoomLight) ;
LightOffCommand livingRoomLightOff = Create all the Light
new LightOffCommand (livingRoomLight) ; Commandohycfx
LightOnCommand kitchenLightOn =
new LightOnCommand (kitchenLight) ;
LightOffCommand kitchenLightOff =
new LightOffCommand (kitchenLight) ;

CeilingFanOnCommand ceilingFanOn = ¢ eate the On and O‘W
new CeilingFanOnCommand (ceilingFan) ; d ceilin Lan.

CeilingFanOffCommand ceilingFanOff = For the celnd
new CeilingFanOffCommand (ceilingFan) ;

GarageDoorUpCommand garageDoorUp =

new GarageDoorUpCommand (garageDoor) ;
GarageDoorDownCommand garageDoorDown =

new GarageDoorDownCommand (garageDoor) ;

Create the Up and Down
tommands for the Qarage.

StereoOnWithCDCommand stereoOnWithCD =
new StereoOnWithCDCommand (stereo) ;
StereoOffCommand stereoOff =
new StereoOffCommand(stereo);

Create the steveo On
and O£ commands.

212 Chapter 6

Download at WoweBook.Com

remoteControl.
remoteControl.
remoteControl.
remoteControl.

System.out.println(remoteControl);

remoteControl.
remoteControl.
remoteControl.
remoteControl.
remoteControl.
remoteControl.
remoteControl.
remoteControl.

setCommand (0,
setCommand (1,
setCommand (2,
setCommand (3,

ceilingFanOn,

onButtonWasPushed (0)
of fButtonWasPushed (0) ;
onButtonWasPushed (1) ;
offButtonWasPushed (1) ;
onButtonWasPushed (2) ;
offButtonWasPushed (2) ;
onButtonWasPushed (3) ;
offButtonWasPushed (3) ;

livingRoomLightOn,
kitchenLightOn,

stereoOnWithCD,

TN

the command pattern

livingRoomLightOff) ;
kitchenLightOff) ;
ceilingFanOff) ;
stereoOff) ;

Now that we've 50{;
all our Lommands, we
tan load £MCmih£o
the vemote slots.

Here's where we use our {',oS{ring()
method to print each vemote slot and
the command that it is assigned +o.

~

All vight, we ave veady to volll
Now, we step through each slot
and push its On and OFF button.

Now, let$ check out the execution of our remote control test...

File Edit Window Help CommandsGetThingsDone

% java RemotelLoader

Remote Control
headfirst.command.
headfirst.command.
headfirst.command.
headfirst.command.
headfirst.command.
headfirst.command.
headfirst.command.

remote.LightOnCommand
remote.LightOnCommand
remote.CeilingFanOnCommand
remote.StereoOnWithCDCommand
remote.NoCommand
remote.NoCommand
remote.NoCommand R}

On slots

[slot
[slot
[slot
[slot
[slot
[slot

Living Room light is on
Living Room light is off
Kitchen light is on
Kitchen light is off
Living Room ceiling fan is on high
Living Room ceiling fan is off

Living Room stereo is on

Living Room stereo is set for CD input
Living Room Stereo volume set to 11
Living Room stereo is off

OFFSbfs

Download at WoweBook.Com

headfirst.
headfirst.
headfirst.
headfirst.
headfirst.
headfirst.
headfirst.

command .
command.
command .
command.
command .
command.
command .

remote.
remote.
remote.
remote.
remote.
remote.
remote.

LightOffCommand
LightOffCommand
CeilingFanOffCommand
StereoOffCommand
NoCommand

NoCommand

NoCommand

—— Ouwr tommands in action Remember, the output
£rrom eath device tomes from the vendor ¢lasses.

For ins:(:ancc, when a light och&f: is turned on it
prints “Living Room light is on.”

213

you are here »

null object

Wait a second, what

Trying to pull a fast one?

is with that NoCommand that
is loaded in slots four through six?

Good catch. We did sneak a little something in there. In the remote
control, we didn’t want to check to see if a command was loaded every
time we referenced a slot. Tor instance, in the onButtonWasPushed)
method, we would need code like this:

public void onButtonWasPushed (int slot) {
if (onCommands[slot] != null) {
onCommands [slot] .execute () ;

}

So, how do we get around that? Implement a command that does nothing!

public class NoCommand implements Command {
public void execute() { }

}

Then, in our RemoteControl constructor, we assign every slot a
NoCommand object by default and we know we’ll always have some
command to call in each slot.

Command noCommand = new NoCommand () ;

for (int 1 = 0; 1 < 7; i++) {
onCommands[i] = noCommand;
offCommands[i] = noCommand;

}

So in the output of our test run, you are seeing slots that haven’t been
assigned to a command, other than the default NoCommand object
which we assigned when we created the RemoteControl.

The NoCommand object is an example of a null object. A null object is useful

Pattern when you don't have a meaningful object to return, and yet you want to remove
Honorahle the responsibility for handling null from the client. For instance, in our remote
Mentjon control we didn't have a meaningful object to assign to each slot out of the box,

so we provided a NoCommand object that acts as a surrogate and does nothing

when its execute method is called.

You'll find uses for Null Objects in conjunction with many Design Patterns and
sometimes you'll even see Null Object listed as a Design Pattern.

214

Chapter 6

Download at WoweBook.Com

the command pattern

Time to write that docuwmentation...

Remote Control AP

We are pleased to present you with th

| Design for Home Automation or Bust, Inc.,

e following design and application programming interface for your Home

Automation Remote Control. Our prim

it doesn't require changes as n
logically decouple the Remote!
the remote as well as

The following class diagram pr

The RemotelLoader creates a
number of Command Objects
that are loaded into the slots
of the Remote Control. Each
command object encapsulates
a request of a home

drastically reduce your ongoing mainten

mote control code as simple as possible so that
ve employed the Command Pattern to
his will reduce the cost of producing

ary design goal was to keep the re
dor classes are produced. To this end we ha
| class from the Vendor Classes. We believe t
ance costs.

ew ven
Contro

ovides an overview of our design:

The RemoteControl manages a set of Command
objects, one per button. When a button is pressed,
the corresponding ButtonWasPushed() method is
called, which invokes the execute() method on the
command. That is the full extent of the remote’s
knowledge of the classes it's invoking as the
Command object decouples the remote from the
classes doing the actual home-automation work.

All RemoteControl commands
implement the Command
interface, which consists of one
method: execute(). Commands
encapsulate a set of actions

on a specific vendor class. The
remote invokes these actions by
calling the execute() method.

automation device.

RemoteControl

RemoteLoader

onCommands
offCommands

<<interface>>

setCommand()
onButtonWasPushed()
offButtonWasPushed()

LightOnComniand

LightOffCommand

execute()

public void execute() {
light.on{):

public void execute () {
light.off ()

}

The Vendor Classes are used to perform
the actual home-automation work of
controlling devices. Here, we are using the
Light class as an example.

each action that can be
the remote is implemented

Using the Command Interface,
invoked by pressing a button on
with a simple Command object. The Command Object holds
a reference to an object that is an instance of aVendor Class
and implements an execute method that calls one or more
methods on that object. Here we show two such classes
that turn a light on and off, respectively.

you are here »

Download at WoweBook.Com

don’t forget

Great job; it looks like
you've come up with a terrific design,
but aren't you forgetting one little thing
the customer asked for?

LIKE THE UNDO BUTTONII!!

Whoops! We almost forgot... luckily, once we
have our basic Command classes, undo is easy
to add. Let’s step through adding undo to our
commands and to the remote control...

What are we doing?

Okay, we need to add functionality to support the undo button on the remote. It works like
this: say the Living Room Light is off and you press the on button on the remote. Obviously
the light turns on. Now if you press the undo button then the last action will be reversed — in

this case the light will turn off. Before we get into more complex examples, let’s get the light
working with the undo button:

o When commands support undo, they have an undo() method that mirrors the execute()
method. Whatever execute() last did, undo() reverses. So, before we can add undo to our
commands, we need to add an undo() method to the Command interface:

public interface Command {
public void execute();
public void undo () ;

} r‘\/ Here's the new undo() method.

That was simple enough.

Now, let’s dive into the Light command and implement the undo() method.

216

Download at WoweBook.Com

the command pattern

e Let’s start with the LightOnCommand: if the LightOnCommand’s execute() method
was called, then the on() method was last called. We know that undo() needs to do the
opposite of this by calling the off{) method.

public class LightOnCommand implements Command {
Light light;

public LightOnCommand (Light light) {
this.light = light;
}

public void execute () {
light.on () ;
}

ublic void undo () { the
: light.off(); exetvtel) qu::;o
. “£ on so .
} } &/ \\s?m\’\\[Luens the \\5\\{:
batk 0¥

Piece of cake! Now for the LightOffCommand. Here the undo() method just
needs to call the Light’s on() method.

public class LightOffCommand implements Command {
Light light;

public LightOffCommand (Light light) {
this.light = light;

}

public void execute() {
light.off ();
}

public void undo () {

S
light.on(); nd hexe undol) :cm
} A5 e gt Dtk "

Could this be any easier? Okay, we aren’t done yet; we need to work a little

support into the Remote Control to handle tracking the last button pressed
and the undo button press.

you are here » 217

Download at WoweBook.Com

implementing undo

o

To add support for the undo button we only have to make a few small changes to the Remote

Control class. Here’s how we’re going to do it: we’ll add a new instance variable to track the
last command invoked; then, whenever the undo button is pressed, we retrieve that command

and invoke its undo() method.

public class RemoteControlWithUndo {

Command[] onCommands;

Command[] offCommands;

Command undoCommand; <:____,/////_—~

public RemoteControlWithUndo () {
onCommands = new Command[7];
offCommands = new Command[7];
Command noCommand = new NoCommand () ;

for (int i=0;i<7;i++)
onCommands [1] = noCommand
offCommands[1] =

i noCommand;
}
undoCommand = noCommand;

This is wheve we all
exetuted for the undo button.

stash the last tommand

Just like the other slots, undo
starts of £ with a NoCommand, so
pressing undo before any other
button won't do anything at all.

public void setCommand (int slot, Command onCommand, Command offCommand) {

onCommand;
of fCommand;

onCommands [slot] =
offCommands[slot] =

public void onButtonWasPushed(int slot)
onCommands [slot] .execute ()
undoCommand = onCommands[slot

public void offButtonWasPushed(int slot) {
offCommands [slot] .execute () ;
undoCommand = offCommands[slot];

When a button is pressed, we take
the tommand and first execute
it; then we save a vefevente to
it in the undoCommand instance
variable. We do this for both “on”
tommands and “of£” commands.

When the undo button is pressed, we

public void undoButtonWasPushed ()
undoCommand.undo () ;

invoke the undo() method of the
tommand stored in undoCommand.

} This veverses the operation of the
last tommand exetuted.

public String toString() {
// toString code here...
}

218 Chapter 6

Download at WoweBook.Com

the command pattern

Time to QA that Undo button!

Okay, let’s rework the test harness a bit to test the undo button:

public class RemotelLoader {

public static void main(String[] args) {
RemoteControlWithUndo remoteControl = new RemoteControlWithUndo () ;

our new undo()

Light livingRoomLight = new Light (“Living Room”) ; ate a Li ht, and
< Cre ’ d 0££ Commands.

enabled Light On an
LightOnCommand livingRoomLightOn = Z//’—
new LightOnCommand (livingRoomLight) ;
LightOffCommand livingRoomLightOff =
new LightOffCommand (livingRoomLight) ;

remoteControl.setCommand (0, livingRoomLightOn, livingRoomLightOff) ;

remoteControl.onButtonWasPushed (0) ; C Add the lighf Commands
remoteControl.offButtonWasPushed (0) ; to the vemote in slo{: 0.
System.out.println (remoteControl) ; \ Tuen the liahk on Lhen
remoteControl.undoButtonWasPushed () ; o\q and {:hscn und’o

remoteControl.onButtonWasPushed (0) ;
System.out.println (remoteControl) ;
remoteControl .undoButtonWasPushed () ;

remoteControl.offButtonWasPushed (0) ; \

Then, twen the |'|5H: o(—'f, back on and undo.

And here’s the test results...

File Edit Window Help UndoCommandsDefyEntropy

% java RemoteLoader

Ls 1f " Turn the light on, then off. n
eve’s the Light commands.

mand. u
ommand .

B S mmand. u mand
undo] h firs mma .undo.LightOffCommand é_’\ Now W\do holds ‘H\C

Light on & Undo was pressed... the LightOf£Command LightOf£Command, the last
undo() turns the light back on. Command invoked.
Light

£
Light n €~ Then we turn the light of £ then batk on.

[
[
[
[
[
[
[
[

Of fCommand

o nmand
d C o nmand
nd i d. o and

mmand é_\

) Now undo holds the Li
Light is off |{ndo was pressed, the Ii5H: is back off. {,ommandoin:okzd. ‘ '5hf0nC°mmand, fz

you are here » 219

Download at WoweBook.Com

we need to keep some state for undo

Using state fo implement Undo

CeilingFan

Okay, implementing undo on the Light was instructive but a little too easy. Typically,

we need to manage a bit of state to implement undo. Let’s try something a little more high()

interesting, like the CeilingFan from the vendor classes. The ceiling fan allows a medium()
number of speeds to be set along with an off method. ';V(V)()

0
Here’s the source code for the CeilingFan: getSpeed()

\\o\ds \oeal
an ;::E the teiling fan

public class CeilingFan {
public static final int HIGH = 3;
public static final int MEDIUM =
public static final int LOW = 1;
public static final int OFF = O0;
String location;
int speed;

C \\\V\%F
that the A g

No‘h\CC

stake vepresen "

2;

public CeilingFan(String location) {
this.location = location;
speed = OFF;

Hmm, so to properly
implement undo, I'd have
to take the previous speed of
the ceiling fan into account...

}

public void high () {
speed = HIGH;
// code to set fan to high

}

public void medium() {
speed = MEDIUM;
// code to set fan to medium

) o These methods set the A ./
public void low() { speed of the ceiling fan. 4
speed = LOW; ligmr
// code to set fan to low l
}
public void off () {)

speed = OFF;
// code to turn fan off
}

‘H\C (/w‘rcn‘t

public int getSpeed() { changch
return speed; speed of the ceiling fan
: using 5&SY“"O

220 Chapter 6

Download at WoweBook.Com

the command pattern

Adding Undo to the ceiling fan commands

Now let’s tackle adding undo to the various CeilingFFan commands. To
do so, we need to track the last speed setting of the fan and, if the undo()
method 1s called, restore the fan to its previous setting. Here’s the code for
the CeilingFanHighCommand:

We've added lotal state

CeilingFan ceilingFan; of the
atk
int prevSpeed; / o keet o eed of the Lan.

P evious sp

public class CeilingFanHighCommand implements Command {

public CeilingFanHighCommand (CeilingFan ceilingFan) {
this.ceilingFan = ceilingFan;

}

. . In exeeute, before we change
public void executIe (). { f the (peed £ the o e

prevSpeed = ceilingFan.getSpeed() ; . .

ceilingFan.high () ; need to first vecord its
} previous state, just in ease we

need to undo our attions.

public void undo () {

if (prevSpeed == CeilingFan.HIGH) ({

ceilingFan.high () ;

} else if (prevSpeed == CeilingFan.MEDIUM) ({
ceilingFan.medium() ; To undo, we set +h
=z e
} else if (prevSpeed == CeilingFan.LOW) { of the fan back o i‘:“d
' .)
ceilingFan.low() ; Previous SPCcd
} else if (prevSpeed == CeilingFan.OFF) ({ ’

ceilingFan.off ()

}

RANN
PQwEWw

We’ve got three more ceiling fan commands to write: low, medium, and off. Can you see
how these are implemented?

you are here » 221

Download at WoweBook.Com

test the ceiling fan

Get ready to test the ceiling fan

Time to load up our remote control with the ceiling fan /—_ﬁ

commands. We’re going to load slot zero’s on button with
the medium setting for the fan and slot one with the high
setting. Both corresponding off buttons will hold the ceiling
fan off command.

Here’s our test script:

public class RemotelLoader {

public static void main (String[] args) {
RemoteControlWithUndo remoteControl = new RemoteControlWithUndo () ;

CeilingFan ceilingFan = new CeilingFan (“Living Room”) ;

CeilingFanMediumCommand ceilingFanMedium =

Heve we instantiate three

new CeilingFanMediumCommand (ceilingFan) ; ’ . d°£
CeilingFanHighCommand ceilingFanHigh = / tommands: h'ﬁh’ medivm, an ’
new CeilingFanHighCommand (ceilingFan) ;
CeilingFanOffCommand ceilingFanOff = Heve we \w{: medium in

new CeilingFanOffCommand (ceilingFan) ;

slot zevo, and high in
slo{: one. We also load
up the of £ tommands.

remoteControl.setCommand (0, ceilingFanMedium, ceilingFanOff);
remoteControl.setCommand(l, ceilingFanHigh, ceilingFanOff) ;

remoteControl.onButtonWasPushed (0); =<—— Firs{‘,, tuen the Fan on medium.
remoteControl.offButtonWasPushed (0) ; = .
System.out.println (remoteControl) ; Then turn it off.
remoteControl.undoButtonWasPushed () ; «— Undo! [t should g0 back to medium...

remoteControl.onButtonWasPushed (1) ; "\ Twen it on to high this time.
System.out.println (remoteControl) ; . back to medium.
remoteControl.undoButtonWasPushed () ; &—— And, one move undo; it should 9o

222 Chapter 6

Download at WoweBook.Com

the command pattern

Testing the ceiling fan...

Okay, let’s fire up the remote, load it with commands, and push some buttons!

File Edit Window Help UndoThis!
% java RemoteLoader

Living Room ceiling fan is on medium Tuen the Ccilihg ‘(_‘ah on Here ave the Lomm&hds
Living Room ceiling fan is off {h cho{ccothd"
in the

Remote Control
[slot 0] headfirst.command. .NoCommand headfirst.command.undo.NoCommand
[slot 1] headfirst.command. .CeilingFanMediumCommand headfirst.command.undo.CeilingFanOff-
Command
[slot 2] headfirst.command. .CeilingFanHighCommand headfirst.command.undo.CeilingFanOffCom-
mand

medium, then turn it of £, /

[3] headfirst.command. .NoCommand headfirst .command.undo.NoCommand
[headfirst.command.undo.NoCommand headfirst.command.undo.NoCommand mamivndohas{hclas£
[headfirst.command.undo.NoCommand headfirst.command.undo.NoCommand

; ; - tommand exetuted, the
[slot 6] headfirst.command.undo.NoCommand headfirst.command.undo.NoCommand -
[undo] headfirst.command.undo.CeilingFanOffCommand Lf——————————————____/‘—‘_—'Ccm“SFbHOFCOmmand

Living Room ceiling fan is on medium £&— Undo the last tommand, and it goes back to medium.
Living Room ceiling fan is on high
= Now, turn it on high.

Remote Control
[slot 0] headfirst.command. .NoCommand headfirst.command.undo.NoCommand
[slot 1] headfirst.command. .CeilingFanMediumCommand headfirst.command.undo.CeilingFanOff-
Command
[slot 2] headfirst.command. .CeilingFanHighCommand headfirst.command.undo.CeilingFanOffCom-
mand
slot 3] headfirst.command.undo.NoCommand headfirst.command.undo.NoCommand
] headfirst.command.undo.NoCommand headfirst.command.undo.NoCommand
] headfirst.command.undo.NoCommand headfirst .command.undo.NoCommand
6] headfirst.command.undo.NoCommand headfirst.command.undo.NoCommand N o
undo] headfirst.command.undo.CeilingFanHighCommand <;r_~_________________— Ow;h@hlsthclas{

tommand exetuted.

[
[
[
[
[

Living Room ceiling fan is on medium 0
ne more undo, and the r:cil'mg fan

& goes back to medium speed.

you are here » 223

Download at WoweBook.Com

macro commands

Every remote needs a Party Mode! e

on()
off()
setCd()
setDvd()

What’s the point of having a remote if you can’t <o)
push one button and have the lights dimmed, the o
stereo and TV turned on and set to a DVD and the ong

- off()

hot tUb fl red up? circulate()
jetsOn()

jetsOff()
setTemperature()

on()
off()
setinputChannel()
setVolume()

dim()

Hmm, our remote
control would need a
button for each device, I
don't think we can do this.

Hold on Sue, don't be

so sure. I think we can
do this without changing the
remote at all!

Mary's idea is to make a new
kind of Command that can
exetute other Commands...
and more than one of them!
Pretty good idea, huh?

public class MacroCommand implements Command {
Command[] commands;

public MacroCommand (Command[] commands) {
this.commands = commands;
} F____ Take an array of
Commands and store them in the MaeroCommand.
public void execute() {
for (int 1 = 0; i1 < commands.length; i++) {
commands [1] .execute () ;

} When the macevo gets exetuted by the vemote,

} exeeute those tommands one at 3 fime.
224 Chapter 6

Download at WoweBook.Com

Using a macro command

the command pattern

Let’s step through how we use a macro command:

o First we create the set of commands we want to go into the macro:

Light light =
TV tv =
Stereo stereo =

Hottub hottub =

LightOnCommand lightOn =
StereoOnCommand stereoOn =

TVOnCommand tvOn =

new Light (“Living Room”) ;
new TV (“Living Room”) ;

Create all the devices, a light,

/- v, stereo, and hot tub.

Now eveate all the On

¢ tontrol them.
new LightOnCommand (light) ; c°”mahd5£° on
new StereoOnCommand (stereo) ;

new Stereo (“Living Room”) ;
new Hottub () ;

new TVOnCommand (tv) ;
HottubOnCommand hottubOn =

new HottubOnCommand (hottub) ;

7 harpen our pencil
S y

We will also need commands for the off buttons,
write the code to create those here:

Next we create two arrays, one for the On commands and one for the Off com-
mands, and load them with the corresponding commands:

partyOn =
partyOff =

Command []
Command []

MacroCommand partyOnMacro =
MacroCommand partyOffMacro =

Create an avvay for On

and an avray Qov 0££
\C Command&u
{ 1lightOn, stereoOn, tvOn, hottubOn};
{ lightOff, stereoOff, tvOff, hottubOff};

~and treate two
torresponding matros

to hold them.

new MacroCommand (partyOn) ;
new MacroCommand (partyOff) ;

e Then we assign MacroCommand to a button like we always do:

remoteControl.setCommand (0,

v Assigv\ the matro
tommand 'f:o a bu{:{on as
we would any tommand.

partyOnMacro, partyOffMacro);

you are here » 225

Download at WoweBook.Com

macro command exercise

e Finally, we just need to push some buttons and see if this works.

System.out.println (remoteControl) ;

System.out.println (“--- Pushing Macro On---");
remoteControl.onButtonWasPushed (0) ; ,
System.out.println (“--- Pushing Macro Off---"); *k*fsfhcowﬁwﬁ

remoteControl.offButtonWasPushed (0) ;

File Edit Window Help You Can'tBeatABabka

java RemoteLoader
Remote Control
0] headfirst.command. .MacroCommand headfirst.command.party.MacroCommand
1] headfirst.command. .NoCommand headfirst.command.party.NoCommand
2] headfirst.command. .NoCommand headfirst.command.party.NoCommand
3] headfirst.command. .NoCommand headfirst.command.party.NoCommand
4] headfirst.command. .NoCommand headfirst.command.party.NoCommand
5] headfirst.command. .NoCommand headfirst.command.party.NoCommand
6] headfirst.command. .NoCommand headfirst.command.party.NoCommand
] headfirst.command.party.NoCommand

e Here are the two macvo tommands.

--- Pushing Macro On---

Light is on

Living Room stereo is on

Living Room TV is on All the Commands in the macevo
Living Room TV channel is set for DVD are exetuted when we invoke
Hottub is heating to a steaming 104 degrees £he on matvo...

Hottub is bubbling!

—--- Pushing Macro Off---

Light is off

Living Room stereo is off and when we invoke the off
Living Room TV is off matro. Looks like it works.
Hottub is cooling to 98 degrees

[
5

226 Chapter 6

Download at WoweBook.Com

the command pattern

}

for

The only thing our MacroCommand is missing its undo functionality. When the
undo button is pressed after a macro command, all the commands that were invoked
in the macro must undo their previous actions. Here’s the code for MacroCommand;
go ahead and implement the undo() method:

public class MacroCommand implements Command {
Command[]

commands;

public MacroCommand (Command[] commands)
this.commands =

commands;

public void execute() {
(int 1 = 0;
commands [1] .execute () ;

public void undo () {

i < commands.length;

it++) |

Q: Do | always need a receiver?
Why can’t the command object
implement the details of the
execute() method?

A: In general, we strive for “dumb”
command objects that just invoke
an action on a receiver; however,
there are many examples of “smart”
command objects that implement
most, if not all, of the logic needed
to carry out a request. Certainly
you can do this; just keep in mind
you'll no longer have the same level
of decoupling between the invoker
and receiver, nor will you be able to
parameterize your commands with
receivers.

ere

umb “Questions

Q: How can | implement a history
of undo operations? In other words,
| want to be able to press the undo
button multiple times.

A: Great question! It's pretty
easy actually; instead of keeping just
a reference to the last Command
executed, you keep a stack of previous
commands. Then, whenever undo is
pressed, your invoker pops the first
item off the stack and calls its undo()
method.

Download at WoweBook.Com

Q: Could I have just implemented
Party Mode as a Command by
creating a PartyCommand and
putting the calls to execute the other
Commands in the PartyCommand'’s
execute() method?

A: You could; however, you'd
essentially be “hardcoding”the
party mode into the PartyCommand.
Why go to the trouble? With the
MacroCommand, you can decide
dynamically which Commands you
want to go into the PartyCommand,
so you have more flexibility using
MacroCommands. In general, the
MacroCommand is a more elegant
solution and requires less new code.

227

queuing requests

More uses of the Command Pattern: queving requests

Commands give us a way to package a piece of
computation (a receiver and a set of actions) and pass it
around as a first-class object. Now, the computation itself
may be invoked long after some client application creates
the command object. In fact, it may even be invoked by a
different thread. We can take this scenario and apply it to
many useful applications such as schedulers, thread pools
and job queues, to name a few.

Commands

Phred

Objects implementing Ehe (=
. . . a‘rc lo <
Imagine a job queue: you add commands to the queue tommand mteckace 'l . ol
on one end, and on the other end sit a group of threads. added to the queue: ;%maow‘"
Threads run the following script: they remove a command eier
. .) RayTra
from the queue, call its execute() method, wait for the call \h g\TM *
. . . . N il
to finish, then discard the command object and retrieve a . i
new one. rdcors” “\\Q,“Q'
W®

Threads remove tommands
from the queue one by one
and call their exeeute)
method. Once complete,
{:hc\/ 90 back ‘(:or a new
tommand ob\')cc{:-

Thread

Threads computing
jobs

Note that the job queue classes are totally decoupled from the ob-
jects that are doing the computation. One minute a thread may be
computing a financial computation, and the next it may be retrieving
something from the network. The job queue objects don’t care; they
just retrieve commands and call execute(). Likewise, as long as you
put objects into the queue that implement the Command Pattern,
your execute() method will be invoked when a thread is available.

228 Chapter 6

Download at WoweBook.Com

This gives us an effective way

. / %o limit computation toa
fixed number of threads.

Thread

@; RA\N
PQAQWEWR
How might a web server make

use of such a queue? What other
applications can you think of?

the command pattern

More uses of the Command Pattern: logging requests

The semantics of some applications require that we log all actions and be able to
recover after a crash by reinvoking those actions. The Gommand Pattern can support
these semantics with the addition of two methods: store() and load(). In Java we could
use object serialization to implement these methods, but the normal caveats for using
serialization for persistence apply.

<<interfaces>

How does this work? As we execute commands, we store a history of them on disk. e)(ecme()%
When a crash occurs, we reload the command objects and invoke their execute() undo()

methods in batch and in order.
Now, this kind of logging wouldn’t make sense for a remote control; however, there d()

are many applications that invoke actions on large data structures that can’t be quickly
saved each time a change is made. By using logging, we can save all the operations
since the last check point, and if there is a system failure, apply those operations to our
checkpoint. Take, for example, a spreadsheet application: we might want to implement
our failure recovery by logging the actions on the spreadsheet rather than writing a copy
of the spreadsheet to disk every time a change occurs. In more advanced applications,
these techniques can be extended to apply to sets of operations in a transactional
manner so that all of the operations complete, or none of them do.

We add two methods
for logging:

‘execute Store \-
store () \
oad ()
R 45 v
R A
,\‘e$ L.t N

T2 execute()

After a sys{xm Lailure,
{he oby etts are
o rc\oadcd and exetuted

Sto(iT)“ n t\\c LoY\‘Cﬂ't oY‘dCV
oSy
AS eath Lommahd

is cﬁcLU{Cd) itis execute

store ()

on d\Sk oad ()
stored jom y mandd® ¥z,
'-f’*‘o
load -
|

execute

store () 2.execute())
/Oa oad () ° b CEREOYR
(°4 Q N
o,mnc“& IRCUNE
Qe

@ L Zhvoker

store ()
oad ()
<, &

Mnand <
you are here » 229

Download at WoweBook.Com

your design toolbox

Tools for your Pesign Toolbox

Your toolbox is starting to get heavy! In this chapter
we’ve added a pattern that allows us to encapsulate
methods into Command objects: store them, pass them
around, and invoke them when you need them.

00 Printiples

12 t_a\vsu\a{;c what vavies:
N

mp \tion © nhey \kanu
o 0 ‘\Z [4
‘ avov to S| vevr n

'o‘b“ am hO “\l’,ﬂ ;35551 V\O&,

'\m\’\mcn\’zag‘“s‘

\ed desions
i \oosely ¢ovF! ‘
e £ o b

s\\ou\d be ofen for

E\:'\'s,::\ss'\om vt L\oscd or
- Lieation- |
modifi . Dot When You need to decow le an
bskrattions: . e
Dc\’md on 3 eveke tlasses: o\)\')cé{'. makmg veq

. that know how
the o\){t{:s i no\ucs{‘,sy e

%o perxorm

\ the Command Patteen
. .
00 Pattern .

dCYC“d on ton

S(t - 'vl -‘/AA.I\ 3 L ‘
e ¢ I P - e
v T in gy etk o vequest
- (t‘ ol =Y and ’E“La\vsu\a’us. a N

R Y rd Comm ¢k, theredy \ekbird 1° t

£ 7N ob | poan cbyetU B L ik dikrecen
. @ pavame pie EH8

3 ve
a s YY"YJ(' ’
-

230 Chapter 6

Download at WoweBook.Com

BULLET POIN&

The Command Pattern
decouples an object, making
a request from the one that
knows how to perform it.

A Command object is at the

center of this decoupling and
encapsulates a receiver with
an action (or set of actions) .

An invoker makes a request of
a Command object by calling
its execute() method, which
invokes those actions on the
receiver.

Invokers can be parameterized
with Commands, even
dynamically at runtime.

Commands may support undo
by implementing an undo
method that restores the object
to its previous state before

the execute() method was last
called.

Macro Commands are a simple
extension of Command that
allow multiple commands to

be invoked. Likewise, Macro
Commands can easily support
undo().

In practice, it is not uncommon
for “smart” Command objects
to implement the request
themselves rather than
delegating to a receiver.

Commands may also be used
to implement logging and
transactional systems.

the command pattern

Time to take a breather and let it all sink in.

It’s another crossword, all of the solution words are from
this chapter.

=Iiliil
ilEililillElill

IEEEEEEEEEEaN

‘

il
" |

= =
% =

Across Down

3. The Waitress was one 1. Role of customer in the command pattern

4. Acommand ____ a set of actions and a 2. QOur first command object controlled this
receiver 5. Invoker and receiver are

7. Dr. Seuss diner food 6. Company that got us word of mouth business
8. Our favorite city 10. All commands provide this

9. Act as the receivers in the remote control 11. The cook and this person were definitely

13. Object that knows the actions and the decoupled

receiver 12. Carries out a request

14. Another thing Command can do 16. Waitress didn't do this

15. Object that knows how to get things done
17. A command encapsulates this

you are here » 231

Download at WoweBook.Com

exercise solutions

' |

. +
WHQ DQES wWHaAT™?
Match the diner objects and methods with the corresponding names from the

E : Pcise Command Pattern

Diner Command Pattern

[]

So]Itlons Waitress Command

Short Order Cook execute()

orderUp() Client

Order Invoker

Customer Receiver

takeQrder() ——non setCommand()

@.dharpen your pencil
i your p

public class GarageDoorOpenCommand implements Command {

GarageDoor garageDoor;

public GarageDoorOpenCommand (GarageDoor garageDoor) {
this.garageDoor = garageDoor;

}

public void execute() {
garageDoor.up () ;

¥Jjava RemoteControlTest

Light is on

Garage Door is Open

%

232 Chapter 6

Download at WoweBook.Com

Exercise
solutions

Exercise

the command pattern

Write the undo() method for MacroCommand

public class MacroCommand implements Command {
Command[] commands;
public MacroCommand (Command[] commands) {
this.commands = commands;

}

public void execute() {
for (int 1 = 0; i < commands.length; i++) {
commands [1] .execute () ;
}
}

public void undo() {
for (int 1 = 0; 1 < commands.length; i++) {
commands [1] .undo () ;

}

@ harpen your Pencll We will also need commands for the off button.

Write the code to create those here:

LightOffCommand lightOff = new LightOffCommand (light) ;
StereoOffCommand stereoOff = new StereoOffCommand (stereo);
TVOffCommand tvOff = new TVOffCommand (tv) ;
HottubOffCommand hottubOff = new HottubOffCommand (hottub) ;

HI!

you are here » 233

Download at WoweBook.Com

Download at WoweBook.Com

7 the Adapter and Facade Patterns

*
-

+ Being Adaptive

Do you think the readers are
really getting the impression we're
watching a horse race rather than
sitting in a photo studio?

That's the
beauty of our profession,
we can make things look
like something they're not!

You

mean it's not
supposed to be a
football match?

g Wrapped in
» Y this coat,I’'ma
different man!

In this chapter we’re going to attempt such impossible feats as
putting a square peg in a round hole. Sound impossible? Not when we have
Design Patterns. Remember the Decorator Pattern? We wrapped objects to give them new
responsibilities. Now we’re going to wrap some objects with a different purpose: to make their
interfaces look like something they’re not. Why would we do that? So we can adapt a design
expecting one interface to a class that implements a different interface. That's not all; while
we're at it, we're going to look at another pattern that wraps objects to simplify their interface.

this is a new chapter 235

Download at WoweBook.Com

adapters everywhere

Adapters all around us

You’ll have no trouble understanding what an OO adapter is
because the real world is full of them. How’s this for an example:
Have you ever needed to use a US-made laptop in a European
country? Then you’ve probably needed an AC power adapter...

European Wall Qutlet

AC Power Adapter

Standard AC Plug

The US laptop expects
another interface.

S

The adapter converts one
in’ccr(—‘acc into another.

You know what the adapter does: it sits in between the plug of your laptop and the

European AC outlet; its job is to adapt the European outlet so that you can plug your ¢ wow\dz
laptop into it and receive power. Or look at it this way: the adapter changes the interface o onee ¥ Kk ok’
of the outlet into one that your laptop expects. Yow “3;,0'5 gan N

a0a¥

Some AC adapters are simple — they only change the shape of the outlet so that it matches
your plug, and they pass the AC current straight through — but other adapters are more
complex internally and may need to step the power up or down to match your devices’
needs.

Okay, that’s the real world, what about object oriented adapters? Well, our OO adapters
play the same role as their real world counterparts: they take an interface and adapt it to
one that a client is expecting.

236 Chapter 7

Download at WoweBook.Com

the adapter pattern

Object oriented adapters

Say you’ve got an existing software system that you need to work a new vendor class library
into, but the new vendor designed their interfaces differently than the last vendor:

Your Vendor

Existing Class
System >)

Their '\v\{',c\"g ate
e {;\-,cn \low to

ow Ve
makth the on€ 10

docSV\, K s isnt 9o

de aopinst T

Okay, you don’t want to solve the problem by changing your existing code (and you can’t
change the vendor’s code). So what do you do? Well, you can write a class that adapts the
new vendor interface into the one you’re expecting.

Your Adapter Vendor

Existing Class
System > > >)

fate
The adapter implements the e

And alks to Lhe vendor v
in{:cr«caéc Your tlasses expet t

sts.
Lo servite YoUr veque

The adapter acts as the middleman by receiving requests from the client and converting
them into requests that make sense on the vendor classes.

. so\v{'«"""

Your Adapter | Vendor Can You J‘“‘Qk ‘fm YOU to
Existing Class that doesn EYENT) ode
System weite ANY addibie vendor

ko 'm{-,c(bra‘hc the Y\:“ aind the

7 Wow dbovt ™
C\as;:i sv\’:\:l the adapter €128
ven

l\

No ¢ode ¢hanges.

New ¢tode.

No tode thanges.

Download at WoweBook.Com

you are here » 237

turkey

If it walks like a duck and quacks like a duck,
then it must might be a-dvek turkey wrapped
with a duck adapter...

It’s time to see an adapter in action. Remember our
ducks from Chapter 1? Let’s review a slightly simplified
version of the Duck interfaces and classes:

¢ N\

v
public interface Duck { This time avound, ¥ "
public void quack(); dueks -\m‘;\cmcn{ a .
public void fly(); kevkate that a\\o:ﬁ\!
} Dcks £o quatk 2"

Here’s a subclass of Duck, the MallardDuck.

public class MallardDuck implements Duck {
public void quack() {

System.out.println (“Quack”) ; \ enkations: the duek
. 1 em . °
} S— Sm’t\j\‘;\:{‘; P what ik s doiny
\us
public void fly () { 7SN
System.out.println(“I’'m flying”);
}
}
Now it’s time to meet the newest fowl on the block:
(50\)\‘.)\6-

Turkeys dont a\ua(,\(, they

public interface Turkey {
public void gobble () ;

public void fly();
! \— kacys tan ﬂ\/, alfhough 'thc\/

tan onl\/ ‘pl\/ short distantes.

238

Download at WoweBook.Com

the adapter pattern

'.mv\cmcnjca{’—'m“
it just

public class WildTurkey implements Turkey { Hcrc'saw"”dx
public void gobble() { &/ | of Turkey; like Duck,
System.out.println (“Gobble gobble”); / Yr.mjcs ouk ks attions.

}

public void fly () {
System.out.println(“I'm flying a short distance”);

}

Now, let’s say you’re short on Duck objects and you’d like to
use some Turkey objects in their place. Obviously we can’t
use the turkeys outright because they have a different interface.

So, let’s write an Adapter:

Code Up Close
First, you need to implement the interface

of the type you've adapting to. This is the
interface your client expeets to see.

public class TurkeyAdapter implements Duck {

Turkey turkey;
Next, we need to et a veferente o
public TurkeyAdapter (Turkey turkey) { K the ob\')cﬁ{: that we are ada\’{:ing; here

this.turkey = turkey; we do that H\\rcugh the tonstructor.
}

public void quack() { f Now we need to implement all the methods in
turkey.gobble () ; the interface; the quack() translation between
}

elasses is easy: \')us{: eall the gobblc() method.

public void fly () {
for (int i=0; i < 5; i++) {

. <& N\
) turkey. iy (); Even though both interfates have a ﬂyo

} method, Tu\rkc\/s 1(31\/ in short s?w{:s - {:hcy
} ean't do long—distance ‘("l\/'mg like dutks. To
map between a Duek’s £y method and a
Turkey's, we need to call the Tuckey's fiyO
method five times to make vp for it

you are here » 239

Download at WoweBook.Com

test the adapter

Test drive the adapter

Now we just need some code to test drive our adapter:

public class DuckTestDrive {
public static void main(String[] args) { [“

Test vun -

eN
Lc’c’s txeajcc a V¥

MallardDuck duck = new MallardDuck () ; and 3 Tuekel

WildTurkey turkey = new WildTurkey () ; And then wrap the turkey
Duck turkeyAdapter = new TurkeyAdapter (turkey); n 3 kac\IAda\?{:ev, whith
. makes it look like a Duek.
System.out.println (“The Turkey says...”);
turkey.gobble () ;
turkey.fly () ; T Then, let’s test the Tur}:(c\/:
make it aobble, make it fly.
System.out.println (“\nThe Duck says...”); 3 ' \l
testDuck (duck) ;
estDuck (duck) N Now let’s test the duek
System.out.println (“"\nThe TurkeyAdapter says...”); b\/ Ca"'mg the {:cS‘EDUCkO
testDuck (turkeyAdapter) ; method, which expects a
} Duek ob\’)cd;
Now the .
static void testDuck (Duck duck) { of_pﬂ, Cblg .éch‘
duck.quack () ; LN Bt ¢ fur/(eya' we f*‘y ¢
duck.1ly () ; TS o LetDutk() meth; 14 © 9 duef, * Pass
/ 3% @ duck and ealls its gy z0)
ahd ‘p’y() ”‘C‘lihods. ‘1
File Edit Window Help Don’tForgetToDuck
%java RemoteControlTest
The Turkey says... Vs The kacy 9 obbles and
Gobble gobble flies a short distance.
I'm flying a short distance
The Duck says... The Duek quacks and flies
Quack \')us{: like \/ou’d expect.
I'm flying
gh;b'll.‘urkegﬁcfapter says. .. " \
O. e go e ; A“d the adava‘ goboles W en
I'm flying a short distance ‘e vaek() is called and flies a few

I'm flying a short distance q .
I'm flying a short distance times when (:l\/() is called. The "
I'm flying a short distance testDuek() method never knows ,n
I'm flying a short distance has a turkey disguised as 3 duek!

240 Chapter 7

Download at WoweBook.Com

the adapter pattern

The Adapter Pattern explained

Now that we have an idea of what an Adapter is, let’s step back
and look at all the pieces again.

Client

The Client is implemented
against the target interface.

3daptee
(get wnterta® ‘Mterface S
ta The Adapter implements the Turkey was the
target interface and holds an fee i {_’cr‘(ja“
instance of the Adaptee. s adaptee in
ke
ey en .
Tu*\LgP‘::E' ¢ vgaCC)D“L\L
Yne WY
Here’s how the Client uses the Adapter
Q The client makes a request to the
adapter by calling a method on it using
the target interface. that the Client and Pdaptee
Note thd ikher knows
— nerthevy
© The adapter translates the request into ave degovpled —

thevr-
one or more calls on the adaptee using oot the ot

the adaptee interface.
© The client receives the results of the

call and never knows there is an adapter
doing the translation.

241

Download at WoweBook.Com

pattern defined

— @oharpen your pencil
narpenyor ¢

Let’s say we also need an Adapter that converts a Duck to a Turkey.
Let’s call it DuckAdapter. Write that class:

How did you handle the fly method (after all we know ducks fly longer than turkeys)? Check the answers at
the end of the chapter for our solution. Did you think of a better way?

Qj How much “adapting” does

an adapter need to do? It seems like

if I need to implement a large target
interface, | could have a LOT of work on
my hands.

AZ You certainly could. The job

of implementing an adapter really is
proportional to the size of the interface you
need to support as your target interface.
Think about your options, however. You
could rework all your client-side calls to
the interface, which would result in a lot

of investigative work and code changes.
Or, you can cleanly provide one class that
encapsulates all the changes in one class.

242

therejare no
Dumb Questions

Q- Does an adapter always wrap one
and only one class?

A: The Adapter Pattern’s role is to
convert one interface into another. While
most examples of the adapter pattern show
an adapter wrapping one adaptee, we both
know the world is often a bit more messy.
So, you may well have situations where an
adapter holds two or more adaptees that are
needed to implement the target interface.

This relates to another pattern called the
Facade Pattern; people often confuse the
two. Remind us to revisit this point when we
talk about facades later in this chapter.

Download at WoweBook.Com

Q: What if | have old and new parts
of my system, the old parts expect the
old vendor interface, but we’ve already
written the new parts to use the new
vendor interface? It is going to get
confusing using an adapter here and the
unwrapped interface there. Wouldn't | be
better off just writing my older code and
forgetting the adapter?

AZ Not necessarily. One thing you
can do is create a Two Way Adapter that

supports both interfaces. To create a Two
Way Adapter, just implement both interfaces
involved, so the adapter can act as an old
interface or a new interface.

the adapter pattern

Adapter Pattern defined

Enough ducks, turkeys and AC power adapters; let’s get real and look at the official
definition of the Adapter Pattern:

The Adapter Pattern converts the interface of a class
mto another interface the clients expect. Adapter lets
classes work together that couldn’t otherwise because of
incompatible interfaces.

Now, we know this pattern allows us to use a client with an incompatible interface by
creating an Adapter that does the conversion. This acts to decouple the client from
the implemented interface, and if we expect the interface to change over time, the
adapter encapsulates that change so that the client doesn’t have to be modified each
time it needs to operate against a different interface.

We've taken a look at the runtime behavior of the pattern; let’s take a look at its class
diagram as well:

Client i » <<interface>> ~ The Ada‘;{cr im?\thV\{'«s

Target i
request() ' the Tav‘gc{: m{:cr(: ate.

=

The client sees only the
Target interfate.

request() specificRequest()

Ada.pter i__) Adaptee h

N All vequests get
Adapter is tomposed delegated to the

with the Adancc. Adaptee.

The Adapter Pattern is full of good OO design principles: check out the use of object
composition to wrap the adaptee with an altered interface. This approach has the
added advantage that we can use an adapter with any subclass of the adaptee.

Also check out how the pattern binds the client to an interface, not an
implementation; we could use several adapters, each converting a different backend
set of classes. Or, we could add new implementations after the fact, as long as they
adhere to the Target interface.

you are here » 243

Download at WoweBook.Com

object and class adapters

Object and class adapters

Now despite having defined the pattern, we haven’t told you the whole story yet.
There are actually &wo kinds of adapters: object adapters and class adapters. This
chapter has covered object adapters and the class diagram on the previous page is a
diagram of an object adapter.

So what’s a class adapter and why haven’t we told you about it? Because you need
multiple inheritance to implement it, which isn’t possible in Java. But, that doesn’t
mean you might not encounter a need for class adapters down the road when using
your favorite multiple inheritance language! Let’s look at the class diagram for
multiple inheritance.

Client . > Target Adaptee
request() specificRequest()

Adapter
request()

th‘{and O‘(: using Com—
?osi{ion to adapt the
Adaptee, the Adapter now
subtlasses the Adaptee
and the Targc{: tlasses.

Look familiar? That’s right — the only difference is that with class adapter we
subclass the Target and the Adaptee, while with object adapter we use composition
to pass requests to an Adaptee.

B BRANVN
PQWwWEWwR

Object adapters and class adapters use two different means of
adapting the adaptee (composition versus inheritance). How do these
implementation differences affect the flexibility of the adapter?

244 Chapter 7

Download at WoweBook.Com

Duck Magnets

Your job is to take the duck and turkey magnets and
drag them over the part of the diagram that describes
the role played by that bird, in our earlier example. (Try
not to flip back through the pages.) Then add your own
annotations to describe how it works.

Class Adapter

Client > Target Adaptee
request() specificRequest()
Adapter
request()
Object Adapter
Client - <<interface>>
o Target
request()
g
Adapter > Adaptee
request() specificRequest()

frag these onto the ¢lass di
0 show which Pavrt of the di
represents the D e

uek :
represents {he kae;nd whi¢h

d9ram,

Download at WoweBook.Com

the adapter pattern

you are here » 245

exercise answers

Duck Magnets
Answer

Class Adapter

Note: the ¢)ass adapter uses

multiple inherit;
ean't do it inlJa'\\/z.c.’. e

Duck tlass

Client
ot
C“cn{: {;th - e T Y\LC\f does "as
.(:a“(ihs . asD :C IS(The T avg)c‘h_;_s\\t The ‘C\\c sgme ™ ‘“‘QS:Y ta
| e T .‘ have uk £ daay
s what the elien n Adapter oo ek oy o ‘
nvoKes mekhods © requesi() Jcakdc ke 20O a“d\::\‘.o
The A x Lhods O" the 140 !
€ fidapter lets the Turkey vespond "
Bo requests op 3 Duck, b\/ extendin
OTH ¢lasses (Duek and Turkey). ?
Duek intecfate.
Object Adapter
- T:c }‘wkcy tlass doesn’t have the s3
m
Intertace as the Dyek. In other Wo\r-ds,c

Client thinks he’
'l:a“(ing toa Du(.i.

kaeys don’t have quack() methods, efe.

Just 33 W »
tne Tavae -‘s\:\a Turkey
t\ass: This s on : ob)cc{.
 es c’c\‘\"ds Adapter _ Adaptee
Vo request() ~| specificRequest()
key
. tev, Lhe Tue
?;erigdap{:cr implements the Duek Thanks to {—,\nc\ Ads\’ca\\s that the
ace, b'A'l', when If 58{',5 a3 (P‘dav&ce) ‘N\\ C Dufa\‘ n r£36c

246 Chapter 7

mc{:hod eall
dc’cgafcs

it turns around and lient malies <"

the calls 4o 3 kaey.

Download at WoweBook.Com

the adapter pattern

F]‘I:Q_Slde Chats Tonight’s talk: The Object Adapter and Class Adapter

(Q meet face to face.
)
=
Object Adapter Class Adapter

Because I use composition I've got a leg up. I can
not only adapt an adaptee class, but any of its

subclasses.)
That’s true, I do have trouble with that because

I am committed to one specific adaptee class,
but I have a huge advantage because I don’t
have to reimplement my entire adaptee. I can
also override the behavior of my adaptee if I
need to because I'm just subclassing

In my part of the world, we like to use

composition over inheritance; you may be

saving a few lines of code, but all I'm doing is

writing a little code to delegate to the adaptee.

We like to keep things flexible.
Flexible maybe, efficient? No. Using a class
adapter there is just one of me, not an adapter
and an adaptee.

You’re worried about one little object? You
might be able to quickly override a method,
but any behavior I add to my adapter code
works with my adaptee class and all its
subclasses.

Yeah, but what if a subclass of adaptee adds

. 1 ?
Hey, come on, cut me a break, I just need to some new behavior. Then what!

compose with the subclass to make that work.

Sounds messy...

You wanna see messy? Look in the mirror!

you are here » 247

Download at WoweBook.Com

real world adapters

Real world adapters

Let’s take a look at the use of a simple Adapter in the real world
(something more serious than Ducks at least)...

0ld world Enumerators

3 sm\Y\c .\V\‘hc"& ate
If you’ve been around Java for a while Emmcﬂ{‘” has
you probably remember that the early
collections types (Vector, Stack, Hashtable, ;<inteﬁactg>> Tells you if H\c.rc are av‘\ly N
and a few others) implement a method hasMoreEIe;:r:'t,se()ra o more elements in the collection
elements(), which returns an Enumeration. nextElement()

The Enumeration interface allows you to
step through the elements of a collection Gives you th
without knowing the specifics of how they in {-),cyw“ cc-zi::%t element

are managed in the collection.

Pinalogous to hasMo\reE\Cmcn{:s()

New world Iterators in the Enumeration interface
This method just Lells you i -

When Sun released their more recent o \/ou’ ve looked at all the items in

Collections classes they began using an Iterator J the collection.

Iterator interface that, like Enumeration, hasNext(

fclllows you to iterate through a set qf .items :’:;?v o <—— Gives you the next:

ina collf:ctlon, but also adds the ability to <\ element in the colleetion.

remove items.

ch\ovcs an item
lp\rom the colleetion.

And today...

We are often faced with legacy code that exposes the
Enumerator interface, yet we’d like for our new code to use
only Iterators. It looks like we need to build an adapter.

248 Chapter 7

Download at WoweBook.Com

the adapter pattern

Adapting an Enumeration to an lterator

First we’ll look at the two interfaces to figure out how the methods map from
one to the other. In other words, we’ll figure out what to call on the adaptee
when the client invokes a method on the target.

These two methods look easy,
'f:hc\/ map s{:vraigh{: +o hasNext()

Target interLace 1 and next() in [tevator.

<<interface>> <<interface>> '
Iterator Enumeration
hasNext() | — hasMoreElements() I
next() ~ > | nextElement()
remove()
ﬂ T Adaptee interface

But what about this method
remove() in [tevator? There's
no{:\'\ihg like that in Enumevation.

Pesigning the Adapter

Here’s what the classes should look like: we need an adapter that implements
the Target interface and that is composed with an adaptee. The hasNext() and
next() methods are going to be straightforward to map from target to adaptee:
we just pass them right through. But what do you do about remove()? Think
about it for a moment (and we’ll deal with it on the next page). For now, here’s
the class diagram:

Your new tode still 56‘{35 — «i?tteGrraf?g?» We've making +he Enumevations
Lo use |[tevators, even rasNext in your old ¢tode look like
if there’s veally an n:;s(t{)ex 0 [tevators for your new tode.
Enumevation underneath. remove() A class .
FAS implementing
: 'H'\ e Envmﬂ-a{;wh
interfate is the
: . adaptee
; > <<interface>>
Enumevation|terator — Enumerationiterator iy Enumeration I
is the ada?'f:cr. hasNext() hasMoreElements()
next() nextElement()
remove()

you are here » 249

Download at WoweBook.Com

enumeration iterator adapter

Pealing with the removel() method

Well, we know Enumeration just doesn’t support remove. It’s a “read only” interface.
There’s no way to implement a fully functioning remove() method on the adapter. The
best we can do is throw a runtime exception. Luckily, the designers of the Iterator
interface foresaw this need and defined the remove() method so that it supports an
UnsupportedOperationException.

This 1s a case where the adapter isn’t perfect; clients will have to watch out for potential
exceptions, but as long as the client is careful and the adapter is well documented this is

a perfectly reasonable solution.

Writing the Enumerationlterator adapter

Here’s simple but effective code for all those legacy classes still producing Enumerations:

public class EnumerationIterator implements Iterator

{

250

m Sinte we've adapting Enumeration

%o [tevator, our Adapter
implements the [terator inteckace..
it has +o look like an I'(:cra{vo\r-

Enumeration enum;

. . . The Enumeration we've adapting
public EnumerationIterator (Enumeration enum) {

this.enum = enum: We've using t,om\?osi{:ion so we stash
} ' ' it in an instance variable.

lie bool The [terator’s hasNext() method
public boolean hasNext () { is delegated to the Enumeration’s
return enum.hasMoreElements () ;

} hasMoreElements() method...
Plic Obiect o ... and the [terator’s next() method
public ject nex /

is delegated to the Enumerations’s
return enum.nextElement () ;

} nextElement() method.

public void remove () { —_ l,(n(:or{:una{:d\/; we tan't su?‘)oy-{;

throw new UnsupportedOperationException () ;
} lfc\ra{:or)s rc"\ovC() mC‘{’,\nod, so

we have to punt (in other words,
we give u?!). Heve we \‘)us{: throw
an exteption.

Chapter 7

Download at WoweBook.Com

the adapter pattern

While Java has gone in the direction of the Iterator, there is nevertheless a lot of
legacy client code that depends on the Enumeration interface, so an Adapter
that converts an Iterator to an Enumeration is also quite useful.

Write an Adapter that adapts an Iterator to an Enumeration. You can test your

code by adapting an ArrayList. The ArrayList class supports the Iterator interface
but doesn’t support Enumerations (well, not yet anyway).

-@RA\N
PaAaweEwR

Some AC adapters do more than just change the interface — they add other features like surge
protection, indicator lights and other bells and whistles.

If you were going to implement these kinds of features, what pattern would you use?

you are here » 251

Download at WoweBook.Com

fireside chats: decorator and adapter

- —

Fireside Chats

Decorator

I'm important. My job is all about responsibility —
you know that when a Decorator is involved there’s
going to be some new responsibilities or behaviors
added to your design.

That may be true, but don’t think we don’t
work hard. When we have to decorate a big
interface, whoa, that can take a lot of code.

Cute. Don’t think we get all the glory; sometimes
I’'m just one decorator that is being wrapped by
who knows how many other decorators. When a
method call gets delegated to you, you have no
idea how many other decorators have already dealt
with it and you don’t know that you’ll ever get
noticed for your efforts servicing the request.

252 Chapter 7

Tonight’s talk: The Decorator Pattern and the Adapter
Pattern discuss their differences.

Adapter

You guys want all the glory while us adapters
are down in the trenches doing the dirty work:
converting interfaces. Our jobs may not be
glamorous, but our clients sure do appreciate
us making their lives simpler.

Try being an adapter when you’ve got to bring
several classes together to provide the interface
your client is expecting. Now that’s tough. But
we have a saying: “an uncoupled client is a
happy client.”

Hey, if adapters are doing their job, our clients
never even know we’re there. It can be a thank-
less job.

Download at WoweBook.Com

Decorator

Well us decorators do that as well, only we allow
new behavior to be added to classes without altering
existing code. I still say that adapters are just fancy

decorators — I mean, just like us, you wrap an object.

Uh, no. Our job in life is to extend the
behaviors or responsibilities of the objects we
wrap, we aren’t a sumple pass through.

Maybe we should agree to disagree. We seem
to look somewhat similar on paper, but clearly
we are miles apart in our nfent.

the adapter pattern

Adapter

But, the great thing about us adapters is that we
allow clients to make use of new libraries and
subsets without changing any code, they just rely
on us to do the conversion for them. Hey, it’s a
niche, but we’re good at it.

No, no, no, not at all. We always convert the
interface of what we wrap, you never do. I'd
say a decorator is like an adapter; it is just that
you don’t change the interface!

Hey, who are you calling a simple pass
through? Come on down and we’ll see how
long you last converting a few interfaces!

Oh yeah, I’'m with you there.

253

Download at WoweBook.Com

who does

And now for something different...

There’s another pattern in this chapter.

You've seen how the Adapter Pattern converts the interface of a class into
one that a client is expecting. You also know we achieve this in Java by
wrapping the object that has an incompatible interface with an object that
implements the correct one.

We’re going to look at a pattern now that alters an interface, but for a
different reason: to simplify the interface. It’s aptly named the Facade
Pattern because this pattern hides all the complexity of one or more
classes behind a clean, well-lit facade.

N

*
WHQ DQES wHHaT™

Match each pattern with its intent:

Pattern Intent

Converts one interface to
DeOQK‘EttOY allotber

Adapter Doesn’t alter the interface, but
adds responsibility

Facade
Makes an interface simpler

254

Download at WoweBook.Com

the adapter pattern

Home Sweet Home Theater

Before we dive into the details of the Facade Pattern, let’s take a look

at a growing national obsession: building your own home theater.

You've done your research and you’ve assembled a killer system
complete with a DVD player, a projection video system, an
automated screen, surround sound and even a popcorn popper.

Check out all the components you've put together:

§ Amplifier :
tuner
dvdPlayer
cdPlayer
on()
Y of)
Tuner setCd()
amplifier setDvd() > DvdPlayer
o) setStereoSound() amplifier
setSurroundSoud())
- onl h lot of
T s alo
gl That
seffm() efect) tlasses, a lot
setFrequency() pause() o('\ .IY\'ECV‘a ¢ ‘EIOV\S,
play() .
ply() and a big set of
o setSurroundAudio() .
1 CdPlayer setTwoChannelAudio() "‘kcrﬁa“s to
amplifier stop() learn and use
Screen i on()
up() off)
down() eject()
pause()
play()
play()
stop() Projector
T — L dvdPlayer

PopcomPopper h on()

off()
on()

tvMode()
off) TheaterLights h wideScreenMode()
pop()

on()
off()
dim()

You’ve spent weeks running wire, mounting the projector, making all
the connections and fine tuning, Now it’s time to put it all in motion
and enjoy a movie...

you are here » 255

Download at WoweBook.Com

tasks to watch a movie

Watching a movie (the hard way)

Pick out a DVD, relax, and get ready for movie magic. Oh,
there’s just one thing - to watch the movie, you need to
perform a few tasks:

© Turn on the popcorn popper

© Start the popper popping

O Dim the lights

O Put the sereen down

© Turn the projector on

O Set the projector input to VD

© Put the projector on wide-screen mode
O Turn the sound amplifier on

© Set the amplifier to PVD input

© Set the amplifier to surround sound

® Set the amplifier volume to medium (5)
@ Turn the PVD Player on

® Start the OV Player playing

I'm already exhausted
and all T've done is turn
everything on!

256 Chapter 7

Download at WoweBook.Com

the adapter pattern

Let’s check out those same tasks in terms of the classes and the
method calls needed to perform them:

Turn on the popeorn popper and start

/ Popping:-
popper.on () ;

popper.pop () ; o
Dim the \ig\'\‘hs to 10%...

/ lights.dim(10) ; /
/ screen.down () ;
Gin dif fevent tlasses \{ _/ Put the streen down
(T3

projector.on () ;

'mvo\vcd! \ projector.setInput (dvd) ;) Litin
\ projector.wideScreenMode () ~___ Turn on the YVOJCCbV and ?“_ !

wide streen mode Yor the movie..

amp.on() ;

amp.setDvd (dvd) ;

amp.setSurroundSound () ; Tuen on the amp, set it to DvD, Yu‘[’.

amp . setvolume (5) ; it in surround sound mode and set the

dvd.on () ; volume to 5...
dvd.play (movie) ;

Turn on the DvD Y\a\/cr... g
and FlNALLY, ?la\/ Jchc movie!

But there’s more...

® When the movie is over, how do you turn everything off?
Wouldn’t you have to do all of this over again, in reverse?

" Wouldn’t it be as complex to listen to a CD or the radio?

If you decide to upgrade your system, you’re probably going

to have to learn a slightly different procedure.

So what to do? The complexity of using your home theater is becoming apparent!

Let’s see how the Facade Pattern can get us out of this mess so we can enjoy the movie...

you are here » 257

Download at WoweBook.Com

lights camera facade

Lights, Camera, Facade!

A Facade is just what you need: with the Facade Pattern you can take a complex
subsystem and make it easier to use by implementing a Facade class that
provides one, more reasonable interface. Don’t worry; if you need the power

of the complex subsystem, it’s still there for you to use, but if all you need is a
straightforward interface, the Facade is there for you.

Let’s take a look at how the Facade operates:

(1] Okay, time to create a
Facade for the home
theater system. To do
this we create a new class
HomeTheaterFacade,

which exposes a few ’\, to implement its
simple methods such as watchMovie() method,

watchMovie. oo HomeTheaterFacade § ...
: watchMovie() :

endMovie()
listenToCd()
endCd()
listenToRadio()
endRadio()

e The Facade class treats
the home theater

components as a
subsystem, and calls
on the subsystem

Amplifier

tuner

/ dvdPlayer
odPlayer
on()

/ off()

setcd()

selDvdl)
setStereoSound()
setSuroundSoud
setTuner()

setVolume()

DvdPlayer

ampliier

ampifier

onf
off)
eject()

pause()
play()

play()
setSuroundAudiof)
setTwoChannelAudiol)
stop()

on()
off()
sethm()
setfm()
setFrequency()

CdPlayer

ampifier

Screen

The subs\[s{:cm {:\r\c.
Facade is implikyind)

Projector

dvdPlayer

on()
off)
tuMode()

wideScreenMode(

PopcornPopper

onf)
off)
pop()

)

TheaterLights

258 Chapter 7

Download at WoweBook.Com

the adapter pattern

. Watc .
hMOVIe() A client of the
[— -subsystem fatade

e Your client code now calls
methods on the home theater

Facade, not on the subsystem.
So now to watch a movie we just
call one method,watchMovie(),
and it communicates with the
lights, DVD player, projector,
amplifier, screen, and popcorn
maker for us.

T've got to have my
low-level access!

e The Facade still leaves the subsystem

£~~~ 2<;Cezsiihble to be used directly. If you
e advanced functionali
Formerly yrcs\da\{: of of the subsystem classes 'tC;]neahty
fhe Rushmore High Sehool available for your use. «they are

p/V Stiente Clvb.

you are here » 259

Download at WoweBook.Com

facade adapter

there_are no

Dumb Questions

Q: If the Facade encapsulates the
subsystem classes, how does a client
that needs lower-level functionality gain
access to them?

A: Facades don't “encapsulate” the
subsystem classes; they merely provide a
simplified interface to their functionality. The
subsystem classes still remain available

for direct use by clients that need to use
more specific interfaces. This is a nice
property of the Facade Pattern: it provides

a simplified interface while still exposing the
full functionality of the system to those who
may need it.

Q: Does the facade add any
functionality or does it just pass through
each request to the subsystem?

A: Afacade is free to add its own
“smarts” in addition to making use of the
subsystem. For instance, while our home
theater facade doesn’t implement any new
behavior, it is smart enough to know that the
popcorn popper has to be turned on before it
can pop (as well as the details of how to turn
on and stage a movie showing).

Q} Does each subsystem have only
one facade?

A: Not necessarily. The pattern
certainly allows for any number of facades to
be created for a given subsystem.

260

Q_z What is the benefit of the facade
other than the fact that | now have a
simpler interface?

A: The Facade Pattern also allows
you to decouple your client implementation
from any one subsystem. Let's say for
instance that you get a big raise and decide
to upgrade your home theater to all new
components that have different interfaces.
Well, if you coded your client to the facade
rather than the subsystem, your client code
doesn’t need to change, just the facade
(and hopefully the manufacturer is supplying
that!).

Q: So the way to tell the difference
between the Adapter Pattern and the
Facade Pattern is that the adapter wraps
one class and the facade may represent
many classes?

A: No! Remember, the Adapter Pattern
changes the interface of one or more
classes into one interface that a client is
expecting. While most textbook examples
show the adapter adapting one class, you
may need to adapt many classes to provide
the interface a client is coded to. Likewise,
a Facade may provide a simplified interface
to a single class with a very complex
interface.

The difference between the two is not in
terms of how many classes they “wrap,” it
is in their intent. The intent of the Adapter
Pattern is to alter an interface so that it
matches one a client is expecting. The
intent of the Facade Pattern is to provide a
simplified interface to a subsystem.

Download at WoweBook.Com

A facade not
only simplifies
an interface, it
Jecouples a client
from a sul;system
of COmPonents.

Facao[es anJ

aJapters may
wrap multi])le
classes, but a
facade’s intent is
to simplify, while
an aJapter’s

is to convert

the interface

1o s0met]ming
different.

the adapter pattern

Constructing your home theater facade

Let’s step through the construction of the HomeTheaterFacade: The
first step is to use composition so that the facade has access to all the
components of the subsystem:

public class HomeTheaterFacade {

Amplifier amp; Heve's the t,om\?os'l‘{','lonj i\(':\csc
Tuner tuner; ave all the com\voncn{',s the
DvdPlayer dvd; subs\ls{‘,t"‘ we are 5o'mg to use.

CdPlayer cd;
Projector projector;
TheaterLights lights;
Screen screen;
PopcornPopper popper;

public HomeTheaterFacade (Amplifier amp,
Tuner tuner,
DvdPlayer dvd,
CdPlayer cd,
Projector projector,
Screen screen,

& The facade is passed a

TheaterLights lights, rc‘CCYCnCc +o eath Lfm?ontn‘{:
PopcornPopper popper) { of the subsys’ccm in its
construetor. The facade
this.amp = amp; then assigv\s eath to the
this.tuner = tuner; torresponding instante vaviable.

this.dvd = dvd;

this.cd = cd;
this.projector = projector;
this.screen = screen;
this.lights lights;
this.popper = popper;

// other methods here We've :
eve just about to £ill these in...

you are here » 261

Download at WoweBook.Com

implementing facade

Implementing the simplified interface

Now it’s time to bring the components of the subsystem together into a unified interface.
Let’s implement the watchMovie() and endMovie() methods:

public void watchMovie (String movie) {
System.out.println (“Get ready to watch a movie...”);
popper.on() ;
popper.pop () ;

lights.dim(10); watehMovie) Lollows the same sequente
screen.down () ; /_\ we had to do b\/ hand bC‘coY‘c, but wraps
projector.on(); it up in a handy method that does all
projector.wideScreenMode () ; the work. No{'lcc ’cha{: ‘(:o\r eath task we

amp.on () ;

amp.setDvd (dvd) ;
amp.setSurroundSound () ;
amp.setVolume (5) ;
dvd.on () ;

dvd.play (movie) ;

ave delegating the vesponsibility to the
torresponding tomponent in £he subsystem.

}

public void endMovie () {
System.out.println (“Shutting movie theater down...”);
popper.off();
lights.on();

screen.up () ; L/—\
projector.off () ; And endMovieO) takes tave

amp.off(); of shu{:{ing cvcry{:hing down
dvd. sFop() ; for us. Again, each task is
dvd.eject () ; delegated to the appropriate

} dvd.off () ; tomponent in the subsystem.

—@wtmu
Vawew

Think about the facades you’'ve encountered in the Java API.
Where would you like to have a few new ones?

262 Chapter 7

Download at WoweBook.Com

Time to watch a movie (the easy way)

the adapter pattern

It’'s SHOWTIME!
Here we've ereating the tomponents
public c-lass Hor.neThe‘.aterT.eStDriYe { righ{: in the test drive. Normall\/ the
public static void main(String[] args) { client is 5'|Vcn a Facadc, it docsn’{: have
// instantiate components here to tomsbruet one i'[',scl-c.

HomeTheaterFacade homeTheater =
new HomeTheaterFacade (amp, tuner, dvd, cd, <&—— Firs‘t ou ins{:an‘tia‘[:c
projector, screen, lights, popper):; the F;/cadc with all the

tomponents in the SubS\/s{‘,Cm.

homeTheater.watchMovie (“"Raiders of the Lost Ark”);
homeTheater.endMovie () ;

Use the simplified interf

: pliried intertace Jca

} &/ £iest start the movie wp, and
then shut it down.

File Edit Window Help SnakesWhy'dltHaveToBeSnakes?

Here’s £he output. %java HomeTheaterTestDrive
Ca”ing the Facade’s Get ready to watch a movie...
watehMovie() does all Popcorn Popper on

this work for us... Popcorn Popper popping popcorn!
Theater Ceiling Lights dimming to 10%

Theater Screen going down

Top-O-Line Projector on

Top-O-Line Projector in widescreen mode (16x9 aspect ratio)
Top-O-Line Amplifier on

Top-O-Line Amplifier setting DVD player to Top-O-Line DVD Player
Top-O-Line Amplifier surround sound on (5 speakers, 1 subwoofer)

Top-O-Line Amplifier setting volume to 5

Top-O-Line DVD Player on
Top-O-Line DVD Player playing “Raiders of the Lost Ark”
Shutting movie theater down...

-and heve, we've done 27 Popcorn Po?p?r of.f

wa{chins the movie, so Theater Ceiling Lights on

Ca”ing endMovie() Lurns Theater Screen going up

Top-O-Line Projector off

Top-O-Line Amplifier off

Top-O-Line DVD Player stopped “Raiders of the Lost Ark”
Top-O-Line DVD Player eject

Top-O-Line DVD Player off

%

everything off. v

you are here »

Download at WoweBook.Com

facade pattern defined

Facade Pattern defined

To use the Facade Pattern, we create a class that simplifies and unifies a set of more

complex classes that belong to some subsystem. Unlike a lot of patterns, Facade is fairly
straightforward; there are no mind bending abstractions to get your head around. But that
doesn’t make it any less powerful: the Facade Pattern allows us to avoid tight coupling between
clients and subsystems, and, as you will see shortly, also helps us adhere to a new object
oriented principle.

Before we introduce that new principle, let’s take a look at the official definition of the pattern:

The Facade Pattern provides a unified interface to a
set of interfaces in a subsytem. Facade defines a higher-
level interface that makes the subsystem easier to use.

There isn’t a lot here that you don’t already know, but one of the most important things

to remember about a pattern is its intent. This definition tells us loud and clear that the
purpose of the facade it to make a subsystem easier to use through a simplified interface.
You can see this in the pattern’s class diagram:

N ‘/_‘\ Unified interface

Hav\"l L\\Ch‘h whose Client Facade *H\a{; is easier to use.
\-, just became
caswr because o

Lhe fatade:

\i

subsystem classes

/?

subs‘{s*ac""

Move tomplex

That’s it; you’ve got another pattern under your belt! Now, it’s time for that new OO principle.
Watch out, this one can challenge some assumptions!

264 Chapter 7

Download at WoweBook.Com

The Principle of Least Knowledge

The Principle of Least Knowledge guides us to reduce the
interactions between objects to just a few close “friends.”
The principle is usually stated as:

Design Principle

Principle of Least Knowledge -
talk only to your immediate friends.

But what does this mean in real terms? It means when you
are designing a system, for any object, be careful of the
number of classes it interacts with and also how it comes to
interact with those classes.

This principle prevents us from creating designs that have

a large number of classes coupled together so that changes
in one part of the system cascade to other parts. When you
build a lot of dependencies between many classes, you are
building a fragile system that will be costly to maintain and
complex for others to understand.

— RANVN

the adapter pattern

) Qw E w How many classes is this code coupled to?

public float getTemp() {
return station.getThermometer () .getTemperature () ;

}

Download at WoweBook.Com

265

principle of least knowledge

How NOT to Win Friends and Influence Objects

Okay, but how do you keep from doing this? The principle
provides some guidelines: take any object; now from any
method in that object, the principle tells us that we should o kel vs not

; . se '5".‘“ 3
only invoke methods that belong to: Nokite JC\\;;:;\ ‘hds et *,\\3{"{;:;5”
o "
" The object itself / b;"a\\ :;; from calling okher ™€
)
" Objects passed in as a parameter to the method vee L that
» biet at s
® Any object the method creates or instantiates Think of 3 “comYOhCV;:«a :: 3:;/_\;\‘1' n other
. ted by an instan ionship-
® Any components of the object ::‘fv 1"{‘;‘“\(Z§ this as 3 HAS-H velationship
This sounds kind of stringent doesn’t it? What’s the harm in
calling the method of an object we get back from another
call? Well, if we were to do that, then we’d be making a
request of another object’s subpart (and increasing the
number of objects we directly know). In such cases, the
principle forces us to ask the object to make the request for us;
that way we don’t have to know about its component objects
(and we keep our circle of friends small). For example:
public float getTemp () {
Without the Thermometer thermometer = station.getThermometer () ;
Principle return thermometer.getTemperature() ;
}
Heve we get the thermometer object
Lrom the station and then call the
5:{:Tcmycra{:wc() method ourselves.
With the public float getTemp () {
\,7::5'\"‘ return station.getTemperature () ;
} <3

When we apply the principle, we add a

method to the Station tlass that makes
the vequest to the thermometer for us.
This vedutes the number of tlasses we've

dependent on.
266 Chapter 7

Download at WoweBook.Com

Keeping your method calls in bounds...

Here’s a Car class that demonstrates all the ways you can call methods and still

adhere to the Principle of Least Knowledge:

public class Car {
Engine engine;

// other instance variables

public Car () {

// initialize engine, etc.

}

public void start (Key key)

Doors doors

boolean authorized =

if (authorized) {

{

new Doors () ;

o

key.turns () ;

engine.start

You tan ¢al

/ comporert
0:]

updateDashboardDisplay () ;] <—__ You tan ¢all a local method

the adapter pattern

Here we've ereating a new

ob\')cd:, its methods are legal.

You tan ¢all a method
on an ob)ccf ?asscd as
a parameter.

\ a mc‘t\’\"d ona
of the ob)ebh

} doors.lock() ; W\/\ within the ob\)ct:{:»

You tan ¢all a method on an
object you eveate or instantiate.

}

public void updateDashboardDisplay () {
// update display

}

Q_: There is another principle called
the Law of Demeter; how are they
related?

AI The two are one and the same

and you'll encounter these terms being
intermixed. We prefer to use the Principle of
Least Knowledge for a couple of reasons: (1)
the name is more intuitive and (2) the use of
the word “Law” implies we always have to

tberel;u'e no

Dumb Questions

apply this principle. In fact, no principle is a
law, all principles should be used when and
where they are helpful. All design involves
tradeoffs (abstractions versus speed, space
versus time, and so on) and while principles
provide guidance, all factors should be taken
into account before applying them.

Q: Are there any disadvantages
to applying the Principle of Least
Knowledge?

Download at WoweBook.Com

A: Yes; while the principle reduces
the dependencies between objects and
studies have shown this reduces software
maintenance, it is also the case that
applying this principle results in more
“wrapper” classes being written to handle
method calls to other components. This
can result in increased complexity and
development time as well as decreased
runtime performance.

267

you are here »

violating the principle of least knowledge

@ harpen Your pencil
\\\\ Do either of these classes violate the Principle of Least Knowledge?
Why or why not?

public House {
WeatherStation station;

// other methods and constructor

public float getTemp () {
return station.getThermometer () .getTemperature () ;

}

public House {
WeatherStation station;

// other methods and constructor

public float getTemp () {
Thermometer thermometer = station.getThermometer () ;
return getTempHelper (thermometer) ;

public float getTempHelper (Thermometer thermometer) {

return thermometer.getTemperature () ; <f\\\\\ —2
}

)

HARD HAT AREA. WATGH OUT
FOR FALLING ASSUMPTIONS

B RANN

PQWEWR

Can you think of a common use of Java that violates the Principle of Least Knowledge?

Should you care?

¢()upuud-ino walsAg Jnoge MoH Jamsuy

268 Chapter 7

Download at WoweBook.Com

the adapter pattern

The Facade and the Principle of Least Knowledge

h e L\.‘c“‘t onl Y has Ohcd£ Y‘\C‘:d)
the \)foch\'\ca{C‘fF at’,a C;mw
Client 00 \;vogvamm\ng, ‘\3‘;’1‘;‘5&“_"\5

one friend 1s 3 60
The HomeTheaterFacade /_é
manages all those subsystem HomeTheaterFacads)
Lom?onCn{:s ‘FOY ‘H\C Llicn{; T S
[£ keeps the tlient simple endMovie()
and flexible. listenToCd()

: endCd()
listenToRadio()

endRadio()

Amplifier

tuner

e home pd

We can vparade © dhout : / (/=
(,ovnYO"“"*’s h i o0
theater " : A [=
. ‘\;\\C (,\\CV\ :] setCd)
a‘c ‘Q CC{‘“ﬁ setDvd()

setStereoSound()
setSurroundSoud()
setTuner()

setVolume()

> DvdPlayer
amplifier

on()
\ off)

dect)

ampifier

o)
off()
setAm()

setFm()
setFrequency()

pause()
play()

play()
setSuroundAudiol)
seiTwoChamelAudiol)
stopl)

CdPlayer

ampifier

Screen

ﬁ

subsystems adheving
V{Z,l: :\TZ ;):\::\:fc of lcas{: Know\cdgcd
as well. £ this oets too Lowt\?\c*-k .'Av\wc | §
+oo many Lyiends ave interming mg{,:) ; z
¢an introduce sdditional facades
Lorm layers of subsys{—,cms‘

Projector

dvdPlayer

PopcornPopper

wideScreenMode()

TheaterLights

you are here » 269

Download at WoweBook.Com

your design toolbox

Your toolbox is starting to get heavy! In this
chapter we’ve added a couple of patterns that
allow us to alter interfaces and reduce coupling
between clients and the systems they use.

nn Pasies
00 Printiples
Encapsuiate what vaies
h A wtante
Favor tomposition over nher ta
av
Program to 'mkcvgac,cs, not
'\mY\Cmf.V\{’,BJ(';\ons 9 -
we For \oosely cou\7‘c ;
S\::::Jccen ob:)ccb tnat nkevat
nsion »
hould be ofen Lo exters . e
Classes sho odifieation We ha ¢ 3 . e
bk tlosed For ™o s Do ot for ma\'} " e desions
n a\)s*xat)c\on . o @ o 5
DC\’Cnd @ cvcﬁons (Cm\)c‘(, ba\\(on\[
dC\’CV\d on ton . - thm t:
only Lalk to your Lriends ‘ "
...ahd TWO new \73{?{2&1\5.
\ Eath changes an ntecfate,
to tonvert
CYY\S "y the aday{" .
OO Pa'bh - "y and the facade to um(:\/
S (‘t . s and simyh(-'\l
e ¢ P S
m oy oo
vi (E \:‘ w Q
A g Conve
’:‘:\aags nto another nte’
expett Leks tlasse il
tnat coldnt o’c\\cgm
\ Lom\?a‘\','\b\c nkerxate

270 Chapter 7

Download at WoweBook.Com

BULLET POIN&

When you need to use an
existing class and its interface
is not the one you need, use an
adapter.

When you need to simplify

and unify a large interface or
complex set of interfaces, use a
facade.

An adapter changes an
interface into one a client
expects.

A facade decouples a client
from a complex subsystem.

Implementing an adapter may
require little work or a great deal
of work depending on the size
and complexity of the target
interface.

Implementing a facade requires
that we compose the facade
with its subsystem and use
delegation to perform the work
of the facade.

There are two forms of the
Adapter Pattern: object and
class adapters. Class adapters
require multiple inheritance.

You can implement more than
one facade for a subsystem.

An adapter wraps an object to
change its interface, a decorator
wraps an object to add new
behaviors and responsibilities,
and a facade “wraps” a set of
objects to simplify.

the adapter pattern

Yes, it’s another crossword. All of the solution words are from this chapter.

Across Down

1. True or false, Adapters can only wrap one 2. Decorator called Adapter this (3 words)
object 3. One advantage of Facade

5. An Adapter an interface 4. Principle that wasn't as easy as it sounded
6. Movie we watched (5 words) (two words)

10. If in Europe you might need one of these 7.A adds new behavior

(two words) 8. Masquerading as a Duck

11. Adapter with two roles (two words) 9. Example that violates the Principle of Least
14. Facade still low level access Knowledge: System.out.

15. Ducks do it better than Turkeys 12. No movie is complete without this

16. Disadvantage of the Principle of Least 13. Adapter client uses the interface
Knowledge: too many 18. An Adapter and a Decorator can be said to
17. A simplifies an interface an object

19. New American dream (two words)

you are here » 271

Download at WoweBook.Com

exercise solutions

@Sharpen your pencil
ey

Exercise
solutions

Let’s say we also need an adapter that converts a Duck to a Turkey.
Let’s call it DuckAdapter. Write that class:

ting Turkeys
we ave 3day *
r\ li‘wDuL\cs, so we '\m\?\emcv&
0
v Turkey 'm‘\',ﬂ"c ate.
public class DuckAdapter implements Turkey {

Duck duck;
Random rand;

public DuckAdapter (Duck duck) { We stash a vefevente to the Duck we ave adapting:

this.duck duck;

rand = new Random() ;
}
\ We also veereate a vandom object;

public void gobble() { take a look at the (-‘I\/() method
duck.quack () ;

No see how it is used.
}
A gobble just becomes a quack-
public void fly () {
if (rand.nextInt (5)

duck.ily () ;
}
| \ Gince ducks fly a lot longer than

turkeys, we detided Lo only {:l.\/ the
duck on average one of five times.

harpen your pencil
@%{ your p

public House {
WeatherStation station;

// other methods and constructor

public float getTemp() {

public House {
WeatherStation station;

// other methods and constructor
public float getTemp () {
return getTempHelper (thermometer) ;

}

return thermometer.getTemperature();

}

printiple:

Do either of these classes violate the Principle of Least Knowledge?
For each, why or why not?

return station.getThermometer () .getTemperature();

) -—

Thermometer thermometer = station.getThermometer () ;

public float getTempHelper (Thermometer thermometer) {

Doesr't viclate Printiple
This seems like ha
Has any

\-).,;Jc moved o

I
Know\cd‘5°~
o Least B
Vidlates the \’"“:f\:;\ma of an ovyeet
9

allin ‘
\(0‘; a::c; from another eall
vetw

of Least Knowlcdge!
cking owr way avound Jshc
khing veally thanged since we

ot the call to another method?

272 Chapter 7

Download at WoweBook.Com

the adapter pattern

Exercise so]utions

You've seen how to implement an adapter that adapts an Enumeration to an

Iterator; now write an adapter that adapts an Iterator to an Enumaration.

Iterator iterator;

public IteratorEnumeration (Iterator iterator) {
this.iterator = iterator;

public boolean hasMoreElements () {
return iterator.hasNext () ;

public Object nextElement () {
return iterator.next();

public class IteratorEnumeration implements Enumeration {

+ ¥ .

*_
WHQ DQES wHaAT™?

Match each pattern with its intent:

Pattern Intent

Decorator Convert one interface to
another

Adapter Don'’t alter interface, but add
responsibiﬁty

Facade
—N Make interface simpler

Download at WoweBook.Com

273

crossword puzzle solution

Exercise solutions

m—
>
-
"
m

o
o |
z
<
o
- |
o |

o

ols T AlR|K]

= |
m

-
~N|
&
~
0
o o 1> e | =

M

B

o

9
P
clalplale|T|Elr

2

N
| 1= [0 [2 |~ |5 [0 > | |-
oz ||~ [~ e oo Jm |o°

L 13
T

LY
.=I ilﬂl N

B B

B i
N

m-
=HEH

=
N

- |
= |
o |

>

nIH
aow

D
L
MEE
T
o]
&

Flalclalole W
G R
WﬂmEHHEETeﬂ

= [lc o

274 Chapter 7

Download at WoweBook.Com

8 the Téemplate Method Pattern

. Encapsulating *
Algorithms *

Yeah, he's a great boss until

it comes to getting down in this
hole, then it ALL becomes MY job.
See what I mean? He's howhere

in sight!

We’re on an encapsulation roll; we’ve encapsulated object
creation, method invocation, complex interfaces, ducks,

pizzas... what could be next? we're going to get down to encapsulating
pieces of algorithms so that subclasses can hook themselves right into a computation
anytime they want. We’'re even going to learn about a design principle inspired by
Hollywood.

275

Download at WoweBook.Com

coffee tea

It’s time for some wmore caffeine

Some people can’t live without their coffee; some
people can’t live without their tea. The common
ingredient? Caffeine of course!

But there’s more; tea and coffee are made in very
similar ways. Let’s check it out:

R g J \ ha ﬂa
E
d ¢ Z ‘
Barls tas Please fo oW hese rec:\.pes
- \

Reclpt
QtarbuzZ Coffee N ot
The vetipe Tor

cobfee looks a lot
ew coffe® ~ cup . ive for
ee in © like the vecipe
and milk tea, doesn't it?

276

Download at WoweBook.Com

the template method pattern

Whipping up some coffee and tea classes
(in Java)

Let’s play “coding barista” and write
some code for creating coffee and tea.

Here’s the coffee:
fee tlass Lor making coffee.

Heve's our Cot

Lee
Weve's our vetive for tokee

wal-
{', \) o\A 0‘(: {’,\\c ‘\’Xa\n\ng man
val
public class Coffee { é//’/////’ strdg

das

void prepareRec1pe Eath o the skeps s \mY\Cmcw\',c

boilWater () ;

! CJ(,\\O

brewCoffeeGrlnds () J\ a sevarajcc m

pourInCup ()

addSugarAndMllk ()
}
public void boilWater () {

System.out.println (“Boiling water”); \ Eath of these methods
! implements one step of

“ slaorithm. There's
public void brewCoffeeGrinds () { the dor!

Syst t.println(“Dripping Coffee th h filter”) a method to ball water,
stem.out.prin n ri in O ee rou 1 er H
} ! : e ’ Q/_- brew the coffee, pour

the eoffee in a evp and
public void pourInCup () { 20d seaar and "y
System.out.println (“Pouring into cup”);

}

public void addSugarAndMilk () {
System.out.println (“Adding Sugar and Milk”);
}

you are here » 277

Download at WoweBook.Com

tea implementation

and now the Tea...

This looks very similar to the

public class Tea { one we just implemented in
Coffee; the setond and forth
void prepareRecipe () { s{:c\?s are difﬁcvrcn{, but it’s

boilWater () ;
steepTeaBag () ;
pourInCup () ;
addLemon () ;

basically the same vetipe.

}

public void boilWater () {

System.out.println(“Boiling water”); K\
}

Notice that
public void steepTeaBag() { p these two
System.out.println (“Steeping the tea”); These two methods are
} methods are exactly the
spetialized to same as they are
public void addLemon () { Tea. n COA(;‘(:“! So
System.out.println (“Adding Lemon”) ; é/ we dc‘cin'l{ic“f
: have some tode
public void pourInCup () { d“‘\’ht‘a{".‘m 3omd
System.out.println (“Pouring into cup”); on here.

} } &/

When we've got code
duplication, that's a good sign
we need to clean up the design. It
seems like here we should abstract
the commonality into a base class
since coffee and tea are so
similar?

278 Chapter 8

Download at WoweBook.Com

the template method pattern

S Design Puzzle

You've seen that the Coffee and Tea classes have a fair bit of code duplication. Take
another look at the Coffee and Tea classes and draw a class diagram showing how you’d
redesign the classes to remove redundancy:

279

Download at WoweBook.Com

first cut at abstraction

Sir, may | abstract your Coffee, Tea?

It looks like we’ve got a pretty straightforward design
exercise on our hands with the Coffee and Tea classes.
Your first cut might have looked something like this:

The PrepareRecipe() method K—\)

diffevs in eath subelass, so it is

defined as 3

Each subtlass
implements its

own retipe.

0¥

bstract.

CaffeineBeverage

prepareRecipe()
boilWater()
pourlnCup()

nd YowlnCu\?()
d by both subtlasses,

¢ supevelass:

The boilWater() a
methods are share
so they are defined in th

Tea

/\ Coffee
prepareRecipe()

brewCoffeeGrinds()
addSugarAndMilk()

prepareRecipe()
steepTeaBag()
addLemon()

<f Eath subtlass overrides

the prepareRetipe()
method and im?'CMCV\‘tS
its own vetipe.

The methods SYC
and Tea stay i

ufie to Cobkee
L subelasses:

RAVN
QWEWR

Did we do a good job on the redesign? Hmmmm, take another look. Are we overlooking some other
commonality? What are other ways that Coffee and Tea are similar?

280 Chapter 8

Download at WoweBook.Com

the template method pattern

Taking the design further...

So what else do Coffee and Tea have in common? Let’s start with
the recipes.

. wat iy water
(1) Boil isz e in poilind
Brew cup
(2;)) pour coff ntlnmnk
(a) Add sudF 2 Starbuzz Tea Recipe

(1) Boil some water

(2) Steep tea in boiling water
(3) Pour tea in cup

(4) Add lemon

Notice that both recipes follow the same algorithm:

© Boil some water. K\

© Use the hot water to extract the coffee ¢ T et These two are
abstratted, but alveady abstracted

or tea. are the same, inko the base class:
they just apely
to different

beverages:

© Pour the resulting beverage into a eup.

O Add the appropriate condiments to the
beverage.

So, can we find a way to abstract prepareRecipe() too? Yes, let’s find out...

281

Download at WoweBook.Com

abstract the

Abstracting prepareRecipel()

Let’s step through abstracting prepareRecipe()
from each subclass (that is, the Coffee and Tea
classes)...

o

282

The first problem we have is that Coffee uses brewCoffeeGrinds() and
addSugarAndMilk() methods while Tea uses steepTeaBag() and addLemony()
methods.

Coffee Tea
void prepareRecipe () { void prepareRecipe () {
boilWater () ; boilWater () ;
brewCoffeeGrinds () ; & X —> steepTeaBag () ;
pourInCup() ; pourInCup() ;

addSugarAndMilk () ; <—/ﬁ—-\) addLemon () ;
} }

Let’s think through this: steeping and brewing aren’t so different; they’re pretty analogous.
So let’s make a new method name, say, brew(), and we’ll use the same name whether
we’re brewing coffee or steeping tea.

Likewise, adding sugar and milk is pretty much the same as adding a lemon: both
are adding condiments to the beverage. Let’s also make up a new method name,
addCondiments(), to handle this. So, our new prepareRecipe() method will look like this:

void prepareRecipe () {
boilWater () ;
brew () ;
pourInCup () ;
addCondiments () ;

Now we have a new prepareRecipe() method, but we need to fit it into the COd\e.—/
To do this we are going to start with the CaffeineBeverage superclass:

Download at WoweBook.Com

public abstract class CaffeineBeverage ({

the template method pattern

CaffeimeBeverage is Jbstract, ")us{:

(‘ e n e cos A Now, the same yrcyachcci\?c() method will l.)c \(A;CAA
to w,-akc both Tea and Coffee. prepaveRecipel) is

detlaved final because we dont want sz::rﬂlair:
final void prepareRecipe() { &—— 4o be able 4o overvide this mc{‘)\;—d a: Py {;ogbrew()
boilWater () ; vetipel We've 5cncra\i7_cd -s{:C\’S 03"
brew () ; 4he beverage and addCov\dlmChb .
pourInCup () ;
addCondiments () ;
}

abstract void brew() ; /\ Betause Coffee and Tc:a handle these methods
, in diffecent ways, they've 9oing +o have to
— be declaved as abstract Let the subtlasses

abstract void addCondiments () ; |
worry about that stukf!
void boilWater () {
System.out.println(“Boiling water”);
} — Remember, we moved these into
the CaffeineBeverage class (back

void pourInCup () { in our ¢lass diagram).

System.out.println (“Pouring into cup”);

}

e Finally we need to deal with the Coffee and Tea classes. They now rely on

CaffeineBeverage to handle the recipe, so they just need to handle brewing and

condiments:
\/_\As in our design, Tea and Coffee

public class Tea extends CaffeineBeverage { now extend Ca“cithcvcragc‘

public void brew () {
System.out.println (“Steeping the tea”);
}

public void addCondiments () { \ o) o
System.out.println(“Adding Lemon”); Tea needs to detine brewl) an
} ——— 3ddCondiments() — the two abstract
methods from Bcvcragc-

Same for Coffee, except Coffee deals

with eoffee, and sugar and milk instead
' j of tea bags and lemon.
public class Coffee extends CaffeineBeverage {

public void brew() {
System.out.println (“Dripping Coffee through filter”);
}
public void addCondiments () {
System.out.println (“Adding Sugar and Milk”);
}

you are here » 283

Download at WoweBook.Com

class diagram for

Draw the new class diagram now that we’'ve moved the
implementation of prepareRecipe() into the CaffeineBeverage class:

@ harpen our pencil
S Y

284

Download at WoweBook.Com

the template method pattern

What have we done?

We've vecognized
that the two vetipes
are csscn{ia”\/ the
same, although
some of the steps
e vequive different > 0
Tea implementations. So offee
we've generalized the
o Boil some water vetipe and placed it in

O &l

pag in the water the base ¢lass. S0Me watgy
feabag

© Steepthe

(2] Brew th, ¢offoe arindg

e vour fea 'w\ a cUP J/ e POUr 00ffee in acy
A
O Add lewon U sugar ang milk
Caffeine Beverage
generalize

© PBoil some water
© brew

© Pour beverage in a cup

generalize

relies on

relies on
subclass for

. bcl f
some steps e Add condiments zchea::apc:
vot\ass Coff,
T i s D p & ee Sube /Jss
© Steep the teabag in the water T nds
0O A (b beime Beverage knows © brew the coffee ariv
dd lemon and conkrols the steps of

Lhe vetipe, and performs o - nd wilk
steps | and 3 ikself, but
velies on Ted of Coi(:cc

285

Download at WoweBook.Com

meet the template method pattern

Meet the Template Method

We’ve basically just implemented the Template Method Pattern. What’s that? Let’s look
at the structure of the CaffeineBeverage class; it contains the actual “template method:”

public abstract class CaffeineBTypag/e{

void final prepareRecipe() { é

yrcyachcuch is our template method.
Why?

Because:

L () [t is a method, after all

—— (2) [t sevves as a template for an
algorithm, in this tase, an algorithm for
making eaffeinated beverages.

boilWater () ;

brew () ;
pourInCup () ; \

addCondiments () ;

E— In the template, each step of
the algorithm is represented

L by a method.

— Some methods are handled
- b\/ this ¢lass...

|
A

-and some are handled
b\/ the subelass.

abstract void brew() ;
The methods that need to

~ be supplied b\/ a subtlass ave
declaved abstract.

]

abstract void addCondiments() ;

void boilWater () {
// implementation

}

void pourInCup () {
// implementation

}

The Tem]olate Method defines the steps of an algorithm and allows

subclasses to ProviJe the implementation for one or more steps.

286 Chapter 8

Download at WoweBook.Com

the template method pattern

Let’s make some tea...

Let’s step through making a tea and trace through
how the template method works. You’ll see that
the template method controls the algorithm; at
certain points in the algorithm, it lets the subclass
supply the implementation of the steps...

Behind
the Scenes

boilWater () ;
o OXkay, first we need a Tea object... brew () ;
pourInCup () ;
Tea myTea = new Tea(); addCondiments () ;

)

e Then we call the template method: The yrcyarcRcCi\’Co

myTea.prepareRecipe () ;

which follows the algorithm for making caffeine
beverages...

e First we boil water:

boilWater () ;

which happens in CaffeineBeverage.

e Next we need to brew the tea, which only the subclass knows
how to do:

brew() ; //\

e Now we pour the tea in the cup; this is the same for all beverages so it
happens in CaffeineBeverage:

pourInCup () ;

e Finally, we add the condiments, which are specific to each beverage, so
the subclass implements this:

addCondiments () ;

Download at WoweBook.Com

method controls the
algori{:hm, no one tan
thange this, and it
tounts on subtlasses to
provide some or all of
the implementation.

CaffeineBeverage

prepareRecipe()
boilWater()
pourinCup()

Tea

brew()
addCondiments();

you are here » 287

get us?

What did the Template Method get us?

D

Underpowered Tea & Coffee
implementation

New, hip CaffeineBeverage
powered by Template Method

Coffee and Tea are running the show;
they control the algorithm.

Code is duplicated across Coffee and
Tea.

Code changes to the algorithm
require opening the subclasses and
making multiple changes.

Classes are organized in a structure
that requires a lot of work to add a
new caffeine beverage.

Knowledge of the algorithm and how
to implement it is distributed over
many classes.

The CaffeineBeverage class runs
the show; it has the algorithm, and
protects it.

The CaffeineBeverage class
maximizes reuse among the
subclasses.

The algorithm lives in one place and
code changes only need to be made
there.

The Template Method version provides
a framework that other caffeine
beverages can be plugged into. New
caffeine beverages only need to
implement a couple of methods.

The CaffeineBeverage class
concentrates knowledge about the
algorithm and relies on subclasses to
provide complete implementations.

Download at WoweBook.Com

the template method pattern

Template Method Pattern defined

You've seen how the Template Method Pattern works in our Tea and Coffee example;
now, check out the official definition and nail down all the details:

The Template Method Pattern defines the skeleton
of an algorithm in a method, deferring some steps to
subclasses. Template Method lets subclasses redefine

certain steps of an algorithm without changing the
algorithm’s structure.

This pattern is all about creating a template for an algorithm. What’s a template?
As you've seen it’s just a method; more specifically, it’s a method that defines an

algorithm as a set of steps. One or more of these steps is defined to be abstract and
implemented by a subclass. This ensures the algorithm’s structure stays unchanged,
while subclasses provide some part of the implementation.

Let’s check out the class diagram:

The template method makes use of the
primitiveOperations to implement an
algorithm. [t is detoupled £rom the actual
implementation of these operations.

N

The AbstractClass
tontains the {‘,Cmﬂa‘tc
mc{:hod.

..and abstract versions

of the operations used —_—
in the {cmvla*{:c method.

2

AbstractClass

templateMethod()
primitiveOperation1()
primitiveOperation2()

primitiveOperation1();
primitiveOperation2();

ConcreteClass

primitiveOperation1()
primitiveOperation2()

| e

The ConeveteClass implements

the abstract operations,
whith are called when the
Jccmyla{:c/‘/lc’()\od() needs them.

you are here »

289

Download at WoweBook.Com

template method pattern up close

/@ Code Up Close

Let’s take a closer look at how the AbstractClass is defined, including the template method

and primitive operations.

Here we have owr abstract elass; it

is detlaved abstract and meant Jw

be subelassed by elasses that Y.rovude

e o e pestes Heve's the template method. [t's

290

'lm‘?‘
detlaved final to prevent subelasses
Lrom veworking the sequente
skeps in the algorithm.
abstract class AbstractClass {
final void templateMethod() { The ftmvla{:c method
printtivedperationl () ; defines the sequente of
primitiveOperation2 () ; te
concreteOperation () ; steps, eath vepresented
} by a method.
abstract void primitiveOperationl () ;
abstract void primitiveOperation2 () ; e\
]) In £his example, two of
void concreteOperation() { the Primitiv)
// implementation here must be ; ¢ operations
} ust be '”‘F'C"\Chfcd b
} Contrete subelasses.
We also have a tontrete operation defined
in the abstract class. Move about these
kinds of methods in a bit...
Chapter 8

Download at WoweBook.Com

the template method pattern

Now we’re going to look even closer at the types of method that can go in the abstract class:

Code Way Up Close

We've thanged the
{::mv\a{c/\/lc{:hod() 1o intlude
a new method eall.

abstract class AbstractClass {

final void templateMethod() {

primitiveOperationl () ;

primitiveOperation2 () ;

concreteOperation () ; We still have our primitive

hook () ; \[—\ methods; these are
abstract and implemented
by conevete subelasses.

}
abstract void primitiveOperationl () ;

abstract void primitiveOperation2 () ; A eontre Le opera Fion is defined in the

i i laved
final void concreteOperation() { abstract tlass. This one ‘s,iccvi:iidc .
// implementation here Linal so that subtlasses tant © o
} |t may be used in the template metho

dircc{:\\/, or used b\/ subtlasses.
void hook () {}

T

A contrete method, buk K/ We ¢an also have contrete methods that do nothing
it does no{hing_’ by default; we call these “hooks.” Subtlasses ave free

to overvide these but don’t have £o. We've going to
see how these are useful on the next page.

you are here » 291

Download at WoweBook.Com

implement a hook

Hooked on
Template Method...

A hook 1s a method that is declared in the
abstract class, but only given an empty

or default implementation. This gives
subclasses the ability to “hook into” the
algorithm at various points, if they wish; a
subclass 1s also free to ignore the hook.
There are several uses of hooks; let’s take

a look at one now. We’ll talk about a few
other uses later:

With a hook, I can override
the method, or not. It's my choice.
If I don't, the abstract class
provides a default implementation.

public abstract class CaffeineBeverageWithHook {

final void prepareRecipe ()
boilWater () ;
brew () ;
pourInCup () ;

if (customerWantsCondiments ()) {

addCondiments () ;
}
}

abstract void brew();

{

i{jona\ S{'zaj"«c"‘c“{

’ ded 3 little tond
v:\\ca\fbaadscs ks suteess on 3 L‘.mut?) P
method, C\AS‘tOmCYwah‘hSCOV\(.i\mCL o;\\
the tustomer WANTS Co-ndlmcn) , only
Lhen do we eall addCondma\J(,s .

o

abstract void addCondiments () ;

void boilWater () {

System.out.println (“Boiling water”);

}

void pourInCup () {

System.out.println (“Pouring into cup”);

}

! 1 ™ thod
tere weve defined a me
with 3 (mostly) emPty dc(:av\‘h. .
Lion. This method s

'.,,.\;\cmcnba e and does nokhing else:

veturns rw

boolean customerWantsCondiments () {

return true;

}

292 Chapter 8

This is a hook betause the
subtlass tan override this
method, but doesn't have to.

Download at WoweBook.Com

the template method pattern

Using the hook

To use the hook, we override it in our subclass. Here, the hook controls whether
the CaffeineBeverage evaluates a certain part of the algorithm; that is, whether
it adds a condiment to the beverage.

How do we know whether the customer wants the condiment? Just ask !

public class CoffeeWithHook extends CaffeineBeverageWithHook {

public void brew () {
System.out.println (“"Dripping Coffee through filter”);

public void addCondiments () {

System.out.println (“"Adding Sugar and Milk”); Hcrc,s wheve you ovevvide

fhe hook and provide Yyour
own l:uncﬁona\i{‘,\/-

public boolean customerWantsCondiments () {
String answer = getUserInput () ;

if (answer.tolLowerCase () .startsWith (“y”)) {
return true;
} else { Get the user’s input on
return false; the tondiment detision
<
}

and veturn true or false.
chcnding on the inyu{;.

private String getUserInput () {
String answer = null;

System.out.print (“Would you like milk and sugar with your coffee (y/n)? “);

BufferedReader in = new BufferedReader (new InputStreamReader (System.in));
try {

answer = in.readLine () ;
} catch (IOException ioe) {

System.err.println (VIO error trying to read your answer”);

}

if (answer == null) {
return “no”; . Wkand
: /_, < tode asks the vse* . hcjdlc\\‘\kcc::mand line-
return answer; UL and geks Wis input feom the
} sugav an

you are here » 293

Download at WoweBook.Com

test drive

Let’s run the TestDrive

Okay, the water$ boiling... Here’s the test code where
we create a hot tea and a hot coffee

public class BeverageTestDrive ({
public static void main(String[] args) {

TeaWithHook teaHook = new TeaWithHook () ; - Cvca{ea{:ﬁa-
CoffeeWithHook coffeeHook = new CoffeeWithHook () ;
<= A cokkee.

System.out.println (“\nMaking tea...”);
teaHook.prepareRecipe () ;

D) And eall YrcVGVCRCC‘YC() on both!
System.out.println (“\nMaking coffee...”); é,//
coffeeHook.prepareRecipe () ;

And let$ give it a run...

File Edit Window Help send-more-honesttea

%java BeverageTestDrive

Making tea...
Boiling water A s{caming tup of tea, and yes, of
Steeping the tea tourse we want that |Cmoh!

Pouring into cup
Would you like lemon with your tea (y/n)? y

Adding Lemon

up 0(: (,oﬂ:cc;
the waistline

Dripping Coffee through filter a ﬁvandiﬂs Loy\d\mCh{',s' :

Making coffee. .. And a nice hot ¢
Boiling water but well pass on

Pouring into cup

Would you like milk and sugar with your coffee (y/n)? n
%

294 Chapter 8

Download at WoweBook.Com

Now, I would have thought
that functionality like asking the
customer could have been used by
all subclasses?

the template method pattern

You know what? We agree with you. But you
have to admit before you thought of that it was a
pretty cool example of how a hook can be used
to conditionally control the flow of the algorithm

in the abstract class. Right?

We’re sure you can think of many other more

realistic scenarios where you could use the

template method and hooks in your own code.

Q: When I'm creating a template
method, how do | know when to use
abstract methods and when to use
hooks?

A: Use abstract methods when your
subclass MUST provide an implementation
of the method or step in the algorithm.

Use hooks when that part of the algorithm

is optional. With hooks, a subclass may
choose to implement that hook, but it doesn't
have to.

Q: What are hooks really supposed
to be used for?

A: There are a few uses of hooks. As
we just said, a hook may provide a way for
a subclass to implement an optional part

ﬂweregre no

Dumb Questions

of an algorithm, or if it isn’t important to
the subclass’ implementation, it can skip
it. Another use is to give the subclass

a chance to react to some step in the
template method that is about to happen,
or just happened. For instance, a hook
method like justReOrderedList() allows the
subclass to perform some activity (such as
redisplaying an onscreen representation)
after an internal list is reordered. As you've
seen a hook can also provide a subclass
with the ability to make a decision for the
abstract class.

Q: Does a subclass have to
implement all the abstract methods in the
AbstractClass?

A: Yes, each concrete subclass defines
the entire set of abstract methods and

Download at WoweBook.Com

provides a complete implementation of the
undefined steps of the template method’s
algorithm.

Q} It seems like | should keep my
abstract methods small in number,
otherwise it will be a big job to implement
them in the subclass.

A: That's a good thing to keep in

mind when you write template methods.
Sometimes this can be done by not making
the steps of your algorithm too granular. But
it's obviously a trade off: the less granularity,
the less flexibility.

Remember, too, that some steps will be
optional; so you can implement these as
hooks rather than abstract methods, easing
the burden on the subclasses of your
abstract class.

295

the hollywood principle

You've heard me say it
before, and T'll say it again:
don't call me, T'll call youl

The Hollywood Principle

We’ve got another design principle for you; it’s called the
Hollywood Principle:

The Hollywood Principle

Don'’t call us, we'll call you.

Easy to remember, right? But what has it got to do with OO !
design?

The Hollywood principle gives us a way to prevent ’ \‘
“dependency rot.” Dependency rot happens when you have

high-level components depending on low-level components

depending on high-level components depending on sideways

components depending on low-level components, and so on.

When rot sets in, no one can easily understand the way a

system 1is designed.

With the Hollywood Principle, we allow low-level components
to hook themselves into a system, but the high-level
components determine when they are needed, and how. In
other words, the high-level components give the low-level
components a “don’t call us, we’ll call you” treatment.

A

Buk the igh-level
Lom\?OhCh‘{'zS tontrol

High-Level Component
when and how:

ts
Lowf\cv c.\ Fom?o?\Cn ’ /\ m

: Another
kation Low-Level
ot Component Low-Level k‘\ Alowt
Component ow—level component. never

ealls a high—leve) ¢
dirccﬂy. omPoneh{:

296 Chapter 8

Download at WoweBook.Com

the template method pattern

The Hollywood Principle and Template Method

The connection between the Hollywood Principle and the Template Method Pattern is probably somewhat
apparent: when we design with the Template Method Pattern, we’re telling subclasses, “don’t call us, we’ll call

you.” How? Let’s take another look at our CaffeineBeverage design:

i a0e is our high—lcvc\
sl trol over the

Lom‘?onth‘l’» [£ has ('°'f Clients of bever .
algorithm for the vetive, a"d, ealks ‘:; d on the Caﬁfein:Bz?erw'” depend
the subtlasses only when ey Yi):\c: ‘ abstraetion rather “‘336

for an im?‘tmcn{:a{fw“ of 3 method. CaffeineBeverage Concrete Tea or Coﬂ‘ah ’ .

: reduges dependenties ; € which
prepareRecipe() overall s ‘ neies in the
boilWater() Ystem.
pourinCup()
brew()
addCondiments()

S —
Coffee Tea i
brew() brew() 4\
addCondiments() addCondiments()

The subelasses gy j
sube € used simp|
Provide mplemenfafion dlcfzi{s..bo _j

Tea and Cokfee never
c:\\ the abstract L\.ass
d\rcc{:\\/ without being
“ca\\cd" (:'\rs{;

RANVN
QWERWR

B

What other patterns make use of the Hollywood Principle?

¢s1ayjo Aue ‘1eniasqQ ‘poyis|n Alooe ay

Download at WoweBook.Com

297

you are here »

who what

’dmeregre no

Dumb Questions

Q} How does the Hollywood Principle
relate to the Dependency Inversion
Principle that we learned a few chapters
back?

AI The Dependency Inversion
Principle teaches us to avoid the use of
concrete classes and instead work as
much as possible with abstractions. The
Hollywood Principle is a technique for
building frameworks or components so that
lower-level components can be hooked

into the computation, but without creating
dependencies between the lower-level
components and the higher-level layers. So,
they both have the goal of decoupling, but
the Dependency Inversion Principle makes a
much stronger and general statement about
how to avoid dependencies in design.

The Hollywood Principle gives us a
technique for creating designs that allow
low-level structures to interoperate while
preventing other classes from becoming too
dependent on them.

s |

Q: Is a low-level component
disallowed from calling a method in a
higher-level component?

A: Not really. In fact, a low level
component will often end up calling a method
defined above it in the inheritance hierarchy
purely through inheritance. But we want to
avoid creating explicit circular dependencies
between the low-level component and the
high-level ones.

. *
WHQ DQES wHaAT™
Match each pattern with its description:

Pattern Description
Encapsulate interchangeable

Template Methed behaviors and use delegation to
decide which behavior to use

Strategy Subelasses decide how
to implement steps in an
algorithm

Factory Method Subelasses decide Which
concrete classes to create

298

Download at WoweBook.Com

Template Methods in the Wild

The Template Method Pattern is a very common pattern and
you’re going to find lots of it in the wild. You’ve got to have
a keen eye, though, because there are many implementations
of the template methods that don’t quite look like the
textbook design of the pattern.

This pattern shows up so often because it’s a great design tool
for creating frameworks, where the framework controls how
something gets done, but leaves you (the person using the
framework) to specify your own details about what is actually
happening at each step of the framework’s algorithm.

Let’s take a little safari through a few uses in the wild (well,
okay, in the Java API)...

the template method pattern

In training, we study the
classic patterns. However,
when we are out in the real world, we
must learn to recognize the patterns
out of context. We must also learn
to recognize variations of patterns,

because in the real world a square
hole is not always truly square.

you are here » 299

Download at WoweBook.Com

sorting with template method

Sorting with Template Method

What’s something we often need to do with arrays?
Sort them!

We've pared down this
tode a little to make it
casier o explain. [£ you'd
like 4o see it all, grab
the sourte £rom Sun and
Lhods heve and they act together to theek it out..

Recognizing that, the designers of the Java Arrays class
have provided us with a handy template method for /\

sorting. Let’s take a look at how this method operates:

We actually have two me
provide the sort Functionality.

thod

ses it alond
{;() mCJ(',\’\Od-

Lhe lengith of the avrady and Lells

The -c\\’s't

that tred :
as the destination

|& also passes alon
the sork tos vt

public static void sort (Object[] a) {
Object aux[] = (Object[])a.clone();
mergeSort (aux, a, 0, a.length, 0);

The meraeSort() method tontains the sort algorithm, and relies
on an implementation of the compareTo() method to tomplete the
algorithm. [£ you've interested in the nitty gritty of how the
sorting happens, \/ou’ll want to thetk out the Sun sourte tode.

& N\ Think of this as the

private static void mergeSort (Object src[], Object dest][], "iCMPla‘l:c method.
int low, int high, int off)
{

for (int i=low; i<high; i++) {
for (int j=i; j>low &&
((Comparable)dest[]j-1]) .compareTo ((Comparable)dest[j])>0; j—--)

{
swap (dest, 3, j-1); K_/_\
} () is the method we
} _ This is 3 tontrete com‘?arcTo is the me

method, alread Lo implement to “Sill out”
y debined in the Prvays s | Eccdte:\;la‘;e method.

300 Chapter 8

Download at WoweBook.Com

the template method pattern

We've got some ducks to sort...

Let’s say you have an array of ducks that you’d like to sort. How

do you do it? Well, the sort template method in Arrays gives us the
algorithm, but you need to tell it how to compare ducks, which you do by
implementing the compareTo() method... Make sense?

No, it doesn't. Aren't
we supposed to be
subclassing something? I thought

that was the point of Template
Method. An array doesn't subclass
anything, so I don't get how we'd
use sort().

We've got an arvay of
Dueks we need to sort.

Good point. Here’s the deal: the designers of sort() wanted it
to be useful across all arrays, so they had to make sort() a static
method that could be used from anywhere. But that’s okay,

it works almost the same as if it were in a superclass. Now,
here is one more detail: because sort() really isn’t defined in
our superclass, the sort() method needs to know that you’ve
implemented the compareTo() method, or else you don’t have
the piece needed to complete the sort algorithm.

To handle this, the designers made use of the Comparable
interface. All you have to do is implement this interface, which
has one method (surprise): compareTo().

What is compareTo()?

The compareTo() method compares two objects and returns whether one is less than, greater than,
or equal to the other. sort() uses this as the basis of its comparison of objects in the array.

I don't know,
that's what
compareTo() tells us.

Am I greater
than you?

you are here » 301

Download at WoweBook.Com

implementing comparable

Comparing Ducks and Pucks

Okay, so you know that if you want to sort Ducks,
you’re going to have to implement this compareTo()
method; by doing that you’ll give the Arrays class
what it needs to complete the algorithm and sort your
ducks.

Here’s the duck implementation:

Remember, we need to implement the Comparable
\[\ intevface sinte we aven't veally subelassing.

public class Duck implements Comparable {
String name;

int weight; A/\ Our Dutks have a name and a weight

public Duck(String name, int weight) {
this.name = name;
this.weight = weight;
}
We've keepin’ it simple; all Dutks do
public String toString() { ;svﬁh{{hdrnamcandvmghﬂ
return name + “ weighs “ + weight;

/\ Okay, heve's what sort needs..

public int compareTo (Object object) {

}

Com\?arcTo() takes another Dutk to tompare THIS Duck to.
Duck otherDuck = (Duck)object;

if (this.weight < otherDuck.weight) {
return -1;

} else if (this.weight == otherDuck.weight) {t/\ Here's where we 5\’“.‘{:7 h°‘”_D“‘ks
return 0; compare. [THIS Duek weighs less

} else { // this.weight > otherDuck.weight than otherDuck then we vetuwen —I;
return 1; if they are equal, we return O; and if

) THIS Duek weighs more, we vetuen |.

302 Chapter 8

Download at WoweBook.Com

the template method pattern

Let’s sort some Ducks

Here’s the test drive for sorting Ducks...

public class DuckSortTestDrive {
public static void main (String[] args) {
Duck[] ducks = {
new Duck (“Daffy”, 8
Dewey”, 2

’ (\ d an aYYa\’ O‘c

()
new Duck (™), We nee 000
new Duck (“Howard”, 7), Dutks; these look &
new Duck (“Louie”, 2),
new Duck (“Donald”, 10),
new Duck (“Huey”, 2)
}i
Notice that we
) X System.out.println (“Before sorting:”); 's ﬁhifhantosu
Ca” AV‘Y‘&YS s{a{-’,c ! 6 Le 7
method sord, and display (ducks) ; their names and wcng\r\{:&

Pass it owr Ducks. Arrays.sort (ducks) ; ‘

7 s sort. tmel

System.out.println (“\nAfter sorting:”); in) to
display (ducks) ; P Let's print them (again see
} their names and weights.

public static void display(Duck[] ducks) {

for (int 1 = 0; 1 < ducks.length; i++) {
System.out.println (ducks[i]);

Let the sorting commence!

File_Edit_Window Help DonaldNeedsToGoOnADiet
%java DuckSortTestDrive

Before sorting:

Daffy weighs 8

Dewey weighs 2 The unsorted Dueks
Howard weighs 7

Louie weighs 2

Donald weighs 10

Huey weighs 2

After sorting:

Dewey weighs 2

Louie weighs 2

Huey weighs 2 The sovted Ducks
Howard weighs 7

Daffy weighs 8

Donald weighs 10

%

you are here » 303

Download at WoweBook.Com

behind the scenes:

The making of the sorting duck machine

Let’s trace through how the Arrays sort() template
method works. We’ll check out how the template
method controls the algorithm, and at certain
points in the algorithm, how it asks our Ducks to

the Scenes

supply the implementation of a step... for (int i-low; i<high; i+4) |

. compareTo ()
. swap ()

o First, we need an array of Ducks: }

Duck[] ducks = {new Duck(“Daffy”, 8), ... };
The sort) method controls
e Then we call the sort() template method in the Array the algorithm, no elass ean
class and pass it our ducks: thange this. sort() counts

Arrays.sort (ducks) ;

The sort() method (and its helper mergeSort()) control
the sort procedure.

e To sort an array, you need to compare two items one
by one until the entire list is in sorted order.

When it comes to comparing two ducks, the sort
method relies on the Duck’s compareTo() method
to know how to do this. The compareTo() method
1s called on the first duck and passed the duck to be
compared to:

ducks[0] .compareTo (ducks([1l]);

Fiest %k\ ,t M

Duck to tompare it to

e If the Ducks are not in sorted order, they’re swapped with
the concrete swap() method in Arrays:

swap () //,\

e The sort method continues comparing and swapping Ducks
until the array is in the correct order!

304

Download at WoweBook.Com

on a Comparable tlass to
provide the implementation of
Com\?arcToO

Duck

compareTo()
toString()

No inheritante, unlike
a typical template
method.

Arrays

sort()
swap()

thereﬁre no

Dumb Questions

Q: Is this really the Template
Method Pattern, or are you trying too
hard?

A: The pattern calls for implementing
an algorithm and letting subclasses supply
the implementation of the steps — and the
Arrays sort is clearly not doing that! But,

as we know, patterns in the wild aren’t
always just like the textbook patterns. They
have to be modified to fit the context and
implementation constraints.

The designers of the Arrays sort() method
had a few constraints. In general, you can’t
subclass a Java array and they wanted the
sort to be used on all arrays (and each array
is a different class). So they defined a static
method and deferred the comparison part of

the algorithm to the items being sorted.

So, while it's not a textbook template
method, this implementation is still in the
spirit of the Template Method Pattern. Also,
by eliminating the requirement that you have
to subclass Arrays to use this algorithm,
they've made sorting in some ways more
flexible and useful.

Q: This implementation of sorting
actually seems more like the Strategy
Pattern than the Template Method
Pattern. Why do we consider it
Template Method?

A: You're probably thinking that
because the Strategy Pattern uses object

composition. You're right in a way — we're

the template method pattern

using the Arrays object to sort our array, so
that's similar to Strategy. But remember,

in Strategy, the class that you compose
with implements the entire algorithm. The
algorithm that Arrays implements for sort

is incomplete; it needs a class to fill in the
missing compareTo() method. So, in that
way, it's more like Template Method.

Q} Are there other examples of
template methods in the Java API?

A: Yes, you'll find them in a few
places. For example, java.io has a read()
method in InputStream that subclasses
must implement and is used by the tempate
method read(byte b[], int off, int len).

-@PA\N
vawew

We know that we should favor composition over inheritance, right? Well, the implementers of the
sort() template method decided not to use inheritance and instead to implement sort() as a static
method that is composed with a Comparable at runtime. How is this better? How is it worse? How
would you approach this problem? Do Java arrays make this particularly tricky?

2
—@wtxn«
TAawEWwR

Think of another pattern that is a specialization of the template method. In this specialization, primitive

operations are used to create and return objects. What pattern is this?

305

Download at WoweBook.Com

the paint hook

Swingin’ with Frames

Up next on our Template Method safari... keep your eye out for swinging JFrames!

If you haven’t encountered JFrame, it’s the most basic Swing container and inherits
a paint() method. By default, paint() does nothing because it’s a sook! By overriding
paint(), you can insert yourself into JFrame’s algorithm for displaying its area of the
screen and have your own graphic output incorporated into the JFrame. Here’s

an embarrassingly simple example of using a JFrame to override the paint() hook

e We've extending JFrame, which tontains
a method update() that controls the
algorithm for updating the sereen-

We tan hook into that algovi{:hm b\/

) . hod.
verviding the \"amu) hook met
public class MyFrame extends JFrame { ° d
e~ Dor't look behind the
public MyF(iaIuE? ()String title) { cw{:ain! Just some
super (title);
this.setDefaultCloseOperation (JFrame.EXIT ON_ CLOSE) ;

initialization here...

this.setSize (300,300);
this.setVisible (true);

| AN 4
JFvame’s update algorithm calls paint0. By

public void paint (Graphics graphics) { default, Yain{() does nothing... it's a hook.
super.paint (graphics) ; We've overviding paint(), and telling the

String msg = “I rule!!”; JFvame to draw a message in the window.
graphics.drawString (msg, 100, 100);

}

public static void main(String[] args) {
MyFrame myFrame = new MyFrame (“Head First Design Patterns”);

}

@ O O Head First Design Patterns

Heve's the message that gets ,
painted in the Lrame because weve
hooked into the paint() method.

| rule!!

306 Chapter 8

Download at WoweBook.Com

the template method pattern

Applets

Our final stop on the safari: the applet.

You probably know an applet is a small program that runs in a web page. Any
applet must subclass Applet, and this class provides several hooks. Let’s take a look
at a few of them:

The init hook allows the awle’c +o do whatever

Ll irst time.
public class MyApplet extends Applet { it wants to initialize the awlc{ the first i
String message;

rcyain{:() is a tontrete method in the Applet

public void init () {
message = “Hello World, I'm alive!”; ¢lass that lets uﬂ?cr—lcvcl com\vonCn{:s know
repaint () ; the avylc{ needs to be vedrawn.

}

public void start() { Z\ Thc S‘[‘,&Y“{: hook a"OWS 'H\C aFPIC"Z ‘{',0 do
message = “Now I’'m starting up...”; something when the applet is just about
repaint () ; to be displayed on the web page.

}

public void stop() {
messaltge = “Oh, now I'm being stopped...”; |£ the user ges to another page, the
repaint () stop hook is used, and the 3\’\’“{ tan do

| whatever it needs Lo do to stop its attions.

public void destroy () {

// applet is going away...
} \

And the destroy hook is used when the applet

public void paint (Graphics g) { is going to be destroyed, say, when the browser
g.drawString (message, 5, 15); pane is tlosed. We eould try to display
} something here, but what would be the point?

Well looky hevel Our old friend the
?ain{() method! A\’\?lc{ also makes
wse of this method as a hook:

Concrete a]o]olets make extensive use of hooks to supply their
own behaviors. Because these methods are implemente(l as
IIOOkS, the a]o]olet isn't rec{uireJ to implement them.

you are here » 307

Download at WoweBook.Com

fireside chats: template method and strateqgy

Flresme Ohats

Template Method

Hey Strategy, what are you doing in my
chapter? I figured I’d get stuck with someone
boring like Factory Method.

I was just kidding! But seriously, what are you
doing here? We haven’t heard from you in eight
chapters!

You might want to remind the reader what
you're all about, since it’s been so long.

Hey, that does sound a lot like what I do. But
my intent’s a little different from yours; my job
is to define the outline of an algorithm, but

let my subclasses do some of the work. That
way, I can have different implementations of an
algorithm’s individual steps, but keep control
over the algorithm’s structure. Seems like you
have to give up control of your algorithms.

308 Chapter 8

Tonight's talk: Template Method and Strategy
compare methods.

Fattory Method
Strategy

Hey, I heard

thatl O o

Nope, it’s me, although be careful — you and
Factory Method are related, aren’t you?

I’d heard you were on the final draft of your
chapter and I thought I'd swing by to see how
it was going. We have a lot in common, so I
thought I might be able to help...

I don’t know; since Chapter 1, people have
been stopping me in the street saying, “Aren’t
you that pattern...” So I think they know who
I am. But for your sake: I define a family of
algorithms and make them interchangeable.
Since each algorithm is encapsulated, the client
can use different algorithms easily.

I'm not sure I'd put it quite like #at... and
anyway, I'm not stuck using inheritance for
algorithm implementations. I offer clients a
choice of algorithm implementation through
object composition.

Download at WoweBook.Com

Template Method

I remember that. But I have more control over
my algorithm and I don’t duplicate code. In fact,
if every part of my algorithm is the same except
for, say, one line, then my classes are much more
efficient than yours. All my duplicated code
gets put into the superclass, so all the subclasses
can share it.

Yeah, well, I'm real happy for ya, but don’t
forget I'm the most used pattern around.
Why? Because I provide a fundamental
method for code reuse that allows subclasses to
specify behavior. I'm sure you can see that this
is perfect for creating frameworks.

How’s that? My superclass is abstract.

Like I said Strategy, I'm rea/ happy for you.
Thanks for stopping by, but I've got to get the
rest of this chapter done.

Gotit. Don’t call us, we’ll call you...

the template method pattern

Strategy

You might be a little more efficient (just a little)
and require fewer objects. And you might also
be a little less complicated in comparison to
my delegation model, but I'm more flexible
because I use object composition. With me,
clients can change their algorithms at runtime
simply by using a different strategy object.
Come on, they didn’t choose me for Chapter 1
for nothing!

Yeah, I guess... but, what about dependency?
You’re way more dependent than me.

But you have to depend on methods
implemented in your superclass, which are part
of your algorithm. I don’t depend on anyone;
I can do the entire algorithm myself!

Okay, okay, don’t get touchy. T’ll let you
work, but let me know if you need my special
techniques anyway, I’'m always glad to help.

309

Download at WoweBook.Com

crossword puzzle

310

It’s that time again....

H IEEEEEEEN

'.=.. Ellllilllll
EIE .IEIIIIII

H B " |
il B aNEEEEEEN

AEEEEEEN

Across

1. Strategy uses rather than
inheritance
4. Type of sort used in Arrays
5. The JFrame hook method that we overrode to
print "l Rule"
6. The Template Method Pattern uses

to defer implementation to other
classes
8. Coffee and
9. Don't call us, we'll call you is known as the

Principle

12. A template method defines the steps of an

13. In this chapter we gave you more

14. The template method is usually defined in an method as a

class

16. Class that likes web pages

Chapter 8

ANaEEEN

Down

2. algorithm steps are implemented
by hook methods

3. Factory Method is a of

Template Method
7. The steps in the algorithm that must be
supplied by the subclasses are usually declared

8. Huey, Louie and Dewey all weigh

pounds

9. A method in the abstract superclass that does

nothing or provides default behavior is called a
method

10. Big headed pattern

11. Our favorite coffee shop in Objectville
15. The Arrays class implements its template
method

Download at WoweBook.Com

Tools for your Pesign Toolbox

We’ve added Template Method to your toolbox. With
Template Method you can reuse code like a pro while
keeping control of your algorithms.

ok atkion

00 Printiples

what vaies

ov inhexitante

ca‘;sv\a{f“’“

E“wv\asu\a*!-

Favor comgosition <

m‘\:cvg ates) not

‘o
P 00V am -
\:Y?Cmcwba‘\:\ons
wpled desions
ive for \oose\\f tovy i
it:‘:icn ob:)cc‘(,s hat interd
C*J(,Cnswn |
- 2 ds‘f;:\m L cntiple vewind
ok c\oscd£ modi N . Y “b\asscs
Do not ‘u‘ajc \’ow- o :
Depend 0" a\)s’crachors - v i |
e Le tlasses: ty .
degend o €° ontrete are Y"ca\\ your wot! s?cs o
ue Lviends: o : : o
On\\’ ‘\33\\L to \fo ‘h\\c\”rc 5)
Dont eall vs) well eall you ol “o\\\’woo
on
\ Ahd our newest \’a'H'«CYn

lets elasses m\?lcmcn{:mg
. an algon{hm defer some
| e =0 b steps to subclasses.
t P) oAb .
F- | |
E i S . .

‘
£ Woo ¢ i - o ’Dcﬁ\nc the

n an °Y°Yah°m

Cw\‘?\a‘\:c Mcic‘:“&
¥ Yc s\LC‘C‘b"“ of an 29 s to s subelasses:

- s ve dcﬁeﬂ‘:ﬁ some * \eks subc\aS“‘;;ou
ate Jam WV
s Tcm‘\;m g of an or\i " e
h “\:' on% the a\‘bo*\‘k«\""s S8
- than!
-

Download at WoweBook.Com

BULLET POIN&

= A*template method” defines

= The Template Method

= The template method’s

= Apstract methods are

= Hooks are methods that do
= To prevent subclasses from

= The Hollywood Principle guides
® You'll see lots of uses of the

= The Strategy and Template

the template method pattern

the steps of an algorithm,
deferring to subclasses for the
implementation of those steps.

Pattern gives us an important
technique for code reuse.

abstract class may define
concrete methods, abstract
methods and hooks.

implemented by subclasses.

nothing or default behavior in
the abstract class, but may be
overridden in the subclass.

changing the algorithm in the
template method, declare the
template method as final.

us to put decision-making in
high-level modules that can

decide how and when to call
low level modules.

Template Method Pattern in
real world code, but don't
expect it all (like any pattern) to
be designed “by the book.”

Method Patterns both
encapsulate algorithms, one
by inheritance and one by
composition.

The Factory Method is a
specialization of Template
Method.

you are here » 311

exercise

312

7 harpen your penci|
\\ Draw the new class diagram now that we’ve moved
prepareRecipe() into the CaffeineBeverage class:

Exercise
solutions

boilWater()
pourlnCup()
brew()
addCondiments()

‘ Coffee Tea

brew) brew()
addCondiments() addCondiments()

" *

+
+WMQ DQES WwWHaT™?

Match each pattern with its description:

Pattern Description

Encapsulate interchangable

Témplate Method behaviors and use delegation to
decide which behavior to use
Strategy Subelasses decide how
o fmplement steps in an
algorithm

Factory Methed Subelasses decide which
concrete classes to create

Download at WoweBook.Com

the template method pattern

you are here » 313

Download at WoweBook.Com

Download at WoweBook.Com

9 the Iterator and Composite Patterns

+ Well-Managed *+
Collections +

You
bet I keep my
collections well
encapsulated!

There are lots of ways to stuff objects into a collection. Put them
in an Array, a Stack, a List, a Hashtable, take your pick. Each has its own advantages and
tradeoffs. But at some point your client is going to want to iterate over those objects, and
when he does, are you going to show him your implementation? We certainly hope not!
That just wouldn’t be professional. Well, you don’t have to risk your career; you're going

to see how you can allow your clients to iterate through your objects without ever getting

a peek at how you store your objects. You’re also going to learn how to create some
super collections of objects that can leap over some impressive data structures in a single
bound. And if that's not enough, you’re also going to learn a thing or two about object

responsibility.
this is a new chapter 315

Download at WoweBook.Com

big

Breaking News: Objectville Piner and
Objectville Pancake House Merge

That’s great news! Now we can get those delicious pancake breakfasts at the
Pancake House and those yummy lunches at the Diner all in one place. But,
there seems to be a slight problem...

... but we can't agree on
how fo implement our menus.
That joker over there used an
ArrayList to hold his menu items, and
T used an Array. Neither one of us is
willing to change our implementations...
we just have too much code written
that depends on them.

They want to use
my Pancake House
menu as the breakfast menu
and the Diner's menu as the
lunch menu. We've agreed on
an implementation for the
menu items...

o
o

316

Download at WoweBook.Com

Check out the Menu ltems

At least Lou and Mel agree on the
implementation of the Menultems.
Let’s check out the items on each
menu, and also take a look at the

implementation.

Diner menu has lots of lunch. items,
while £he Panctake House tonsists

breakfast items. Every menu item has~ a
name, 3 deseviption, and a price

The

Vegetarian g1

BLT

Hot Dog

S&wmed%@gksanch

the iterator and composite patterns

Oéjectw'//e Dines

(Fakin’) Bacon witp fettiy
whole wheqt

A bpw/ of the Soup of thy
aside of, potato sajgq

Ahot dog, with saurkra,
uuwedwﬂhch&%e

Am
edley of steamed ye| Blueberry Pancake
s

Panc akes made . 3
le wit, . .49
and blueberry syruph fresh blueberr Tes,
> We
va laffles
3.59

public class Menultem {
String name;
String description;
boolean vegetarian;
double price;

public Menultem(String name,
String description,

boolean vegetarian,
double price)

this.name = name;
this.description = description;
this.vegetarian = vegetarian;
this.price = price;

public String getName () {

return name;

public String getDescription () {

return description;

public double getPrice () {

return price;

{

public boolean isVegetarian ()
return vegetarian;

Or strawberrjeg

a “85 to indicate ; . ’
and a PHCc.l ate if the item is

Construetor 4o initialize the Me

These getter methods
let you ateess the fields

of the menu item.

Download at WoweBook.Com

K&g@ﬁmaﬂeBmthu
ancakes with scrambled €99s,and togst >
, S|

Rq?m"AmaMe&mMﬁut
ancakes with frigy €99s, sausage

Wafft i
affles, with Your choice of, blueberries

House

2.99

a deseription,
vegetarian,
You Pass all these values in'(:lo 1)»6

nultem.

you are here »

317

two menus

Lou and Mel’s Menu implementations

" T used an ArrayList
so I can easily
expand my menu.

Now let’s take a look at what Lou and Mel are
arguing about. They both have lots of time and
code invested in the way they store their menu
items in a menu, and lots of other code that
depends on it.

Here's Lous im‘?\tmcﬂ:abov\ of the
Pantake House menu.

public class PancakeHouseMenu {
ArrayList menultems;

Low’s using an Ar\ra\/Lis{: {o stove
public PancakeHouseMenu () { <;__————"”/’—___-Msmcm‘%tms

menultems = new ArrayList();

addItem (“K&B’s Pancake Breakfast”,
“Pancakes with scrambled eggs, and toast”,

2 o) Eath menu iLem is added +o the

2.99); (—\ AvrcayList here, in 4he construetor

addItem (“Regular Pancake Breakfast”, Ead\Nknﬂkmnhasanamhé,
“Pancakes with fried eggs, sausage”, dcuxwkwn,whd*¢*°'“°£f£53
false, vcgchaY"‘a“ ikem, and the prite
2.99);

addItem (“Blueberry Pancakes”,
“Pancakes made with fresh blueberries”,
true,
3.49);

addItem (“Waffles”,
“Waffles, with your choice of blueberries or strawberries”,
true,
3.59); on u.ca{—,gs a new

: L
} enw \'hc"\’ . coument
: : To adda ™ etk assing 0 eath a9
public void addItem(String name, String description, M ume(bfc;Y
en

LB&
boolean vegetarian, double price) dvawnaddsfhkpfhcpwra
an

MenuItem menultem = new Menultem(name, description, vegetarian, price);
menultems.add (menultem) ;

method vetuens the list of menu ibems
public Arraylist getMenultems() { g— | " getMenultems() method return

return menultems;

| obher menu tode that depends

Lou has a bunth of v

ist i i ant
// other menu methods here / on the Arra\/Lls{: |mlemcn{:abo;\. He doesn t wan
} %o have to vewrite all that code!

318 Chapter 9

Download at WoweBook.Com

the iterator and composite patterns

Haah! An Arraylist... T
used a REAL Array so I can
control the maximum size of my menu
and get my MenuItems without
having to use a cast.

tion of the Diner menw

¢ Mel's mplementa

/\ Pind her

public c.lassl Din.erMenu { s Mel takes 3 difevent approath; he’s using an A.Wa‘/ so he
static final int MAX_ITEMS = 6; £ +he menu and vetrieve menu

int numberOfItems = 0; La"‘°"b”l£hcma*sF£ his obiecks
MenuItem[] menultems; / items out without having %o tast his objects.
public DinerMenu () {
menultems = new MenuItem[MAX ITEMS]; Like Low, Mel ereates his menu items in the
B / construttor, using the addltem() helper method.
addItem(“Vegetarian BLT”,
“(Fakin’) Bacon with lettuce & tomato on whole wheat”, true, 2.99);
addItem (“BLT”,
“Bacon with lettuce & tomato on whole wheat”, false, 2.99);
addItem(“Soup of the day”,
“Soup of the day, with a side of potato salad”, false, 3.29);
addItem (“Hotdog”,
“A hot dog, with saurkraut, relish, onions, topped with cheese”,
false, 3.05);
// a couple of other Diner Menu items added here

} addltem() takes all the ?avamc{:ers
neeessary Lo treate a Menultem and

public void addItem(String name, String description, mﬁﬁwbﬁxsmm.I{akochakstomdm

boolean vegetarian, double price) (o ye havent hit the menu size limit.

Menultem menultem = new Menultem(name, description, vegetarian, price);
if (numberOfItems >= MAX ITEMS) ({
System.err.println(“Sorry, menu is full! Can’t add item to menu”); £>

} else {
menuTtems [numberOfItems] — menultem; Mel specifically wants to keep his menu under a
numberOfItems = numberOfItems + 1; cevtain size (presumably so he doesn't have to
) remember too many vetipes).

public Menultem[] getMenultems () { 5c+,Mcnu|£cmsO veturns the array of menu items.
return menultems;

}
Like Low, Mel has a bunth of code that depends on the implementation of

// other menu methods here é/ his menu bcing an Arra\/. He's too bus\/ Lookin5 £o rewrite all of this.

you are here » 319

Download at WoweBook.Com

320

Jjava enabled waitress

What’s the problem with having two different

wmenu representations?

To see why having two different menu representations complicates
things, let’s try implementing a client that uses the two menus.
Imagine you have been hired by the new company formed by the

merger of the Diner and the Pancake House to create a Java-enabled
waitress (this zs Objectville, after all). The spec for the Java-enabled
waitress specifies that she can print a custom menu for customers on

demand, and even tell you if a menu item is vegetarian without having
to ask the cook — now that’s an innovation!

Let’s check out the spec, and then step through what it might take to
implement her...

The Java-Enabled Waitress Specification

i ntMenu () ,
prlntprints every item on the me

)
BreakfastMenu ,
prlntprlnts just preakfast items

£ LunchMenu () .
pein prints Just lunch items

: etarianMenu () i tems
prlntviints all vegetarial menu ite
- P

. ian (name) true
3_sItem\/ec_ljeté;j;';3 name of an item, returnsise
- glve; items is vegetarians otherwi==y
if the

returns false

Chapter 9

Download at WoweBook.Com

S~ The spet for
the Waitress

The Wakees* |

g etkind I3

3 C,\a\)\ed‘

the iterator and composite patterns

Let’s start by stepping through how we’d implement the printMenu() method:

o To print all the items on each menu, you’ll need to call the getMenultem()
method on the PancakeHouseMenu and the DinerMenu to retrieve their

respective menu items. Note that each returns a different type: The method looks
Lhe same, but the

calls ave veturning
PancakeHouseMenu pancakeHouseMenu = new PancakeHouseMenu () ; / d'\(:QCVC“{ {:\Ives.
ArrayList breakfastItems = pancakeHouseMenu.getMenultems () ;

DinerMenu dinerMenu = new DinerMenu () ;
MenuItem[] lunchItems = dinerMenu.getMenultems () ; The implementation
is showing fh\rough,
b\"cak‘(“as{: items are
in an AYYB\/Lis{, lunch
itCmS are in an AV'YG\/-

e Now, to print out the items from the PancakeHouseMenu, we’ll loop through the
items on the breakfastItems ArrayList. And to print out the Diner items we’ll

loop through the Array. — Now, we have to
: two diffevent
for (int i = 0; i < breakfastItems.size(); i++) { '"vlc"‘;:t{ Ehrough
Menultem menultem = (Menultem)breakfastItems.get (i); l°°?s s c\; tations
System.out.print (menultem.getName () + “ “); the two imp c.mcn
System.out.println (menultem.getPrice() + “ %); of the menu items..

System.out.println (menultem.getDescription());

}
K ..one loop Lor the

for (int i = 0; 1 < lunchItems.length; i++) { Ar\ra\/LiS{:---
Menultem menultem = lunchItems[i];
System.out.print (menultem.getName () + “ “); d(_‘and another for
System.out.println (menultem.getPrice() + “ “); the Awa\/.
System.out.println (menultem.getDescription());

6 Implementing every other method in the Waitress is going to be a variation of
this theme. We’re always going to need to get both menus and use two loops to
iterate through their items. If another restaurant with a different implementation
is acquired then we’ll have hree loops.

you are here » 321

Download at WoweBook.Com

what’s the

@ harpen our pencil
o Y

Based on our implementation of printMenu(), which of the following apply?

(d A, We are coding to the (A D. The Waitress needs to know how each
PancakeHouseMenu and DinerMenu menu represents its internal collection of
concrete implementations, not to an menu items; this violates encapsulation.
interface. (d E. We have duplicate code: the printMenu()

(d B. The Waitress doesn’t implement the method needs two separate loops to
Java Waitress API and so she isn’t iterate over the two different kinds of
adhering to a standard. menus. And if we added a third menu,

(1 C. If we decided to switch from using we'd have yet another loop.

DinerMenu to another type of menu (A F The implementation isn’t based on
that implemented its list of menu items MXML (Menu XML) and so isn’t as
with a Hashtable, we’d have to modify interoperable as it should be.

a lot of code in the Waitress.

What now?

Mel and Lou are putting us in a difficult position. They don’t want to change their
implementations because it would mean rewriting a lot of code that is in each respective menu
class. But if one of them doesn’t give in, then we’re going to have the job of implementing a
Waitress that is going to be hard to maintain and extend.

It would really be nice if we could find a way to allow them to implement the same interface for
their menus (they’re already close, except for the return type of the getMenultems() method).
That way we can minimize the concrete references in the Waitress code and also hopefully get
rid of the multiple loops required to iterate over both menus.

Sound good? Well, how are we going to do that?

322

Download at WoweBook.Com

the iterator and composite patterns

Can we encapsulate the iteration?

It we’ve learned one thing in this book, it’s encapsulate what varies. It’s obvious
what is changing here: the iteration caused by different collections of objects
being returned from the menus. But can we encapsulate this? Let’s work
through the idea...

ﬂ To iterate through the breakfast items we use the size() and get()
methods on the ArrayList:

for (int i = 0; i < breakfastItems.size(); i++) {
MenulItem menultem = (Menultem)breakfastItems.get(i) ;
——

}

get(1) get(2) get(3) & get0) helps s step

get(0) \" \ Ehrough eath item.
\\A Arraylist

€ An Arra\/Lis{
of Menultems

| Hengre® | Henape® | Penzre™ | Menpre® |
1 2 3 4

© And to iterate through the lunch items we use the Array length field and
the array subscript notation on the MenuItem Array.

lunchitems[O0]
for (int i = 0; i < lunchlItems.length; W
MenuItem menuItem = lunchItems[i]; f%l
} u
Nch
/ temsyy)
unchl
{
e"’5[3]
We use the aredy — A\
subscri\?{',s to 5{"‘\7

hrough items.
An Ar\'a\/ o«c —;,

Menultems.

323

Download at WoweBook.Com

encapsulating iteration

©® Now what if we create an object, let's call it an Iterator,
that encapsulates the way we iterate through a

collection of objects? Let's try this on the ArrayList c E\/e ask i"‘ "J’;‘atﬁ 35:3/‘46"“
or an 1terator i

Iterator iterator = breakfastMenu.createIterator () ,M"‘“’J“'""

while (iterator.hasNext()) { = fnd while there are more items left..
MenuItem menultem = (Menultem)iterator.next():
}
next() We get {Sncx{ item.

—\
e

ﬁ .Z"'I‘er‘o*é sget(‘l) \ get(3\)
goto) ——, Arraylist
The tlient ")usﬁ calls hasNext() and \
next(); behind the stenes the iterator

calls get0) on the AvcayList.
| Yenme® | Memzre® | Henmes | Menme® |
1 2 13 4

@ Let's try that on the Array too:

Iterator iterator = lunchMenu.createlterator()

while (iterator.hasNext()) {
MenuItem menultem = (Menultem)iterator.next():;

Wow, this tode /\ next()
s catkly Be / lunchltems[0]

same 3s the

breakfastMeny ﬁ/_’
tode. / ’WI}]

Same situation heve: the tlient \')usjc ealls
hasNext() and next(); behind the stenes,
the iterator indexes into the Arra\/.

324 Chapter 9

Download at WoweBook.Com

Meet the lterator Pattern

Well, it looks like our plan of encapsulating iteration just might
actually work; and as you’ve probably already guessed, it is a
Design Pattern called the Iterator Pattern.

The first thing you need to know about the Iterator Pattern is
that it relies on an interface called Iterator. Here’s one possible
Iterator interface:

The hasNext() method
fells us if heve ave
move elements in the

interf:)
«I;,t:ra::f ” ' / agoveaate to itevate
hasNext() < through.
next() S
The next() method

veturns the next

object in the aggregate.

Now, once we have this interface, we can implement Iterators for
any kind of collection of objects: arrays, lists, hashtables, ...pick
your favorite collection of objects. Let’s say we wanted to
implement the Iterator for the Array used in the DinerMenu. It
would look like this:

<<interface>>
Iterator

hasNext()
next()

DinerMenulterator is an

DinerMenulterator h -lm‘,kmch{;a{-joh of [terator
hasNext() +hat knows how Lo itecate
next() over an arra\/ o(: MCnu"l‘,Cms.

Let’s go ahead and implement this Iterator and hook it into the
DinerMenu to see how this works...

Download at WoweBook.Com

the iterator and composite patterns

When we say
COLLECTION we just
mean a group of objects. They
might be stored in very different
data structures like lists, arrays,
hashtables, but they're
still collections. We also
sometimes call these
AGGREGATES.

you are here »

325

make an iterator

Adding an lterator to DinerMenu

To add an Iterator to the DinerMenu we first need to define the

Iterator Interface:

public interface Iterator {
boolean hasNext () ;

Heve's our two methods:

The hasNext0 method vetuens 3 boolean
indicating whether or not there are move

elements to itevate over-.

Object next();

~and the next() method
returns Lhe next element.

And now we need to implement a concrete Iterator that works
for the Diner menu:

public class DinerMenulterator implements Iterator {

Menultem[] items;
int position = 0;

public DinerMenulterator (Menultem[]
items;

this.items =

}

public Object next ()

{
Menultem menultem = items[position];

position + 1;

position =
return menultem;

}

We im?ltmcn{: the
[—\ lJccv-aJcor 'lw{;cr‘(:a(‘c_
Yos\f\on mainkains the
Lwrc‘n{: Yos'\{:'\ov\ of the
kevation over the avray:

A
=<

items) {

N

The tonstruetor takes the
array of menu items we are
going to iterate over.

The next() method veturns the
next item in the avray and
intrements the position.

public boolean hasNext () {
if (position >= items.length ||
return false;

} else {
return true; /j
}

The hasNext() method eheeks to
see if we've seen all the elements
of the array and veturns true if
there are more to iterate through.

items [position]

326 Chapter 9

Download at WoweBook.Com

== null) {

Betause the diner thef went ahead and
allocated a max sized arvay, we need to
theek not only if we ave at the end of
the arvay, but also if the next item is
null, whith indicates there are no move
items.

the iterator and composite patterns

Reworking the Diner Menuv with lterator

Okay, we’ve got the iterator. Time to work it into the
DinerMenu; all we need to do is add one method to create a
DinerMenulterator and return it to the client:

public class DinerMenu {
static final int MAX ITEMS = 6;
int numberOfItems = 0;
Menultem[] menultems;

// constructor here
// addItem here /\ We've not going to need the SdM"“H-’C'“SO

method anymore and in fact, we don't want it
t because it exposes our internal imylemcn{:a{:ion!

T
T

1o N]
peeTT et T
= T

¥ S —Ree 57

public Iterator createlterator() { k_\

return new DinerMenulterator (menultems);

Heve's the ereatelterator() method.
[t eveates a DinerMenulterator

// other menu methods here £eom the menultems array and
} veturns it to the elient.

}

We've vetuening the [tevator interface. The client

doesn't need o know how the menultems are maintained

in the DinerMenu, nor does it need to know how the
DinevMenultecator is implemented. [t just needs to use the
iterators to step through the items in the menu.

Go ahead and implement the PancakeHouselterator yourself and make the changes
needed to incorporate it into the PancakeHouseMenu.

you are here » 327

Download at WoweBook.Com

the waitress iterates

Fixing up the Waitress code

Now we need to integrate the iterator code

into the Waitress. We should be able to get

rid of some of the redundancy in the process.

Integration is pretty straightforward: first we

create a printMenu() method that takes an

Iterator, then we use the createlterator() method di ved 5
on each menu to retrieve the Iterator and pass it New and improve d /

[evator.
to the new method. with [t
public class Waitress { .
ss
PancakeHouseMenu pancakeHouseMenu; [n the tonstruttor the Waitve
DinerMenu dinerMenu; f\{akcs the two menus.

public Waitress (PancakeHouseMenu pancakeHouseMenu, DinerMenu dinerMenu) {
this.pancakeHouseMenu = pancakeHouseMenu;
this.dinerMenu = dinerMenu;

The vrinUVlcn“O

} method now
eveates two
public void printMenu() { [iterators, one ¥or
Iterator pancakelterator = pancakeHouseMenu.createlterator(); eath menw
Iterator dinerIterator = dinerMenu.createlterator(); &
System.out.println ("MENU\n----\nBREAKFAST”) ;
printMenu (pancakelterator) ; A"d then calls. the
System.out.println (“\nLUNCH") ; overloaded Y”"{"Mc“"o
printMenu (dinerIterator); with eath itevator.
} .
Test i€ H.\crc e The overloaded
privat§ voiq printMenu (Iterator iterator) { any more items. yrin{:/VlcmO
while (1terator.hasNexE()) | . e éc{: the method uses
Menultem menultem = (Menultem)iterator.next(); ;
System.out.print (menultem.getName () + %, “); next item. the H:cra{:or to
System.out.print (menultem.getPrice() + “ -- “); S{‘-C\’ H\W“Sh the
System.out.println (menultem.getDescription()); menu items and
} ? print them.
: Use the item to
// other methods here Note that we've down 3c{', name, prite
} £o one loop. and destription

and print them.

328 Chapter 9

Download at WoweBook.Com

the iterator and composite patterns

Testing our code

It’s time to put everything to a test. Let’s write some
test drive code and see how the Waitress works...

Fivst we treate the new menus.

public class MenuTestDrive ({ V//
public static void main(String args|[]) {
PancakeHouseMenu pancakeHouseMenu = new PancakeHouseMenu() ;
DinerMenu dinerMenu = new DinerMenu () ;

Waitress waitress = new Waitress (pancakeHouseMenu, dinerMenu); €~ Then we treate a

Waitress and pass

waitress.printMenu () ; hev the menus.
})
}

Then we Pr'm{ them.

Here’s the test run...

File Edit Window Help GreenEggs&Ham

% java DinerMenuTestDrive

First we itecate
MENU through the pancake

- menu.

BREAKFAST And then
K&B’'s Pancake Breakfast, 2.99 -- Pancakes with scrambled eggs, and toast the lunch
Regular Pancake Breakfast, 2.99 -- Pancakes with fried eggs, sausage

Blueberry Pancakes, 3.49 -- Pancakes made with fresh blueberries meny, all
Waffles, 3.59 -- Waffles, with your choice of blueberries or strawberries with the

same
LUNCH (iteration
Vegetarian BLT, 2.99 -- (Fakin’) Bacon with lettuce & tomato on whole wheat
BLT, 2.99 -- Bacon with lettuce & tomato on whole wheat
Soup of the day, 3.29 -- Soup of the day, with a side of potato salad
Hotdog, 3.05 -- A hot dog, with saurkraut, relish, onions, topped with cheese
Steamed Veggies and Brown Rice, 3.99 -- Steamed vegetables over brown rice
Pasta, 3.89 -- Spaghetti with Marinara Sauce, and a slice of sourdough bread

tode.

%

you are here » 329

Download at WoweBook.Com

iterator

What have we done so far?

Tor starters, we’ve made our Objectville cooks
very happy. They settled their differences and
kept their own implementations. Once we

gave them a PancakeHouseMenulterator and a
DinerMenulterator, all they had to do was add a
createlterator() method and they were finished.

We’ve also helped ourselves in the process. The
Waitress will be much easier to maintain and

extend down the road. Let’s go through exactly
what we did and think about the consequences:

Hard to Maintain
Waitress lmplementation

code changes other
than adding the
createIterator() method.

Woohoo! No

New, Hip
Waitress Powered by lterator

The Menus are not well

encapsulated; we can see the Diner

is using an Array and the Pancake
House an ArrayList.

We need two loops to iterate through

the Menultems.

The Waitress is bound to concrete
classes (Menultem[] and ArrayList).

The Waitress is bound to two different
concrete Menu classes, despite their

interfaces being almost identical.

330

The Menu implementations are now
encapsulated. The Waitress has
no idea how the Menus hold their
collection of menu items.

All we need is a loop that
polymorphically handles any
collection of items as long as it
implements Iterator.

The Waitress now uses an interface
(Iterator).

The Menu interfaces are now exactly
the same and, uh oh, we still don’t
have a common interface, which
means the Waitress is still bound to
two concrete Menu classes. We'd
better fix that.

Download at WoweBook.Com

the iterator and composite patterns

What we have so far...

Before we clean things up, let’s get a bird’s eye view of our current design.

hese two menus im‘?\Can‘{‘, the
Zamc exatt set of methods, but
they aven t implementing ‘hh; sa:;
[nkevfate. We've 9oing to fix this
and free the Waibress Lrom any

dependenties on tontrete Menvs:

N

[tevator to do her iterating,

The [tevator allows the Waitress to be decoupled WC e now

Lrom the actual implementation of the tontrete Fz'"ﬂ a tommon

tlasses. She doesn’t need to know if a Menu is ‘ zraéaor

implemented with an Array, an Arra\/Lis{:, or with inter eu

PostH™ notes. All she tares is that she ean get an .ahd we've
implemented
two eontrete
C]asscs.

/N

PancakeHouseMenu h<7 Waitress i—) <<interface>>
menultems I printMenu() Iterator
hasNext()
createlterator())
AN DinerMenu
\> menultems
reatetteratr() > PancakeHouseMenulterator DinerMenulterator

hasNext()
next()

/

hasNext()
next()

/

Note that the iterator 9ive us a way to step
through the elements of am aggregate without
forcing the aggregate to tlutter its own interface
with a bunch of methods to support traversal of its
elements. [t also allows the implementation of the
iterator to live outside of Lhe aggregate; in other
words, we've encapsulated the interation.

N/

- lement
PancakcHouscMcm and DinerMenv implemen

the new crca{cl‘r,cra{:or() MCJFJ\C\Od; ;,:cz ::ri -
rcs?ons‘\b\c for treating the itera

i ions-
vespettive meny items m\v\mcnha‘g

331

you are here »

Download at WoweBook.Com

improve the

Making some improvewments...

Okay, we know the interfaces of PancakeHouseMenu and DinerMenu are exactly the same
and yet we haven’t defined a common interface for them. So, we’re going to do that and

clean up the Waitress a little more.

You may be wondering why we’re not using the Java Iterator interface — we did that so you
could see how to build an iterator from scratch. Now that we’ve done that, we’re going to
switch to using the Java Iterator interface, because we’ll get a lot of leverage by implementing
that instead of our home grown Iterator interface. What kind of leverage? You'll soon see.

First, let’s check out the java.util.Iterator interface:

<<interface>>
Iterator

next()

hasNext()

remove()

e This looks ")us{: like our previous definition.

= Extept we have an additional method that

allows us to vemove the last item veturned b\/
the next() method from the aggregate.

This 1s going to be a piece of cake: We just need to change the interface that both
PancakeHouseMenulterator and DinerMenulterator extend, right? Almost... actually, it’s
even easier than that. Not only does java.util have its own Iterator interface, but ArrayList has
an iterator() method that returns an iterator. In other words, we never needed to implement

our own iterator for ArrayList. However, we’ll still need our implementation for the
DinerMenu because it relies on an Array, which doesn’t support the iterator() method (or any

other way to create an array iterator).

Q: What if | don’t want to provide
the ability to remove something from the
underlying collection of objects?

A: The remove() method is considered
optional. You don’t have to provide remove
functionality. But, obviously you do need to
provide the method because it's part of the
Iterator interface. If you're not going to allow
remove() in your iterator you'llwant to throw

332

therejare_no

Dumb Questions

the runtime exception
java.lang.UnsupportedOperationException.
The Iterator API documentation specifies that
this exception may be thrown from remove()
and any client that is a good citizen will
check for this exception when calling the
remove() method.

Download at WoweBook.Com

Q: How does remove() behave
under multiple threads that may be
using different iterators over the same
collection of objects?

AZ The behavior of the remove() is
unspecified if the collection changes while
you are iterating over it. So you should be
careful in designing your own multithreaded
code when accessing a collection
concurrently.

the iterator and composite patterns

Cleaning things up with java.util.lterator

Let’s start with the PancakeHouseMenu, changing it over to java.util.Iterator is
going to be easy. We just delete the PancakeHouseMenulterator class, add an

import java.util.Iterator to the top of PancakeHouseMenu and change one line
of the PancakeHouseMenu:

public Iterator createlterator() { /\ Instead of Crca{:’.hs our own iterator

return menultems.iterator(); now, we just call the iterator() method

) on the menultems ArrayLis{:.

And that’s it, PancakeHouseMenu is done.

Now we need to make the changes to allow the DinerMenu to work with java.util.Iterator.

£ -

import java.util.Iterator;

Fiest we import Java-util [terator, the

interface we've 90ing to implement.
public class DinerMenulterator implements Iterator ({

MenulItem[] list;
int position = 0;

public DinerMenulterator (Menultem[] list) {
this.list = list;
} None of our eurrent

im?\tmcn{a{‘,ion ¢hanges.--
public Object next() {

//implementation here
} Jout we do need to implement vemove().

public boolean hasNext () ({ Here, because the thef is using a fixed
//implementation here sized Arra\/, we Jus{: shift all the
} elements up one when vemove() is ¢called.

public void remove () {
if (position <= 0) {
throw new IllegalStateException
(“You can’t remove an item until you’ve done at least one next()”);

}
if (list[position-1] != null) {
for (int i = position-1; i < (list.length-1); i++) {
list[i] = list[i+1];
}
list[list.length-1] = null;

you are here » 333

Download at WoweBook.Com

decouple the waitress from the menus

We are almost there...

We just need to give the Menus a common interface and rework the Waitress
alittle. The Menu interface is quite simple: we might want to add a few more
methods to it eventually, like addItem(), but for now we will let the chefs control
their menus by keeping that method out of the public interface:

public interface Menu | /\ This is a simple interface that Just
public Iterator createlterator(); lets clients get an itevator for
} the items in the menu.

Now we need to add an implements Menu to both the
PancakeHouseMenu and the DinerMenu class definitions and
update the Waitress:

(VAR

import java.util.Iterator; Now the Waitvess uses the Jjava.util [tevator as well.

public class Waitress {
Menu pancakeHouseMenu; We need to veplace the
Menu dinerMenu; /\ tontrete Menu tlasses
with the Menu
public Waitress (Menu pancakeHouseMenu, Menu dinerMenu) { m hfﬂ4ﬁt¢

this.pancakeHouseMenu = pancakeHouseMenu;
this.dinerMenu = dinerMenu;

public void printMenu () {

Iterator pancakelterator = pancakeHouseMenu.createlterator();

Iterator dinerIterator = dinerMenu.createlterator();

System.out.println (“MENU\n----\nBREAKFAST") ;

printMenu (pancakelterator);

System.out.println (“\nLUNCH") ;

printMenu (dinerIterator) ; N°£M“3Chm@ﬂ
} heve.

private void printMenu (Iterator iterator) {
while (iterator.hasNext()) {

Menultem menultem = (Menultem)iterator.next():;
System.out.print (menultem.getName () + %, “);
System.out.print (menultem.getPrice() + “ -- V);

System.out.println (menultem.getDescription()) ;

// other methods here

334 Chapter 9

Download at WoweBook.Com

the iterator and composite patterns

What does this get us?

The PancakeHouseMenu and DinerMenu classes implement an interface,
Menu. Waitress can refer to each menu object using the interface rather than
the concrete class. So, we’re reducing the dependency between the Waitress and
the concrete classes by “programming to an interface, not an implementation.”

The new Menu interface has one method, createlterator(), that is implemented
by PancakeHouseMenu and DinerMenu. Each menu class assumes the

responsibility of creating a concrete Iterator that is appropriate for its internal
implementation of the menu items.

o~

This solves the problem of
the Waitress depending on
he tontrete Menus.

This solves the problem of
the Waitress depending on

the implementation of the
Menu/tems.

. i from the
Now, Waitress We've detovpled Waitress <o now
. us
onl\/ needs to ! m\,\cmen{;ahon the mtn. {: ke
) be tonterned wse an |tevator toi e .
Here's our new Menu intevface. ith Menus and we ean list of menu items withow
L[en 3 .
It SPcCr(:nes the new method, ‘l"{; + over ahzo \k . sbouk how khe list
vs. i 0
eveatelterator(). rato having to E0 ted.
2 of ikems is implemen
<<interface>> Waitress i—) <<interface>>
Menu) Iterator
printMenu()
createlterator() hasNext()
next()
ﬂ P remove()
PancakeHouseM DinerM - -
alnca eriousetenu | inertlenu = PancakeHouseMenuIterator‘ DinerMenulterator i
menultems menultems

hasNext()
next()

createlterator() createlterator()

3

erMenu now implement
whith means 'Ehcy need to
reatelterator() method.

remove()

T

PancaketouseMenu and Din
the Menu interface,
implement £h

plement the new ¢ We've now using the ArrayLis{:
itecator supplied by java.util.
We don’t need this anymore.

7

Eath tontrete Menu is vesponsible
for treating the appropriate
tontrete [tevator class.

Download at WoweBook.Com

hasNext()
next()
remove()

DinerMenu veturns an
DinerMenulterator
‘c\'om its
eveatelterator()
method because that's
the kind of iterator
vequived to itevate
over its Avray of

menu items.

you are here » 335

iterator pattern

Iterator Pattern defined

You've already seen how to implement the Iterator
Pattern with your very own iterator. You've also seen
how Java supports iterators in some of its collection
oriented classes (the ArrayList). Now it’s time to check
out the official definition of the pattern:

The Iterator Pattern provides a way to
access the elements of an aggregate object
sequentially without exposing its underlying
representation.

This makes a lot of sense: the pattern gives you a way
to step through the elements of an aggregate without
having to know how things are represented under the
covers. You've seen that with the two implementations
of Menus. But the effect of using iterators in your
design is just as important: once you have a uniform way
of accessing the elements of all your aggregate objects,
you can write polymorphic code that works with any
of these aggregates — just like the printMenu() method,
which doesn’t care if the menu items are held in an
Array or ArrayList (or anything else that can create an
Iterator), as long as it can get hold of an Iterator.

The other important impact on your design is that the
Iterator Pattern takes the responsibility of traversing
clements and gives that responsibility to the iterator
object, not the aggregate object. This not only keeps
the aggregate interface and implementation simpler,

it removes the responsibility for iteration from the
aggregate and keeps the aggregate focused on the
things it should be focused on (managing a collection of
objects), not on iteration.

Let’s check out the class diagram to put all the pieces in
context...

336

The Iterator Pattern allows
traversal of the elements

of an aggregate without
exposing the unc[erlying

implementation.

It also Places the task of

traversal on the iterator
ol)ject, not on the aggregate,
which simpli{ies the
aggregate interface and
implementation, and Places

the responsiloility where it
should be.

Download at WoweBook.Com

the iterator and composite patterns

) The [terator interfate
HaV|n5 a Lommon ihfcr‘('\adc for Yyour yrovides the 'm{:cr‘caéc
aggreates is handy for your client; that all itevators
it decouples your client (vyrom the must implement, and
implementation of your ¢ollettion of objccﬁs. 3 set of methods
- . - for traversing over
L37 “igargate. et erstr elements of a eallection
createlterator() hasNext() Here we've using the
X next() iava.util.[terator. l‘c You
remove() don't want to use Java's

[tevator interfate, you

can always eveate your

ConcreteAggregate > Concretelterator
createlterator() hasNext()

own.
next()
\ remove()

Each Coneretefagregate

is vesponsible for

ihs{:an‘f:iaﬁns a ,Y
The Contretefggregate Conevetelterator that
has a eollection of ¢an iterate over its The Contretelterator is
objeets and implements tollection of objects. vesponsible £or managing
the method that the curvent position of
YC‘{:UV'V\S an H:Cra{',or

the iteration.
for its eollection.

@RAn«
vaweEw

The class diagram for the lterator Pattern looks very similar to another Pattern you've studied; can you
think of what it is? Hint: A subclass decides which object to create.

you are here » 337

Download at WoweBook.Com

q&a about

Q: I've seen other books show the
Iterator class diagram with the methods
first(), next(), isDone() and currentltem().
Why are these methods different?

AZ Those are the “classic” method
names that have been used. These names
have changed over time and we now have
next(), hasNext() and even remove() in
java.util.lterator.

Let's look at the classic methods. The
next() and currentltem() have been merged
into one method in java.util. The isDone()
method has obviously become hasNext();
but we have no method corresponding to
first(). That's because in Java we tend to
just get a new iterator whenever we need to
start the traversal over. Nevertheless, you
can see there is very little difference in these
interfaces. In fact, there is a whole range
of behaviors you can give your iterators.
The remove() method is an example of an
extension in java.util.lterator.

Q} I've heard about “internal”
iterators and “external” iterators. What
are they? Which kind did we implement
in the example?

A: We implemented an external iterator,
which means that the client controls the
iteration by calling next() to get the next
element. An internal iterator is controlled

by the iterator itself. In that case, because
it's the iterator that's stepping through the
elements, you have to tell the iterator what
to do with those elements as it goes through
them. That means you need a way to pass
an operation to an iterator. Internal iterators
are less flexible that external iterators
because the client doesn’t have control of
the iteration. However, some might argue

338

tbere];lre no

Dumb Questions

that they are easier to use because you just
hand them an operation and tell them to
iterate, and they do all the work for you.

Q} Could I implement an Iterator that
can go backwards as well as forwards?

AZ Definitely. In that case, you'd
probably want to add two methods, one to
get to the previous element, and one to tell
you when you're at the beginning of the
collection of elements. Java’'s Collection
Framework provides another type of iterator
interface called Listlterator. This iterator
adds previous() and a few other methods

to the standard lterator interface. Itis
supported by any Collection that implements
the List interface.

Q: Who defines the ordering of the
iteration in a collection like Hashtable,
which are inherently unordered?

AZ Iterators imply no ordering. The
underlying collections may be unordered as
in a hashtable or in a bag; they may even
contain duplicates. So ordering is related
to both the properties of the underlying
collection and to the implementation. In
general, you should make no assumptions
about ordering unless the Collection
documentation indicates otherwise.

Q} You said we can write
“polymorphic code” using an iterator;
can you explain that more?

AZ When we write methods that take
Iterators as parameters, we are using
polymorphic iteration. That means we are
creating code that can iterate over any

Download at WoweBook.Com

collection as long as it supports lterator.
We don't care about how the collection
is implemented, we can still write code to
iterate over it.

Q: If I'm using Java, won’t | always
want to use the java.util.lterator
interface so | can use my own iterator
implementations with classes that are
already using the Java iterators?

A: Probably. If you have a common
Iterator interface, it will certainly make it
easier for you to mix and match your own
aggregates with Java aggregates like
ArrayList and Vector. But remember, if you
need to add functionality to your Iterator
interface for your aggregates, you can
always extend the lterator interface.

Q: I've seen an Enumeration
interface in Java; does that implement
the Iterator Pattern?

A: We talked about this in the Adapter
Chapter. Remember? The java.util.
Enumeration is an older implementation

of lterator that has since been replaced

by java.util.lterator. Enumeration has

two methods, hasMoreElements(),
corresponding to hasNext(), and
nextElement(), corresponding to next().
However, you'll probably want to use lterator
over Enumeration as more Java classes
support it. If you need to convert from one
to another, review the Adapter Chapter
again where you implemented the adapter
for Enumeration and Iterator.

Single Responsibility

What if we allowed our aggregates to
implement their internal collections and
related operations AND the iteration
methods? Well, we already know that
would expand the number of methods in
the aggregate, but so what? Why is that
so bad?

Well, to see why, you first need to recognize that when we allow
a class to not only take care of its own business (managing
some kind of aggregate) but also take on more responsibilities
(like iteration) then we’ve given the class two reasons to change.
Two? Yup, two: it can change if the collection changes in
some way, and it can change if the way we iterate changes. So
once again our friend CHANGLE is at the center of another
design principle:

Design Principle

A class should have only one
reason to change.

We know we want to avoid change in a class like the plague

— modifying code provides all sorts of opportunities for
problems to creep in. Having two ways to change increases
the probability the class will change in the future, and when
it does, it’s going to affect two aspects of your design.

The solution? The principle guides us to assign each
responsibility to one class, and only one class.

That’s right, it’s as easy as that, and then again it’s not:
separating responsibility in design is one of the most
difficult things to do. Our brains are just too good at seeing
a set of behaviors and grouping them together even when
there are actually two or more responsibilities. The only
way to succeed is to be diligent in examining your designs
and to watch out for signals that a class is changing in more
than one way as your system grows.

Download at WoweBook.Com

the iterator and composite patterns

Every responsil)ility of a
class is an area of Potential
change. More than one
responsilaility means more
than one area of cllange.

This principle guic[es us to
keep each class to a single
responsilaility.

Cohesion is a term you'll
hear used as a measure of
how closely a class or a
module supports a single

purpose or responsibility.

‘ \EH ¥ P

We say that a module or
class has high cohesion

when it is designed around a set of
related functions, and we say it has low
cohesion when it is designed around a
set of unrelated functions.

Cohesion is a more general concept
than the Single Responsibility Principle,
but the two are closely related.

Classes that adhere to the principle
tend to have high cohesion and are
more maintainable than classes that
take on multiple responsibilities and
have low cohesion.

339

multiple responsibilities

§-P QWEWw

RANVN

Examine these classes and determine which ones have multiple responsibilities.

Person GumballMachine
N getCount()
Game % m:?eo Phone getState()
login() sathdcress() dial() getLocation()
) setPhoneNumber()
signup() save() hangUp()
t:::(l)e() oad) ::2Data()
rest() flash()
T —
Iterator
DeckOfCards - hasNext()
hasNext() ShoppingCart next(
next() add() remove()
remove() remove()
addCard() checkOut() —
removeCard() saveForLater()
shuffle() (_,-
.
HARD HAT ARER, WATCH OUT
FOR FALLING ASSUMPTIONS
vAaNNE
P QW E w Determine if these classes have low or high cohesion.
Game PlayerActions h
login() GameS TOVE() Player i
signup()) fire() getHighScore()
move() login) rest() getName()
fire() signup(
rest()
getHighScore()
getName()
340 Chapter 9

Download at WoweBook.Com

the iterator and composite patterns

Good thing you're learning
about the Iterator pattern
because I just heard that Objectville
Mergers and Acquisitions has done
another deal... we're merging with
Objectville Café and adopting their
dinner menu.

Wow, and we thought things
were already complicated.
Now what are we going to do?

Come on,
think positively, I'm
sure we can find a way to
work them into the
Iterator Pattern.

you are here » 341

Download at WoweBook.Com

a new menu

Taking a look at the Café Menu

Here’s the Café Menu. It doesn’t look like too much trouble to integrate the
Cafe Menu into our framework... let’s check it out.
ent our new Menv

CafeMenn doesnt implem

- easily fixed.
(\ eckate bub Lhis is easily i e thoms in 2 Hahible.

' The Cafe is storing thei
ublic class CafeMenu { ° ; Haont
) Hashtable menultems = new Hashtable(); < Does that support [tevator? We Il see shortly

i items ave
I Like the other Menus, the menu i
" caarton e ‘5_\ initialized in the tonstruttor.

addItem(“Veggie Burger and Air Fries”,
“Veggie burger on a whole wheat bun, lettuce, tomato, and fries”,
true, 3.99);
addItem(“Soup of the day”,
“A cup of the soup of the day, with a side salad”,
false, 3.69);
addItem (“Burrito”,
“A large burrito, with whole pinto beans, salsa, guacamole”,

true, 4.29);
"/_\ Heve's where we eveate a new Menultem
public void addItem(String name, String description, and add it 4o the menultems hashtable.

boolean vegetarian, double price)
{
Menultem menultem = new Menultem(name, description, vegetarian, price);
menultems.put (menultem.getName (), menultem);

} L e ey R

is the e e the value is the menu|tem objccf.

public Hashtable getItems() {

return menultems;
} \

} We've not aoihs +o need this anymore.

@ harpen your pencil

\\\\ Before looking at the next page, quickly jot down the three things
we have to do to this code to fit it into our framework:

342 Chapter 9

Download at WoweBook.Com

the iterator and composite patterns

Reworking the Café Menu code

Integrating the Cafe Menu into our framework is easy. Why? Because
Hashtable is one of those Java collections that supports Iterator. But it’s not
quite the same as ArrayList...
CafeMenu implements the Menu
m interfate, so the Waitress tan use
public class CafeMenu implements Menu { it jus{: like the other two Menus.
Hashtable menultems = new Hashtable();
K__/ We've using Hashtable because it's a
public CafeMenu() { tommon data structure for storing values;
} // constructor code here you tould also use the newer HashMap.

public void addItem(String name, String description,
boolean vegetarian, double price)

{

Menultem menultem = new Menultem(name, description, vegetarian, price);

menultems.put (menultem.getName (), menultem);
}

: 0 so we don't
£ Justk like before, we an act vid of getitems

P eturmanateamer expose the im\alcmcn{;aﬁon of menultems to the Waitress.
—retura—menuttemss

}

public Iterator createIterator() { And here's wheve we implement the ereatelteratorl)
.) H
return menultems.values () .iterator(); method. Notice that we've not getting an lterator

} v for the whole Hashtable, ")us{ £or the values.
}

p O@de UP Ol@Se Hashtable is a little more complex than the ArrayList because it

supports both keys and values, but we can still get an lterator
for the values (which are the Menultems).

public Iterator createlterator() {
return menultems.values () .iterator();

} / /\
Firs‘k we 3C£ ‘t"\c ValUCS 0‘('\ ‘khc H35h£ablc) L"Cklly ‘Eha{ Co“cc{:ion s"‘PPo"-tS 'Ehc

whith is \)us{ a tollection of all the 3?*&%0%) method, whith veturns 3
ob\')cc{:s in the hashtable. objeet of type Jjavautil. [tevator.

you are here » 343

Download at WoweBook.Com

test drive the new menu

Adding the Café Menu to the Waitress

That
Now

publ

344

was easy; how about modifying the Waitress to support our new Menu?
that the Waitress expects Iterators, that should be easy too.

ic class Waitress { The Cafe menu is passed into the Waitress in
Menu pancakeHouseMenu; the construetor with the other menus, and we

Menu dinerMenu; stash it in an instance variable.
Menu cafeMenu; i/

public Waitress (Menu pancakeHouseMenu, Menu dinerMenu, Menu cafeMenu) ({
this.pancakeHouseMenu = pancakeHouseMenu;
this.dinerMenu = dinerMenu;
this.cafeMenu = cafeMenu;

public void printMenu () {
Iterator pancakelterator = pancakeHouseMenu.createlterator():;
Iterator dinerIterator = dinerMenu.createlterator();
Iterator cafelterator = cafeMenu.createlterator();) . ’
System.out.println ("MENU\n----\nBREAKFAST”) ; S~ Wee using H‘ci Cakes
printMenu (pancakelIterator); mc”‘£°r°w'dm"ﬂ'm"m
System.out.println (“\nLUNCH”) ; A”WC‘WVC£°d°£°?H"£
printMenu (dinerIterator) ; it is ereate the iterator,
System.out.println (Y \nDINNER”) ; K_/_/ and pass it to yrin{McnuO.

printMenu (cafelterator) ; That's it/

private void printMenu (Iterator iterator) {
while (iterator.hasNext()) {
Menultem menultem = (Menultem)iterator.next();
System.out.print (menultem.getName () + %, “);
System.out.print (menultem.getPrice() + “ —-= V);
System.out.println (menultem.getDescription());

« Nothing thanges here

Chapter 9

Download at WoweBook.Com

the iterator and composite patterns

Breakfast, lunch AND dinner

Let’s update our test drive to make sure this all works.

public class MenuTestDrive {
public static void main(String args([]) {

PancakeHouseMenu pancakeHouseMenu = new PancakeHouseMenu() ;
DinerMenu dinerMenu = new DinerMenu () ; <’_’/—/

CafeMenu cafeMenu = new CafeMenu() ; .. and pass it to the waitress.

Create a CafeMenu...

Waitress waitress = new Waitress (pancakeHouseMenu, dinerMenu, cafeMenu) ; Q’—D

waitress.printMenu() ;
<— Now, when we print we should see all three menus.

Heres the test run; check out the new dinner menu from the Café!

File Edit Window Help

)

% Jjava DinerMenuTestDrive First we itevate

LL20) through the pancake
BREAKFAST

K&B’s Pancake Breakfast, 2.99 -- Pancakes with scrambled eggs, and toast

Regular Pancake Breakfast, 2.99 -- Pancakes with fried eggs, sausage

Blueberry Pancakes, 3.49 -- Pancakes made with fresh blueberries And £h
Waffles, 3.59 -- Waffles, with your choice of blueberries or strawberries i en

the diner
LUNCH (menu.

Vegetarian BLT, 2.99 -- (Fakin’) Bacon with lettuce & tomato on whole wheat
BLT, 2.99 -- Bacon with lettuce & tomato on whole wheat

Kathy&BertLikePancakes

meénu.

Soup of the day, 3.29 -- Soup of the day, with a side of potato salad

Hotdog, 3.05 -- A hot dog, with saurkraut, relish, onions, topped with cheese
Steamed Veggies and Brown Rice, 3.99 -- Steamed vegetables over brown rice
Pasta, 3.89 -- Spaghetti with Marinara Sauce, and a slice of sourdough bread

DINNER &L NAnd Finally the
Soup of the day, 3.69 -- A cup of the soup of the day, with a side salad |, ;3¢ meny,
Burrito, 4.29 -- A large burrito, with whole pinto beans, salsa, guacamole | with £h

Veggie Burger and Air Fries, 3.99 -- Veggie burger on a whole wheat bun, atl wi ©

lettuce, tomato, and fries same itecation
g tode.

you are here » 345

Download at WoweBook.Com

what did we do?

What did we do?

Arraylist

's‘ p We wanted to give the
e Waitress an easy way to /7

- itevate over menu items...

-d oy

| YenigreS | Hengse™ | Yenizre® | Menizre®

Our meny items had two 1 2 : :
d\ﬂcvcn{: \m\’\tmth{',aflons
and two ditfevent Array

) inkecfates for itevating
 and we didn't want hev o _37

know about how the menu
items ave imylcmen{cd.

We decoupled the Waitress....

AvvayList has 3
So we gave the Waitress an built in tevator- Arrayu st
[tevator for eath kind of Y
aroup of objects she needed
o itevate over... . one for

\
ﬂ next(ﬂ

AveayList...

| Yenare® | Menmre® | Yenmren | Memme® |

v
- . Prevay doesn't Arra
/ Berard have a built in \
. ... and one ‘FOY‘ H:?V'a‘{lO\' so we
Aveay. built ouwr own.
—next() - Y
f Qpepat /\

ﬂ g Now she doesn’t have to worry about which

implementation we used; she always uses the same

interface — [terator — o iterate over menu items.
She’s been decoupled Lrom the implementation.

346 Chapter 9

Download at WoweBook.Com

the iterator and composite patterns

... ahd we made the Waitress wmore extensible

We easily added

B\/ giving her an [tevator another '""?lc".ey\‘{',a{‘,.loh
we have decoupled her Lrom e o, and
v the imflcmcn{abon of the

) sinte We ‘wovidcd an
menu items, so we ean easily Iterabor, the Waikress

add new Menus if we want. HaShfable knew what to do-

__—next() \
‘-\

Which is better £ her, Treror® Making an [terator

£or the Hashtable

€tause now she ¢g,, use the

al .
:ame tode to iterate ovey “/Iouuf:jal‘luaS p her
ny ar. .
i {_’;Z Eczzzk"f ocht'l:s‘ And F\’ Va"*C&ifcra{ov-()

. or us beeaus u get
the imple . .c You get an
aren’t c%;:sy;?bon detal ferator.

But there’s more!

Java gives you a lot of
“eollection” ¢lasses that allow
you to store and vetrieve

groups of objects. For example, .)
Vector and LinkedList. PC\> S Linkedlist
Most have different Vector

interfates.

G

Yenpre® Menze® Yemres Menpe®

Bt almost all of o | B [P |t | \
them support 2 wore:
way to obtain an "'a“d

|tevator:
And if they don't support
[tevator, that’s ok, because now
you know how to build Your own.

you are here » 347

Download at WoweBook.Com

iterators and collections

Iterators and Collections

We’ve been using a couple of classes that are part of the Java Collections Framework.
This “framework” is just a set of classes and interfaces, including ArrayList, which we’ve
been using, and many others like Vector, LinkedList, Stack, and PriorityQueue. Each
of these classes implements the java.util. Collection interface, which contains a bunch of
useful methods for manipulating groups of objects.

Let’s take a quick look at the interface:

<<interface>>
Collection

As you tan see, fheve's all kinds of 9ood
L

d vemove)
add) g skub £ heve. You tan add and veno Watch it!

iterator() (/-

method. With this method, You ean gcjc

remose() an [tevator for any class that implements
removeAlf) the Collection interface.

retainAll()

size() &\

toArray()
TN Obher handy methods |

ntlude size(),

to get the number of elements,
and {aoArray() to turn Your

eolleetion into an array.

The nice thing about Collections and
Tterator is that each Collection object
knows how to create its own Iterator.
Calling iterator() on an ArrayList returns a
concrete Iterator made for Arraylists, but
you hever need to see or worry about the
concrete class it uses; you just use the
Tterator interface.

348 Chapter 9

Download at WoweBook.Com

addAll ion without

c/ear(){) elements from \/ovtl ,c?\\ct,‘t.::nud'

contains() even knowing how s P Hashtable is one of a few
containsAll() classes that indirectly

equals() supports Iterator. As you saw
hashCode() when we implemented the
isEmpty() L Here's our old friend, the iterator() CafeMenu, you could get an

Iterator from it, but only by
first retrieving its Collection
called values. If you think
about it, this makes sense:
the Hashtable holds two
sets of objects: keys and
values. If we want to iterate
over its values, we first need
to retrieve them from the
Hashtable, and then obtain
the iterator.

the iterator and composite patterns

Iterators and Collections
indava 9

Check this out, in
Java 5 they've added
support for iterating
over Collections so that
you don't even have to
ask for an iterator.

Java 5 includes a new form of the for statement, called
for/in, that lets you iterate over a collection or an array
without creating an iterator explicitly.

To use for/in, you use a for statement that looks like:

obj is assigned to the next
iﬁz:a£;s o‘f‘f cl;)mcr\{: in the collection
the c:“‘izz " cath Lime through the loop.
ion.

\

for (Object obj: collection) ({

}
Load wp an
Here’s how you iterate over an ArrayList using for/in: AW&YUS{; of
Menultems.
ArrayList items = new ArrayList():; \2

items.add (new Menultem(“Pancakes”, “delicious pancakes”, true, 1.59);
items.add (new Menultem (“Waffles”, “yummy waffles”, true, 1.99);
items.add (new Menultem(“Toast”, “perfect toast”, true, 0.59);

for (Menultem item: items) {
System.out.println (“Breakfast item: “ + item);

} y
[terate over the list and print
eath item.

Watch it!

You need to use Java 5’s new
generics feature to ensure for/
in type safety. Make sure you

read up on the details before
using generics and for/in.

you are here » 349

Download at WoweBook.Com

code magnets

Code Magnets

The Chefs have decided that they want to be able to alternate their lunch menu items; in other words,
they will offer some items on Monday, Wednesday, Friday and Sunday, and other items on Tuesday,
Thursday, and Saturday. Someone already wrote the code for a new “Alternating” DinerMenu Iterator
so that it alternates the menu items, but they scrambled it up and put it on the fridge in the Diner as a

joke. Can you put it back together? Some of the curly braces fell on the floor and they were too small
to pick up, so feel free to add as many of those as you need.

MenuItem menultem = items[position];
position = position + 2;
return menultem;

import java.util.Iterator;
import java.util.Calendar;

l public Object next () ¢ . ‘:)

public AlternatingDinerMenuIterator(Menultem[]

items)
this.items = items;
Calendar rightNow = Calendar.getInstance() ;
position =

rightNow.get (Calendar.DAY OF WEEK)

public void remove () {
1Mplementg Iterator

Menultem[] items;
int position;

S 2;

|£ublic class AlternatingDinerMenuIterator—l

rﬁublic boolean hasNext () {

throw new UnsupportedOperationException (

“Alternating Diner Menu Iterator does not support remove () ") ;

if (position >= items.length || items [position] == null) {
return false;
} else {

return true;

})

350 Chapter 9

Download at WoweBook.Com

the iterator and composite patterns

Is the Waitress ready for prime time?

The Waitress has come a long way, but you’ve gotta admit
those three calls to printMenu() are looking kind of ugly.

Let’s be real, every time we add a new menu we are going to
have to open up the Waitress implementation and add more
code. Can you say “violating the Open Closed Principle?”

Three eveatelterator() eslls.

public void printMenu () {
Iterator pancakelterator = pancakeHouseMenu.createlterator();
Iterator dinerIterator = dinerMenu.createlterator();
Iterator cafelterator = cafeMenu.createlterator();

System.out.println (“"MENU\n----\nBREAKFAST"”) ;
printMenu (pancakeIterator);

System.out.println (“\nLUNCH") ;
printMenu(dinerIterator); Theee ealls to ?rin{Mcnu-

System.out.println (“\nDINNER") ; kf//
printMenu (cafelterator);

7

Everytime we add or vemove a menu we've going
%o have to open this code up for thanges.

It’s not the Waitress’ fault. We have done a great job of decoupling the menu implementation and
extracting the iteration into an iterator. But we still are handling the menus with separate, independent
objects — we need a way to manage them together.

RANN
PQWEWR

The Waitress still needs to make three calls to printMenu(), one for each menu. Can you think of a
way to combine the menus so that only one call needs to be made? Or perhaps so that one Iterator is
passed to the Waitress to iterate over all the menus?

you are here » 351

Download at WoweBook.Com

a new design?

This isn't so bad, all we
need to do is package
the menus up into an ArrayList

and then get its iterator to iterate
through each Menu. The code in the
Wiaitress is going to be simple
and it will handle any humber of
menus.

Sounds like the chef is on to something. Let’s give it a try:

public class Waitress { Now we \')us{: take an
ArrayList menus; A\rra\/Lis{: of menus.
public Waitress (ArrayList menus) {
this.menus = menus;
} And we itevate
public void printMenu () { Hnrough the
Iterator menulterator = menus.iterator(); K menus, Passing each
while (menulterator.hasNext ()) { menu’s iterator
Menu menu = (Menu)menulterator.next(); to the overloaded
printMenu (menu.createlterator()); printMenu() method.
}
}
void printMenu (Iterator iterator) { k\
while (iterator.hasNext()) {
Menultem menultem = (Menultem)iterator.next(); No code
System.out.print (menultem.getName () + %, “); thanges here.
System.out.print (menultem.getPrice() + “ -- V);
System.out.println (menultem.getDescription());

This looks pretty good, although we’ve lost the names of the menus,
but we could add the names to each menu.

352 Chapter 9

Download at WoweBook.Com

the iterator and composite patterns

Just when we thought it was safe...

Now they want to add a dessert submenu.

T just heard the
Diner is going to be
creating a dessert menu that
is going to be an insert into
their regular menu.

Okay, now what? Now we have to support not only multiple
menus, but menus within menus.

It would be nice if we could just make the dessert menu an
element of the DinerMenu collection, but that won’t work as
it is now implemented.

What we want (something like this):

All Menus

3

) &
I/ic"7/rel.|0\19“F |O’her-MaY\“ chfeMer\“ |

1 2 3

é\ Heve's our Arra\/lis{:

that holds the menus
of each vestaurant.

Café Menu

Pancake Menu
Piner Menu

| Henimres | Menme® | Hemmres | Menre® |
1 2 3] 4

7\ Hashtable
S~—

ArvaLisk Pessert Menu
We need for Diner Menu o hold a submeny, but
we tan't actually assign a menu to a Menultem
arvay because the types are different, so this
isn't going £o work.

ot s o W We can’t assign a dessert menu to
9«0“&‘1“ a Menultem array.

Time for a change!

you are here » 353

Download at WoweBook.Com

time to refactor

What do we need?

The time has come to make an executive decision to
rework the chef’s implementation into something that
is general enough to work over all the menus (and
now sub menus). That’s right, we’re going to tell the
chefs that the time as come for us to reimplement their
menus.

The reality is that we’ve reached a level of complexity
such that if we don’t rework the design now, we’re
never going to have a design that can accommodate
further acquisitions or submenus.

So, what is it we really need out of our new design?

® We need some kind of a tree shaped structure that
will accommodate menus, submenus and menu
items.

® We need to make sure we maintain a way to
traverse the items in each menu that is at least
as convenient as what we are doing now with
iterators.

® We may need to be able to traverse the items in
a more flexible manner. For instance, we might
need to iterate over only the Diner’s dessert menu,

or we might need to iterate over the Diner’s entire

There comes a time
when we must refactor
our code in order for it fo grow.
To not do so would leave us with
rigid, inflexible code that has
no hope of ever sprouting
new life.

menu, including the dessert submenu.

354 Chapter 9

Download at WoweBook.Com

the iterator and composite patterns

Betavse we need %o vepresent
menus, nested <ub menus and o
menu items, we €an natually i
them in 3 Lree-like sbrueture.

Al Me®

e
& .

%’7 auomoda’cc Menus...
A N
Ve Hous” . s N\dp
/l \ ... and sub menus... / \\A
2 2 2 2 u, 2 Menrre® Henyrre® ey
enyrye™ enurre™ enurre™ enyrie® enurre™ lemre® 5 u u u
eSSer\ N

AN N7

.and menu items.
Ve rres

Henrrer Yemzre Hemizre® «é//
We still need 4o be able

+o traverse all the items
in the tree.

W,
! € also neeqd to be able 4,

rav
| erse move -ﬂcxibly, for
nstante OVer one meénu.

Q

ety

\
@)

Yo Henre™ Henpre®

Hemzre

TBRANN

PQWEWR

How would you handle this new wrinkle to our design requirements? Think about it before turning the page.

you are here » 355

Download at WoweBook.Com

composite pattern defined

The Composite Pattern defined

That’s right, we’re going to introduce another pattern
to solve this problem. We didn’t give up on Iterator — it
will still be part of our solution — however, the problem
of managing menus has taken on a new dimension that
Iterator doesn’t solve. So, we’re going to step back and
solve it with the Composite Pattern.

We’re not going to beat around the bush on this pattern,
we’re going to go ahead and roll out the official definition
now:

The Composite Pattern allows you to
compose objects into tree structures to
represent part-whole hierarchies. Composite
lets clients treat individual objects and
compositions of objects uniformly.

Let’s think about this in terms of our menus: this pattern
gives us a way to create a tree structure that can handle

a nested group of menus and menu items in the same
structure. By putting menus and items in the same
structure we create a part-whole hierarchy; that is, a tree of
objects that is made of parts (menus and menu items) but
that can be treated as a whole, like one big iiber menu.

Once we have our iiber menu, we can use this pattern

to treat “individual objects and compositions uniformly.”
What does that mean? It means if we have a tree structure
of menus, submenus, and perhaps subsubmenus along with
menu items, then any menu is a “composition” because

it can contain both other menus and menu items. The
individual objects are just the menu items — they don’t hold
other objects. As you'll see, using a design that follows the
Composite Pattern is going to allow us to write some simple
code that can apply the same operation (like printing!) over
the entire menu structure.

356 Chapter 9

)
Here's a Liree structure

E\CmCh{:S Wi‘t\"
ehild elements
ave talled nodes-

Node

\

Leaof O Leck

Leaf

RN~
Elements without children
ave called leaves.

WC tan \-CYYCSC'\‘t /_\/

our Menu and
MCV\VH'«C"‘S nad
free struttuee.

/ Af““\‘

CS
Menu TS Men s
Menu’f(e

T

Menus are nodes and
Menultems are leaves.

Download at WoweBook.Com

We tan treate avbitravily

complex trees
Q k;McmS
“%Qég =~ Submenu Q,,O,W
N AN AN
goe o0 @ ¢9@@
? NN
Menultems O Q Q %“OM
And treat them as 3 whole-- ’2
Q <+—— Menus
“OE Submenu
et Orngrne® Q Grene®
N AN ARG
doo €00 @ 99¢
1 A RN
Menultems O Q Q Q
or as parts
vations £an be vink0)
Oa\\a’;\‘\cd Yo the whole F N2
Q <«—— Menus
‘é%Q%g Oner 1™ Subm§““ Q
N NN AN
goe €0 @ e@9@
? 7NN
Menultems Q Q Q Q . JCO
YY‘\V\

Download at WoweBook.Com

the iterator and composite patterns

The Composite Pattern
allows us to build structures
of olajects in the form of
trees that contain bhoth
compositions of ol)jects and
individual ol;jects as nodes.

Using a cmnposite structure,
we can a]o]oly the same
operations over both
composites and individual
ol)jects. In other worc[s, in
most cases we can ignore
the differences hetween
compositions of ol:jects and
individual ol)jects.

YaY"\ZS'

you are here » 357

composite pattern class diagram

The C\'\cv*: uses the

Com\?oncn{: 'mtcr(:acc {‘,o "
man'\\m\ahc the ob\')ccis in the
COmVos'l{;'\oh. \/

Client i—) Component
operation()
add(Component)
remove(Component)

Note that the Leaf also o

inherits methods like add0),
remove() and 9etChild(), which

)

don't netessaril make a lot of
sense for 3 lcag node. We've

90ing to ome baek to this issue.

A Lca‘: has no
¢hildven.

The Componert. def
nteckate
the Lom‘;os\{jow

nes an

for all objeets in
both the

Lom\vos'\{:c and the leaf nodes.

ThC Com
default behavior £or
9etChild() and its

Ponent may implement. 3
add0), remove(),

°PCV‘8‘{:ions.

A Leaf defines the behavior for the

elements in the tomposition. |4 does
this by implementing the operations
the Com?osi{c supports.

Q} Component, Composite, Trees?
I’'m confused.

- . .
A. A composite contains components.

Components come in two flavors:
composites and leaf elements. Sound
recursive? Itis. A composite holds a set
of children, those children may be other
composites or leaf elements.

358 Chapter 9

Leaf h Composite
operation() add(Component)
remove(Component) h . {_{C 6\5 0
getChild(int) The Cowmpos® l_,ca‘c’
operation() A\m\,\cmcy&} the .
7\ velated operation
Note that 5°:c e
Al
Lnese wY "° aker

(,om‘?oncn{:s-

ﬂqe ejare no
Dumb (iuesﬁons

When you organize data in this way you end
up with a tree structure (actually an upside
down tree structure) with a composite at the
root and branches of composites growing up
to leaf nodes.

Q: How does this relate to iterators?

Download at WoweBook.Com

The Com\?osi{:c's vole is +o define

behavior of the Com\?oncn{s
having childven and to store ¢ehild

nse on 3 Comg©

se
. L case an
so \n {ha 5\‘{_’ boe

. *LCY'E“’“ ol

AI Remember, we're taking a new
approach. We're going to re-implement the
menus with a new solution: the Composite
Pattern. So don’t look for some magical
transformation from an iterator to a
composite. That said, the two work very
nicely together. You'll soon see that we
can use iterators in a couple of ways in the
composite implementation.

the iterator and composite patterns

Pesigning Menus with Composite

So, how do we apply the Composite Pattern to our menus? To start with, we need to create a
component interface; this acts as the common interface for both menus and menu items and allows
us to treat them uniformly. In other words we can call the same method on menus or menu items.

Now, it may not make sense to call some of the methods on a menu item or a menu, but we can deal
with that, and we will in just a moment. But for now, let’s take a look at a sketch of how the menus
are going to fit into a Composite Pattern structure:

MenuComponent represents the interface for

s 00ing Lo use the both Menultem and Menu. We've used an abstract
The Waitress 1 i teckate to ateess tlass here because we want to provide default
MenuComgoner " |kems. implementations for these methods.
both Menus and Men

Waitress h——» MenuComponent

l getName() |_— o
getDescription() / We have some e

)
getPrice() same methods you Il
isVegetarian() rcmcmbCY ‘From our
print() previous vevrsions

add(Component) M enultem and Menw,

and we've added print0,
2dd0), vemove() and
5C{Chi|d(). well deseribe

£hese soon, when we

remove(Component)
Heve are the methods for /-% getChild(int
maniyula{:ing the Com‘?oncn{:s.
The COm\?oncn‘l’,s are

Menultem and Menw. implement our new Menu
and Menultem classes.
Menultem Menu
Both Menultem and Menus
overvide Prin 'EO getName() menuComponents

getDescription() getName()

getPrice() getDescription()
isVegetarian() print()
print()

add(Component)
T —

remove(Component)
getChild(int)

Menultem overvides the methods
sense, and uses {the default imple
MenuComPonen'l: for those that
sense (like add() _ it doesn’t
add a Component {5 3 Menu|
add omponents £o a Menu).

that make Menu also overvides the methods that malfc
mentations in like a way {0 add and remove menu tems
do'\lf make senses "\cy\uComPOV\CV\{'}-
make sense 1o
Lem... we tan Oh,y

(or other menus) Lrom its
l:ra?idi{ion, we'll use the aetName() and
gc{:Dcscrichion() methods o retuwen the name

and destription of the menu.

you are here » 359

Download at WoweBook.Com

implementing composite

Implementing the Menu Component

Okay, we’re going to start with the
MenuComponent abstract class; remember, the
role of the menu component is to provide an
interface for the leaf nodes and the composite
nodes. Now you might be asking, “Isn’t the
MenuComponent playing two roles?” It might
well be and we’ll come back to that point.
However, for now we’re going to provide a default
implementation of the methods so that if the
Menultem (the leaf) or the Menu (the composite)
doesn’t want to implement some of the methods
(like getChild() for a leaf node) they can fall back
on some basic behavior:

McnuCom?oncn{ provides default
im\?lmcn{:a{ions for every method.

public abstract class MenuComponent {

public void add (MenuComponent menuComponent) {
throw new UnsupportedOperationException () ;
}
public void remove (MenuComponent menuComponent)
throw new UnsupportedOperationException () ;
}
public MenuComponent getChild(int 1) {
throw new UnsupportedOperationException () ;

}

public String getName () {

throw new UnsupportedOperationException () ;
}
public String getDescription() {

throw new UnsupportedOperationException () ;
}
public double getPrice() {

throw new UnsupportedOperationException () ;
}
public boolean isVegetarian() {

throw new UnsupportedOperationException () ;

}

public void print () {
throw new UnsupportedOperationException () ;

}

360

All components must implement
the MenuComponent interface;
however, because leaves and
nodes have different roles we

can’t always define a default
implementation for each
method that makes sense.
Sometimes the best you can do
is throw a runtime exception.

Betause some of these methods only make sense
£or Menultems, and some only make sense for
Menus, the default implementation is
UnsupportedOperationException. That way,
if Menultem or Menu doesn't support an
operation, they don't have to do anything,
they ean just inherit the

default imglcmcv\'ﬁa{:‘lon.

A
We've grouped together the
“Lomyosi{c" methods — that is,
methods to add, vemove and get
McmComPOhcn‘ES-

Heve are the “o\?cva{jov\" methods;
Lhese ave used by the Menultems.
[£ tuens out we tan also use a
Lou\?\c of them in Menu too, as
\/ou’\l see in a touple of pages when
we show the Menu tode.

print() is an “operation” method

</{:ha{: both our Menus and Menu[tems
will implement, but we provide a
default operation heve.

Download at WoweBook.Com

the iterator and composite patterns

I'm glad we're going in
this direction, I'm thinking this is
going to give me the flexibility I need
to implement that crépe menu I've
always wanted.

Implementing the Menu ltem

Okay, let’s give the Menultem class a shot. Remember,
this is the leaf class in the Composite diagram and it
implements the behavior of the elements of the composite.

public class Menultem extends MenuComponent {

String name;

String description; '\/ Fiest we '(‘i“d {oc:z{:cnd
boolean vegetarian; the MenuCompon

double price; ihhcv-(:acc-

public Menultem(String name, The Consf,rut{:or")us{ Lakes

String descrlpt}on, £he name, descri\?{:ion, ete. and
boolean vegetarian,

double price) keeps a refevente to them all
{ This is pretty much like our old

this.name = name; menu item implementation.

this.description = description;
this.vegetarian = vegetarian;
this.price = price;

public String getName () {
return name;

} Here's our getter methods — ")us{-,

like owr previous implementation.
public String getDescription() { ke our previous implemen

return description;

}

public double getPrice() {

return price;
}
This is different from the previous implementation.
Here we've overviding the print() method in the
MenuComponent ¢tlass. For Menultem this method
Yrin{:s the Com?lc{c menu cn{:\r\/: name, dcscri‘?{iov\,

public boolean isVegetarian() {
return vegetarian;

}

public void print() { price and whether or not it's veggjie.
System.out.print (% “ + getName());
if (isVegetarian()) {

System.out.print (Y (v)”);
}
System.out.println(“, “ + getPrice());
System.out.println (% -- “ 4+ getDescription());

you are here » 361

Download at WoweBook.Com

composite structure

Implementing the Composite Menu

Now that we have the Menultem, we just need the composite class, which we’re
calling Menu. Remember, the composite class can hold Menultems or other Menus.
There’s a couple of methods from MenuComponent this class doesn’t implement:
getPrice() and isVegetarian(), because those don’t make a lot of sense for a Menu.

Menu is also a MenuComponent, |

J“SJC ke Meneten Menu ¢an have any number 0‘? ¢hildven
of type MenuComponent, we Il use an
internal ArrayLich +o hold these.

public class Menu extends MenuComponent {
ArrayList menuComponents = new ArrayList();

String name;
String description; K—\ This is diffevent than our old implementation:
) .
we're i
public Menu(String name, String description) { _3°f"5 & Jps cach Menw @ vame and 3
deseription. Before, we Jjust velied on having

this.name = name; d££ i £
this.description = description; iwrerent classes for each menu.

public void add (MenuComponent menuComponent) {
menuComponents.add (menuComponent) ;

¢ Hevre's how you add Menultems or
other Menus to a Menu. Because

us are
public void remove (MenuComponent menuComponent) { both McmH,ems and MCJZ d one
menuComponents.remove (menuComponent) ; McmCom\?oMn{‘}; we J"S need ©

} method to do both.

You ¢an also vemove a MenuComponent
or get a MenuComponent.

}

public MenuComponent getChild(int i) {
return (MenuComponent)menuComponents.get (i) ;

}
Here are the aetter methods £ i
public String getName () { /_\ detrntion 9 methods tor 5:{:‘(‘,1'\5 the name and

return name;

) Notice, we aren’t overriding getPrice() or isVegetavian()
| | o betause those methods don't make sense for a Menu
public String getDescription() { (aH:hough you eould arque that is/egetarian() might make

return description; sense). £ someone tries +o call those methods on a Menu,

} '[:hc\/'” 5c<(: an Mnsuﬂ?or‘ﬁcdOPerainhEx(,cF{:ion.

public void print () {
System.out.print (“\n” + getName()) ;
System.out.println(“, “ + getDescription());
System.out.println(“----------—--——-————-

} ’ L To print the Meny, we print the

Menv's name and destription.

362 Chapter 9

Download at WoweBook.Com

the iterator and composite patterns

structure.

Wait a sec, I don't understand the
implementation of print(). I thought I was
supposed to be able to apply the same operations to a
composite that I could to a leaf. If T apply print() foa
composite with this implementation, all I get is a
simple menu name and description. I don't get a
printout of the COMPOSITE.

Excellent catch. Because menu is a composite and contains
both Menu Items and other Menus, its print() method should
print everything it contains. If it didn’t we’d have to iterate
through the entire composite and print each item ourselves.
That kind of defeats the purpose of having a composite

As you’re going to see, implementing print() correctly is easy
because we can rely on each component to be able to print

itself. It’s all wonderfully recursive and groovy. Check it out:

Fixing the print() method

public class Menu extends MenuComponent {
ArrayList menuComponents = new ArrayList();
String name;
String description;

// constructor code here
// other methods here

public void print () {
System.out.print (“*\n” + getName());

System.out.println(“, “ + getDescription());

int() mC‘H’\Od
do is thange the print 4
i‘,ﬂ w:k:c;: ::':n{on:){: on\\/ the information ab.ou{:
H\\:Mcnu, but all of this Menv's Lomyoncn{:s-
obher Menus and Menultems.

o

System.out.println(“-------—------———————- ")
Iterator iterator = menuComponents.iterator () ;
while (iterator.hasNext ()) { & Look,’ We SC'{: to use an I'ECV&'EOY. We

MenuComponent menuComponent =
(MenuComponent) iterator.next () ;
menuComponent.print () ;

use it to itevate through all the Menu's
components... those tould be other Menus,
or they could be Menultems. Sinte both
Menus and Menultems implement print(), we
just ¢all print() and the vest is up to them.

NOTE: (£, during this iteration, we encounter another Menu
ob\')cch its print() method will start another iteration, and so on.

Download at WoweBook.Com

you are here » 363

test drive the menu composite

Getting ready for a test drive...

It’s about time we took this code for a test drive, but we need to update the Waitress code before
we do — after all she’s the main client of this code:

ally is this simple:
public class Waitress { ‘/\ Yup! The Waitress Lo‘t\vl \Ilevcl menu
MenuComponent allMenus; Now we)“S{" hand hee the tob

Lom‘?oncn‘{:, the one that tontains all the

public Waitress (MenuComponent allMenus) { other menus. We've called that allMenvs.

this.allMenus = allMenus;
}

All she has £o do to print the entive menu
public void printMenu () { A\/_”

. hievarchy — all the menus, and all the menu
} alitienus.print ()7 items — is eall Yrin{:o on the '{:o? level menu.
}
We're gonna have one happy Waitress.

Okay, one last thing before we write our test drive. Let’s get an idea of what the menu
composite 1s going to look like at runtime:

The ¢
Every Menu and mem :‘:\::’z' menu holds 4|
Menultem im?lcmcn‘(‘,s the ems.
MenuComponent interfate. Composite — l/
Al e
CO”‘POSI{:C / l\
Eath Menu
o 2 holds items...
e 0 w
“Ohe Hous” ...or items and er N Comvosl‘hﬂ Cafe ™
/ l \ other menus. ‘// \\A / \‘\‘
Henpre® Yenzre™ Yenrre Henzre 4’enum“\ Henyrre™ es " W Henzre™ Yenzre™ Henzre™
Se)
N7

R 7 L, — 7N R4 7
Leaf O O Leaf

NenTre™ Henumre™ Yenrre Henzron

<A
& Leaf
364 Chapter 9

Download at WoweBook.Com

the iterator and composite patterns

Now for the test drive...

Okay, now we just need a test drive. Unlike our previous version, we’re going to
handle all the menu creation in the test drive. We could ask each chef to give us
his new menu, but let’s get it all tested first. Here’s the code:

public class MenuTestDrive ({
public static void main(String args[]) { v 3 Jccrca{:c all
MenuComponent pancakeHouseMenu = f Lets tirs ;
new Menu (“PANCAKE HOUSE MENU”, “Breakfast”); the menu obgcﬁ{is-
MenuComponent dinerMenu =
new Menu (“DINER MENU”, “Lunch”); to
MenuComponent cafeMenu = We also need two top o
new Menu (“CAFE MENU”, “Dinner”); level menu now that we'l
MenuComponent dessertMenu = name allMenus.
new Menu (“DESSERT MENU”, “Dessert of course!”);

MenuComponent allMenus = new Menu (“ALL MENUS”, “All menus combined”);

allMenus.add (pancakeHouseMenu) ; — We've using the Composite add() method to add

allMenus.add (dinerMenu) ; each menu to the top level meny, allMenus.
allMenus.add (cafeMenu) ;

Now we need to add all

// add menu items here £ the menu items, here's one
example, for the vest, look
dinerMenu.add (new MenuItem (a{{hccomykfcsowtccoda
“Pasta”,
“Spaghetti with Marinara Sauce, and a slice of sourdough bread”,
true,

3.89)); And we've also adding a menu toa
/ menu. Al dinerMenu eaves about is that
dinerMenu.add (dessertMenu) ; cvcr\/{hing it holds, whether it's a menu
item or a meny, is @ MC““C°""V°""‘J"'

dessertMenu.add (new Menultem (

“Apple Pie”,

“Apple pie with a flakey crust, topped with vanilla icecream”,

true,

1.59)); K_ Add some apple pie to the

) ssevt menu...
// add more menu items here de

Waitress waitress = new Waitress (allMenus) ;

l_\ Once we've eonstructed our entive

vaitress.printiens (5 menu hicrarch\/, we hand the whole
} {hing to the Waitress, and as

} \/ou'vc seen, it’s easy as aPPIC pie
for her to print it out.

you are here » 365

Download at WoweBook.Com

composite responsibilities

Getting ready for a test drive...

NOTE: this output is based on the tomplete source.

File Edit Window Help GreenEggs&Spam
% java MenuTestDrive

ALL MENUS, All menus combined

& Here's all our menus... we printed all this

\)us{; b\/ La“'m5 Frin{:o on the 'to\? level menu

K&B’ s Pancake Breakfast(v), 2.99

-- Pancakes with scrambled eggs, and toast
Regular Pancake Breakfast, 2.99

-- Pancakes with fried eggs, sausage
Blueberry Pancakes(v), 3.49

-- Pancakes made with fresh blueberries, and blueberry syrup
Waffles(v), 3.59

-- Waffles, with your choice of blueberries or strawberries

DINER MENU, Lunch

Vegetarian BLT (v), 2.99

-- (Fakin’) Bacon with lettuce & tomato on whole wheat
BLT, 2.99

-- Bacon with lettuce & tomato on whole wheat
Soup of the day, 3.29

-- A bowl of the soup of the day, with a side of potato salad
Hotdog, 3.05

-- A hot dog, with saurkraut, relish, onions, topped with cheese
Steamed Veggies and Brown Rice(v), 3.99

-- Steamed vegetables over brown rice
Pasta(v), 3.89

-- Spaghetti with Marinara Sauce, and a slice of sourdough bread

DESSERT MENU, Dessert of course!

The new dessert
£——

Apple Pie(v), 1.59 menu is printed
-- Apple pie with a flakey crust, topped with vanilla icecream when we are
Cheesecake(v), 1.99 printing all the

-- Creamy New York cheesecake, with a chocolate graham crust
Sorbet(v), 1.89

-- A scoop of raspberry and a scoop of lime

D'mcr menu
Com?oncn{ls

CAFE MENU, Dinner

Veggie Burger and Air Fries(v), 3.99

-- Veggie burger on a whole wheat bun, lettuce, tomato, and fries
Soup of the day, 3.69

-- A cup of the soup of the day, with a side salad
Burrito(v), 4.29

-- A large burrito, with whole pinto beans, salsa, guacamole

366 Chapter 9

Download at WoweBook.Com

the iterator and composite patterns

What's the story? First you tell us
One Class, One Responsibility, and now you
are giving us a pattern with two responsibilities
in one class. The Composite Pattern manages

a hierarchy AND it performs operations
related to Menus.

There is some truth to that observation. We could say that the
Composite Pattern takes the Single Responsibility design principle and

trades it for transparency. What's transparency? Well, by allowing the
Component interface to contain the child management operations and
the leaf operations, a client can treat both composites and leaf nodes
uniformly; so whether an element is a composite or leaf node becomes
transparent to the client.

Now given we have both types of operations in the Component

class, we lose a bit of safety because a client might try to do something
inappropriate or meaningless on an element (like try to add a menu

to a menu item). This is a design decision; we could take the design in
the other direction and separate out the responsibilities into interfaces.
This would make our design safe, in the sense that any inappropriate
calls on elements would be caught at compile time or runtime, but we’d
lose transparency and our code would have to use conditionals and the
instanceof operator.

So, to return to your question, this is a classic case of tradeoff. We are
guided by design principles, but we always need to observe the effect
they have on our designs. Sometimes we purposely do things in a way
that seems to violate the principle. In some cases, however, this is a
matter of perspective; for instance, it might seem incorrect to have
child management operations in the leaf nodes (like add(), remove() and
getChild()), but then again you can always shift your perspective and see
a leaf as a node with zero children.

367

Download at WoweBook.Com

flashback to iterator

Flashback to Iterator

We promised you a few pages back that we’d show you how to use Iterator
with a Composite. You know that we are already using Iterator in our internal
implementation of the print() method, but we can also allow the Waitress to
iterate over an entire composite if she needs to, for instance, if she wants to go
through the entire menu and pull out vegetarian items.

To implement a Composite iterator, let’s add a createlterator() method in every
component. We’ll start with the abstract MenuComponent class:

MenuComponent
getName() We've added a ereatelterator() method
getDescription() to the MenuComponent. This means
.g?;Pnce(). that each Menu and Menultem will
:ri;?)e feren) need to implement this method. [t also
add(Component) means that calling ereatelterator() on
remove(Component) a Lom?osi{:c should a\ayl\/ £o all ¢hildren
getChild(ing of the composite.

createlterator()

Now we need to implement this method in the Menu and Menultem classes:
Here we've using @ new itevator called
Compositelterator. |t knows how 4o

public class Menu extends MenuComponent { iterate over any ¢ it
nY Composite.

Iterator iterator = null; <—— We onl\/ need one
// other code here doesn’t change itevator per Menu.

We pass it the turvent

public Iterator createlterator() { o
Com?osn{:c s itevator.

if (iterator == null) {
iterator = new Compositelterator (menuComponents.iterator());

}

return iterator;

public class Menultem extends MenuComponent {

// other code here doesn’t change Now for the Menultem...

public Iterator createlterator() { Whoa! What’s this Nulllterator?
return new NullIterator(); You)” see in two pages.

368 Chapter 9

Download at WoweBook.Com

the iterator and composite patterns

The Composite lterator

The Compositelterator is a SERIOUS iterator. It’s got the job of iterating
over the Menultems in the component, and of making sure all the child
Menus (and child child Menus, and so on) are included.

Here’s the code. Watch out, this isn’t a lot of code, but it can be a little mind

bending. Just repeat to yourself as you go through it “recursion is my friend,
recursion is my friend.”

ke all sherabors, weve WATCH Ou:
<- implementing the 33va.u£i|~|£cr3£°' RI(:U“Sl(lN
import java.util.x*;

intecfate. Zane Aur:
" ZONE AHEAD
public class Compositelterator implements Iterator ({ .
Stack stack = new Stack(); The '{.’fra{"or)d: the £°? level
A_/‘ tomposite we've 9oing to itevate over
public Compositelterator (Iterator iterator) { is passed in. We throw that in a
stack.push (iterator) ; stack data strueture.
}
Okay, when the tlient wants
public Object next () { £ t get the next element we
if (hasNext()) { fivst make sure there is one
Iterator iterator = (Iterator) stack.peek(); b\/ callin3 hasNex+£()...
MenuComponent component = (MenuComponent) iterator.next();

if (component instanceof Menu) {
stack.push (component.createlterator());

} 1€ there is a next element, we
return component; SC{" the turvent itevator off the
} else { stack and get its next element.
return null;
} [£ that element is @ menw, we have
J another composite that needs to
be intluded in the iteration, so we
public pboolean hasNext() { throw it on the stack. [n either

if (stack.empty()) {
return false;

} else { @——\ To see if there is a next element,

tase, we vreturn the com?oncn{:-

Iterator iterator = (Iterator) stack.peek(); we theek to see if the stack is
if (!iterator.hasNext ()) { emv{:\/; i{_\ so, heve 'k
e, PN Ot we gk te hevator
} else { ’ h of £ the top of the stack am.i see
return true; if it has a next element. I£ it
} ’ Othevwise theve is a next element doesn't we pop it of £ the stack
} and we veturn true. and call hasNext() vecursively.
}
public void remove () { é_\
throw new UnsupportedOperationException () ; We've not suyyorfmg
}

remove, \')us{: traversal.

you are here » 369

Download at WoweBook.Com

internal and external

That is serious code... I'm trying
to understand why iterating over
a composite like this is more difficult

than the iteration code we wrote for
print() in the MenuComponent class?

,.ﬂ,
Moy D

When we wrote the print() method in the
MenuComponent class we used an iterator to
step through each item in the component and if
that item was a Menu (rather than a Menultem),
then we recursively called the print() method to
handle it. In other words, the MenuComponent
handled the iteration itself, internally.

With this code we are implementing an external
iterator so there is a lot more to keep track of.

For starters, an external iterator must maintain its
position in the iteration so that an outside client
can drive the iteration by calling hasNext() and
next(). But in this case, our code also needs to
maintain that position over a composite, recursive

be

structure. That’s why we use stacks to maintain
our position as we move up and down the
composite hierarchy.

370 Chapter 9

Download at WoweBook.Com

the iterator and composite patterns

RANVN
PQWEWR

Draw a diagram of the Menus and Menultems. Then pretend you are the Compositelterator, and your job is
to handle calls to hasNext() and next(). Trace the way the Compositelterator traverses the structure as this
code is executed:

public void testCompositelterator (MenuComponent component) {
Compositelterator iterator = new Compositelterator (component.iterator);

while (iterator.hasNext ()) {
MenuComponent component = iterator.next();

371

Download at WoweBook.Com

the null iterator

The Null lterator

Okay, now what is this Null Iterator all about? Think about it this way: a
Menultem has nothing to iterate over, right? So how do we handle the
implementation of its createlterator() method? Well, we have two choices:

Choice one:
Return null

We could return null from createlterator(), but then we’d
need conditional code in the client to see if null was
returned or not.

Choice two:

Return an iterator that always returns
false when hasNext() is called

This seems like a better plan. We can still return an iterator, but
the client doesn’t have to worry about whether or not null is ever
returned. In effect, we’re creating an iterator that is a “no op”.

The second choice certainly seems better. Let’s call it Nulllterator and
implement it.

NOTE: Ano{:\\ﬁ' exd
Null Ob)cc{, “Design

mple of the
Pattern”

This is the laziest [terator you've
ever seen a{ evey
import java.util.Iterator; ! y step of the

way it Punf,s‘

public class Nulllterator implements Iterator {

public Object next () {
return null;

) R When next() is called, we vetuwrn null.

public boolean hasNext () { /\ Most im‘)or‘{;ay\{:l\/ when hasNext0) is

return false;

called we always veturn Lalse.
}

public void remove () {

} of su??o‘r{:ing remove.
}

372 Chapter 9

Download at WoweBook.Com

throw new UnsupportedOperationException(); &— And the Nulllterator wouldn't think

the iterator and composite patterns

Give me the vegetarian menu

Now we’ve got a way to iterate over every item of the Menu. Let’s
take that and give our Waitress a method that can tell us exactly
which items are vegetarian.

public class Waitress {
MenuComponent allMenus;

public Waitress (MenuComponent allMenus) {
this.allMenus = allMenus;
} The printVegetarianMenu() method
takes the allMenv’s composite and

public void printMenu() { .
allMenus.print () ; gets its itecator. That will be owr
} Composite[terator.

public void printVegetarianMenu () {
Iterator iterator = allMenus.createlterator(); |[terate ﬂwough

System.out.println (“\nVEGETARIAN MENU\n————”)/ every clement of the

while (iterator.hasNext()) { composite.
MenuComponent menuComponent =
(MenuComponent) iterator.next () ;)
Call eath element's

try {
if (menuComponent.isVegetarian()) { / is\/cgcharia\n() chd\o'd
menuComponent .print () ; and if true, we call its
} Yr'm*:() method.
} catch (UnsupportedOperationException e) {} ‘R

! Prih{:() is
} only called on
MCV\UHZCMS, never
COmFosi'Ecs. Can you

4
We implemented isV/egetarian() on the see why!

Menus to always throw an exteption. £
that happens we cateh the exeeption, but
tontinue with our iteration.

you are here » 373

Download at WoweBook.Com

magic of iterator and composite

The magic of lterator & Composite together...

Whooo! It’s been quite a development effort to get our code to this point. Now we’ve got a general
menu structure that should last the growing Diner empire for some time. Now it’s time to sit back and
order up some veggie food:

File Edit Window Help HaveUhuggedYurlteratorToday?

% java MenuTestDrive

VEGETARIAN MENU The Vegetarian Menu tonsists of the
. vegetarian items From every menu.

K&B’s Pancake Breakfast(v), 2.99

-- Pancakes with scrambled eggs, and toast
Blueberry Pancakes(v), 3.49

-- Pancakes made with fresh blueberries, and blueberry syrup
Waffles(v), 3.59

-- Waffles, with your choice of blueberries or strawberries
Vegetarian BLT(v), 2.99

-- (Fakin’) Bacon with lettuce & tomato on whole wheat
Steamed Veggies and Brown Rice(v), 3.99

-- Steamed vegetables over brown rice
Pasta(v), 3.89

-- Spaghetti with Marinara Sauce, and a slice of sourdough bread
Apple Pie(v), 1.59

-- Apple pie with a flakey crust, topped with vanilla icecream
Cheesecake(v), 1.99

-- Creamy New York cheesecake, with a chocolate graham crust
Sorbet(v), 1.89

-- A scoop of raspberry and a scoop of lime
Apple Pie(v), 1.59

-- Apple pie with a flakey crust, topped with vanilla icecream
Cheesecake(v), 1.99

-- Creamy New York cheesecake, with a chocolate graham crust
Sorbet(v), 1.89

-- A scoop of raspberry and a scoop of lime
Veggie Burger and Air Fries(v), 3.99

-- Veggie burger on a whole wheat bun, lettuce, tomato, and fries
Burrito(v), 4.29

-- A large burrito, with whole pinto beans, salsa, guacamole

374 Chapter 9

Download at WoweBook.Com

the iterator and composite patterns

I noticed in your
printVegetarianMenu() method that you

used the try/catch to handle the logic of the
Menus not supporting the isVegetarian() method.
T've always heard that isn't good programming
form.

R

! | B
‘ ! ‘ Let’s take a look at what you’re talking about:

/\ We call \s\/cgc‘caﬂan() on all

o MenuComponents: but Mcm\s{:hc

if (menuComponent.isVegetarian()) { throw an “chbon bccau'sc ;
menuComponent.print () ; don,{ suwor{ e ovﬂahon‘

}
} catch (UnsupportedOperationException) {}

N
I£ the menu tomponent doesn't support the
operation, we just throw away the exception
and ignore it.

In general we agree; try/catch is meant for error handling,
not program logic. What are our other options? We could
have checked the runtime type of the menu component with
instanceof to make sure it’s a Menultem before making the
call to isVegetarian(). But in the process we’d lose transparency
because we wouldn’t be treating Menus and Menultems
uniformly.

We could also change isVegetarian() in the Menus so that it
returns false. This provides a simple solution and we keep our
transparency.

In our solution we are going for clarity: we really want to
communicate that this is an unsupported operation on the
Menu (which 1s different than saying isVegetarian() is false). It
also allows for someone to come along and actually implement
a reasonable isVegetarian() method for Menu and have it work
with the existing code.

That’s our story and we’re stickin’ to it.

you are here » 375

Download at WoweBook.Com

interview with

Patkerns Ex;wos-ea\'

This week’s interview:

HeadFirst: We’re here tonight speaking with the
Composite Pattern. Why don’t you tell us a little about
yourself, Composite?

Composite: Sure... I'm the pattern to use when you
have collections of objects with whole-part relationships
and you want to be able to treat those objects uniformly.

HeadFirst: Okay, let’s dive right in here... what do you
mean by whole-part relationships?

Composite: Imagine a graphical user interface; there
you’ll often find a top level component like a Frame or
a Panel, containing other components, like menus, text
panes, scrollbars and buttons. So your GUI consists

of several parts, but when you display it, you generally
think of it as a whole. You tell the top level component
to display, and count on that component to display all
its parts. We call the components that contain other
components, composite objects, and components that
don’t contain other components, leaf objects.

HeadFirst: Is that what you mean by treating the
objects uniformly? Having common methods you can
call on composites and leaves?

Composite: Right. I can tell a composite object to
display or a leaf object to display and they will do the
right thing. The composite object will display by telling
all its components to display.

HeadFirst: That implies that every object has the same
interface. What if you have objects in your composite
that do different things?

Composite: Well, in order for the composite to work
transparently to the client, you must implement the same
interface for all objects in the composite, otherwise, the
client has to worry about which interface each object

is implementing, which kind of defeats the purpose.
Obviously that means that at times you’ll have objects for
which some of the method calls don’t make sense.

HeadFirst: So how do you handle that?

376

The Composite Pattern, on Implementation issues

Composite: Well there’s a couple of ways to handle

it; sometimes you can just do nothing, or return null or
false — whatever makes sense in your application. Other
times you’ll want to be more proactive and throw an
exception. Of course, then the client has to be willing to
do a little work and make sure that the method call didn’t
do something unexpected.

HeadFirst: But if the client doesn’t know which kind
of object they’re dealing with, how would they ever know
which calls to make without checking the type?

Composite: If you’re a little creative you can structure
your methods so that the default implementations do
something that does make sense. For instance, if the
client is calling getChild(), on the composite this makes
sense. And it makes sense on a leaf too, if you think of
the leaf as an object with no children.

HeadFirst: Ah... smart. But, I've heard some clients
are so worried about this issue, that they require separate
interfaces for different objects so they aren’t allowed

to make nonsensical method calls. Is that still the
Composite Pattern?

Composite: Yes. It’s a much safer version of the
Composite Pattern, but it requires the client to check the
type of every object before making a call so the object
can be cast correctly.

HeadFirst: Tell us a little more about how these
composite and leaf objects are structured.

Composite: Usually it’s a tree structure, some kind of
hierarchy. The root is the top level composite, and all its
children are either composites or leaf nodes.

HeadFirst: Do children ever point back up to their
parents?

Composite: Yes, a component can have a pointer to a
parent to make traversal of the structure easier. And, if
you have a reference to a child, and you need to delete it,
you’ll need to get the parent to remove the child. Having
the parent reference makes that easier too.

Download at WoweBook.Com

HeadFirst: There’s really quite a lot to consider in your
implementation. Are there other issues we should think
about when implementing the Composite Pattern?

Composite: Actually there are... one is the ordering

of children. What if you have a composite that needs to
keep its children in a particular order? Then you’ll need
a more sophisticated management scheme for adding and
removing children, and you’ll have to be careful about
how you traverse the hierarchy.

HeadFirst: A good point I hadn’t thought of.
Composite: And did you think about caching?
HeadFirst: Caching?

Composite: Yeah, caching. Sometimes, if the
composite structure is complex or expensive to traverse,
it’s helpful to implement caching of the composite nodes.
For instance, if you are constantly traversing a composite
and all its children to compute some result, you could
implement a cache that stores the result temporarily to
save traversals.

HeadFirst: Well, there’s a lot more to the Composite
Patterns than I ever would have guessed. Before we
wrap this up, one more question: What do you consider
your greatest strength?

Composite: I think I’d definitely have to say
simplifying life for my clients. My clients don’t have to
worry about whether they’re dealing with a composite
object or a leaf object, so they don’t have to write if
statements everywhere to make sure they’re calling the
right methods on the right objects. Often, they can make
one method call and execute an operation over an entire
structure.

HeadFirst: That does sound like an important benefit.
There’s no doubt you’re a useful pattern to have around
for collecting and managing objects. And, with that,
we’re out of time... Thanks so much for joining us and
come back soon for another Patterns Exposed.

Download at WoweBook.Com

the iterator and composite patterns

377

crossword puzzle

378

It’s that time again....

ANEEEEEEE

NN

AN

Across

1. User interface packages often use this pattern

for their components.

3. Collection and lterator are in this package
5. We encapsulated this.

6. A separate object that can traverse a
collection.

10. Merged with the Diner.

12. Has no children.

13. Name of principle that states only one
responsibility per class.

14. Third company acquired.

15. A class should have only one reason to do
this.

16. This class indirectly supports Iterator.

17. This menu caused us to change our entire
implementation.

Chapter 9

Down

1. A composite holds this.

2. We java-enabled her.

4. We deleted PancakeHouseMenulterator
because this class already provides an iterator.
5. The lterator Pattern decouples the client from
the aggregates .

7. Compositelterator used a lot of this.

8. Iterators are usually created using this
pattern.

9. A component can be a composite or this.

11. Hashtable and ArrayList both implement this
interface.

Download at WoweBook.Com

the iterator and composite patterns

v

+ +
WHQ DQES WHAT™?

Match each pattern with its description:

Pattern Description

Clients treat collections of
objects and individual objects
uniformly

Stl‘ategy

Trovides a way to traverse a

Adapter collection of objects without
exposing the collection’s
implementation

Iterator
Simplifies the interface of a
group of classes

Facade Changes the interface of one
or more classes

C . Allows a group of objects to

O oS
omposite be notified when some state
changes

Observer Encapsulates interchangeable

behaviors and uses delegation
to decide which one to uses

379

Download at WoweBook.Com

your design toolbox

Tools for your Design Toolbox

Two new patterns for your toolbox - two great ways
to deal with collections of objects.

00 Printities

Encapsuiate whak varies

p \tion N h’incc
‘ avovr to OS*,\ ovev inhex "

Prooyam to nkeckates not
v
'\m?\ancv&a{’,\ons.
\ed desions
i \oosely Louv. v
it::fcj\o:\a)cab nat intevatt
for

pould be oFen
s S D‘\:u& c\osed for

Classe:
extension
modification Donck
pstractions: V¢ e v'\vxC\\’\c
Depend o iont"d"c t\asses: ther -\mYov‘\:avx‘h \’ .
depend o" \{e{: ano ‘8 des\on

\k Lo your gv'\c'\ds‘ \,ascd on ehande "
Ov\\\l ta

D .4 La\\ us, wc’\\ ca\\ \’ou.
on

i \ C\QSS Sl’\O\l\d have OV\H one veason ‘

V
Another two—for—one

tieens -
OO 5 . b Chapter:

< (‘ . o rae—" P | 1
J ‘t P‘F.,J oy 3 N X D
LARE W Q ' |

Ve w\

a Yol Ao
st

" . 2 Lo ateess Cine the
. \‘\',Cra‘\'z"" ’onv\d;b;v:‘%;!u obiett s opexaTion
an 9

o C\m“‘f wikhout exposing ¢

jall .
seﬂ“"‘*‘fa Lation Comy
wnd er\‘l"“.’) rcYchen . e

)

n an

380 Chapter 9

Download at WoweBook.Com

BULLET POINI’?Q

An lterator allows access to an
aggregate’s elements without
exposing its internal structure.

An Iterator takes the job of
iterating over an aggregate
and encapsulates it in another
object.

When using an lterator, we
relieve the aggregate of the
responsibility of supporting
operations for traversing its
data.

An lterator provides a common
interface for traversing the
items of an aggregate, allowing
you to use polymorphism when
writing code that makes use of
the items of the aggregate.

We should strive to assign
only one responsibility to each
class.

The Composite Pattern
provides a structure to hold
both individual objects and
composites.

The Composite Pattern allows
clients to treat composites and
individual objects uniformly.

A Component is any object
in a Composite structure.
Components may be other
composites or leaf nodes.

There are many design
tradeoffs in implementing
Composite. You need to
balance transparency and
safety with your needs.

(7 harpen our pencil
S y

the iterator and composite patterns

Exercise so]utions

Based on our implementation of printMenu(), which of the following apply?

A Weare coding to the @™ D. The Waitress needs to know how cach
PancakeHouseMenu and DinerMenu menu represents its internal collection of
concrete implementations, not to an menu items is implemented, this violates
interface. encapsulation.

(A B. The Waitress doesn’t implement the B/h We have duplicate code: the printMenu()

o c

Java Waitress API and so isn’t adhering
to a standard.

If we decided to switch from using
DinerMenu to another type of menu
that implemented its list of menu items
with a Hashtable, we’d have to modify
alot of code in the Waitress.

O r

method needs two separate loop
implementations to iterate over the two
different kinds of menus. And if we
added a third menu, we might have to
add yet another loop.

The implementation isn’t based on
MXML (Menu XML) and so isn’t as

interoperable as it should be.

@ oharpen your pencil
barpen o

Before turning the page, quickly jot down the three things we have
to do to this code to fit it into our framework:

I implement the Menu interface

2. get vid of getltems()

3. add ereateltecator() and return an [tevator that tan step through the Hashtable values

you are here » 381

Download at WoweBook.Com

exercise solutions

Code Magnets Solution

The unscrambled “Alternating” DinerMenu Iterator

import java.util.Iterator;
import java.util.Calendar;

ublic class AlternatingDinerMenult t im
2 — J ultera Orb Plementg Iterator D

MenulItem[] items;
int position;

public AlternatingDinerMenuIterator(MenuItem[] items)
this.items = items;
Calgn@ar rightNow = Calendar.getInstance() ;
position = rightNow.get (Calendar.DAY OF WEEK) % 2;

°

L2

public boolean hasNext () Ej

if (position >= items.length || items[position] == null) {
return false;
} else {

return true;

0

Public Object next ()

MenulItem menultem = items|[position];
position = position + 2;
return menultem;

Notice that this [terator

‘ public void remove() { ' / imylcmcn{;a{:ion does not

su??or{ chch()

throw new UnsupportedOperationException (
“Alternating Diner Menu Iterator does not support remove()”);

nu

Chapter 9

Download at WoweBook.Com

the iterator and composite patterns

N

*
WHOQ DQES wWHAT™?

Match each pattern with its description:

Pattern Description

Clients treat collections of
objects and individual objects
uniformly

Strategy

Trovides a way to traverse a
collection of objects without
exposing the collection’s
implementation

Adapter

Tterator ,
Simplifies the interface of a

group of classes

Facade C})anges the interface of one
or more classes

Allows a group of objects to
be notified when some state
Cbanges

Composite

Observer Encapsulates interchangeable
behayiors and uses delegation
to decide which one to uses

383

Download at WoweBook.Com

crossword puzzle solution

IHEHIHHHI

= |m |~ |- = [

o

T
4
T
H
o
N

384 Chapter 9

Download at WoweBook.Com

10 the State Tattern

*
+ The State of Things *

T thought things in Objectville
were going to be so easy, but now
every time I turn around there's
another change request coming in.
I'm to the breaking pointl Oh, maybe
T should have been going to Betty's
Wednesday night patterns group all
along. I'm in such a statel

A little known fact: the Strategy and State Patterns were twins
separated at birth. As you know, the Strategy Pattern went on to create a wildly
successful business around interchangeable algorithms. State, however, took the perhaps
more noble path of helping objects to control their behavior by changing their internal
state. He's often overheard telling his object clients, “Just repeat after me: I'm good

enough, I'm smart enough, and doggonit...”

this is a new chapter 385

Download at WoweBook.Com

meet mighty gumball

va
Jaw Breakers

Java toasters are so ‘90s. Today people are building Java into
real devices, like gumball machines. That’s right, gumball
machines have gone high tech; the major manufacturers have

found that by putting CPUs into their machines, they can that's Eheir skovy — we
increase sales, monitor inventory over the network and measure Ak least sk oot bored with the
. \>
customer satisfaction more accurately. o« think T;:;fd?s Lethnolody and needed
tivtd W 1008
ke theiv)
. : way to ™3
But these manufacturers are gumball machine experts, not ko find 2 ¥

software dCVCIOpeI‘S, and they’ve asked for your help: movet extiting:

/ think the o hir

32:;5 Vf/::’cv:l 3\1\7‘::5 \Ic:: tan im\?lcz\:n{: this in Java tor us. W

™ dding movre behavior in the -

Mlglﬂ:}' Gumball, g {')?Z ::Siagn a‘:%\c%ib\c and main{:amablc as ?ossﬁ;

Where the Gumball Machine

is Never Half Empty — Mighty Qumball Engineers

e

386 Chapter 10

Download at WoweBook.Com

mball mathine tontroller needs to

future, so \{ou need to keep

the state pattern

Cubicle Conversation

Let's take a look
at this diagram and see

what the Mighty Gumball
guys want...

Anne: This diagram looks like a state diagram.
Joe: Right, each of those circles is a state...
Anne: ... and each of the arrows is a state transition.

Frank: Slow down, you two, it’s been too long since I studied state diagrams.
Can you remind me what they’re all about?

Anne: Sure, Frank. Look at the circles; those are states. “No Quarter” is
y } probably the starting state for the gumball machine because it’s just sitting
C - . | . |

Joe Frank configurations of the machine that behave in a certain way and need some
action to take them to another state.

there waiting for you to put your quarter in. All states are just different

Joe: Right. See, to go to another state, you need to do something like put a quarter in the machine. See the arrow
from “No Quarter” to “Has Quarter?”

Frank: Yes...

Joe: That just means that if the gumball machine is in the “No Quarter” state and you put a quarter in, it will
change to the “Has Quarter” state. That’s the state transition.

Frank: Oh, Isee! Andif I'm in the “Has Quarter” state, I can turn the crank and change to the “Gumball Sold”
state, or eject the quarter and change back to the “No Quarter” state.

Anne: You got it!

Frank: This doesn’t look too bad then. We’ve obviously got four states, and I think we also have four actions: “inserts
quarter,” “ejects quarter,” “turns crank” and “dispense.” But... when we dispense, we test for zero or more gumballs
in the “Gumball Sold” state, and then either go to the “Out of Gumballs” state or the “No Quarter” state. So we
actually have five transitions from one state to another.

EEIN43

Anne: That test for zero or more gumballs also implies we’ve got to keep track of the number of gumballs too. Any
time the machine gives you a gumball, it might be the last one, and if it is, we need to transition to the “Out of
Gumballs” state.

Joe: Also, don’t forget that you could do nonsensical things, like try to eject the quarter when the gumball machine
is in the “No Quarter” state, or insert two quarters.

Frank: Oh, I didn’t think of that; we’ll have to take care of those too.

Joe: For every possible action we’ll just have to check to see which state we’re in and act appropriately. We can do
this! Let’s start mapping the state diagram to code...

you are here » 387

Download at WoweBook.Com

review of state machines

State machines 101

How are we going to get from that state diagram to actual code? Here’s a quick
introduction to implementing state machines:

o First, gather up your states:

wn‘°3\\ .

Heve ave the states — Lour in total.
o

& </

e Next, create an instance variable to hold the current state, and define values for each of the states:

)
Leb's \')us{', eall “Out of émballs’
“Sold Out” For short.
final static int SOLD OUT = 0; < Heve's eath state vepresented
final static int NO_QUARTER = 1; as a unique integer--
final static int HAS QUARTER = 2;
final static int SOLD = 3;

..and heve's an instance variable that holds the

int state = SOLD_OUT; é_\ eurcent state. Well go ahead and set it to

“Sold Out” sinte the machine will be unfilled when
s fivst taken out of its box and fwened on.

6 Now we gather up all the actions that can happen in the system:

These ac{ions are

. £he aumball mathine’s
rserts °\“ar+'" burns erank J in{:c?(:acc — the things
C\)CC‘lZS ﬂ'ﬁaV‘{',CV you €an do with it

dispense
4)

Disycnsc is move of an internal

Looking at the diagram invoking any of these attion the mathine invokes on itself.
ooKin !

attions tauses 3 state transition.

388 Chapter 10

Download at WoweBook.Com

the state pattern

e Now we create a class that acts as the state machine. For each action,
we create a method that uses conditional statements to determine
what behavior is appropriate in each state. For instance, for the insert
quarter action, we might write a method like this:

public void insertQuarter () {
if (state == HAS_QUARTER) {
Eath ?ossiHc
System.out.println (“You can’t insert another quarter”); state is thetked
, wnﬂ\ a tonditional
} else if (state == SOLD OUT) ({

s{:a{:emcn{:

System.out.println (“You can’t insert a quarter, the machine ig- sold out”)
} else if (state == SOLD) {

System.out.println (“Please wait, we’re already giving you a gumball”);
} else if (state == NO_QUARTER) {

state = HAS_QUARTER;
System.out.println (“You inserted a quarter”);

| and exhibits the a\vvrovv\aicc

th Voss\b\c state-

} behavior for ea

but can also transition to other
states, just as depicted in the diagram.

Here we're talking
about a common fechnique:
modeling state within an object
by creating an instance variable to hold
the state values and writing conditional
code within our methods to handle
the various states.

With that quick review, let’s 9o implement the GQumball Mathine!/

you are here » 389

Download at WoweBook.Com

implement the gumball machine

Writing the code

It’s time to implement the Gumball Machine. We know we’re going to have an instance
variable that holds the current state. From there, we just need to handle all the actions,
behaviors and state transitions that can happen. For actions, we need to implement inserting
a quarter, removing a quarter, turning the crank and dispensing a gumball; we also have the
empty gumball condition to implement as well.

four skakes; they mateh the

Heve ave the éumba\\,s skate diagram-

skates in Mighty
public class GumballMachine { Hcrc’s the instante vaviable that is go'mg to

keep tratk of the curvent state we've in.
chs{:ar{: in the SOLD_OUT state.

final static int SOLD OUT = 0;
final static int NO_QUARTER = 1;
final static int HAS QUARTER = 2;
final static int SOLD = 3;

We have a second instante vaviable that
keeps track of the number of gumballs in

int state = SOLD OUT; the mathine.
int count = 0;
The construetor takes an initial
public GumballMachine (int count) { ihvcn{:or\/ of 5umba||s‘ ,L‘ the invcr\{:or\/
t}fus(, . courgt =Oc)301{mt; isn't zero, the mathine enters state
i count > N 0.
state = NO QUARTER; Nq_QMARTER;mcmmﬂlfnswmfmgfor
} — someone to insert a quarter, otherwise it
} stays in the SOLD OUT state.
Li \cmcn{ing
Now we star ""\’Jc)
. hods..- .
< : the attions as me When a quar Lev is inserted, b
i i ed
public void insertQuarter () { / a ‘\“a"{:‘" is alveady .mSCY{‘,
if (state == HAS_QUARTER) { f we {',C" H\c Lus{',ovnth
System.out.println(“You can’t insert another quarter”); Lherwise we accc‘,{ the
. o
} else if (state == NO QUARTER) ({ ition to the
state = HAS_QUARTER; -~ W“a*{""j;‘\dk_:fggs;g;
System.out.println(“You inserted a quarter”); HAS—Q ’
} else if (state == SOLD OUT) {
System.out.println(“You can’t insert a quarter, the machine is sold out”);
} else if (state == SOLD) {

System.out.println(“Please wait, we’re already giving you a gumball”);
}
} K__
£ the tustomer just bought 3 and if £he machine is sold
qumball he needs to wait until the out, we veject the quarter.
fransattion is tomplete before
inserting another quarter.

390 Chapter 10

Download at WoweBook.Com

the state pattern

(5 Now, if the tustomer tries 4o vemove the quarter..

public void ejectQuarter () { l£ Lheve is 3 a\uav.{", we

if (state == HAS QUARTER) {
i w "y . vetuen it and 90 back to
izziir:o;gglr];;;;;(Quarter returned”); 4/_\ the NO__QMARTER s{:a{:&
} else if (state == NO_QUARTER) ({ &——— Otherwise, if there isn't
System.out.println (“You haven’t inserted a quarter”); one we tan't give it back.
} else if (state == SOLD) {
System.out.println (“Sorry, you already turned the crank”);
} else if (state == SOLD OUT) {
System.out.println(“You can’t eject, you haven’t inserted a quarter yet”);
}
} IK/ You ean't c\)cc{: if the mathine is sold [£ the eustomer \)us{.’
out, it doesn't aceept quarters! furned the evank, we can't

give a vefund; he alveady

The customer tries to tuen the trank... has the gumball,l

public void turnCrank() { F

if (state == SOLD) { Someone’s trying to theat the mathine.
System.out.println (“"Turning twice doesn’t get you another gumball!”);

} else if (state f= NO_E}UARTER) { ,) We need a
Sysi}em.out.priitln(You turned but there’s no quarter”); a\ua\r{:cr f'nrs{:.

} else if (state == SOLD OUT) {

System.out.println (“You turned, but there are no gumballs”); , .

} else if (state == HAS QUARTER) { We can't deliver
System.out.println (:You turned...”); t_x)umbansi there
state = SOLD; are none.
dispense () ; R

} Success/ They 3:{ B 3umba||. Change

) . the state £o SOLD and call the
f Called to dispense a qumball. athings dispersel) method.
public void dispense () { We've in the
if (state == SOLD) { ¥ LD state 9ve

System.out.println (YA gumball comes rolling out the slot”);

count = count - 1;

if (count == 0) {) N)¢ where we \\and\c the
System.out.println (“Oops, out of gumballs!”); fece's

» 4 .
X hd\‘l’,\o“
state = SOLD OUT; Sout of qumballs’ conCE
} else { B fhe last ones

‘em 3 sum\)a“l.

I this was ", Late to
state = NO_QUARTER; set the mathine s $T31 e
} coLD_OUT; otherwises ‘“;
} else if (state == NO_QUARTER) ({ batk g;“o{—, having 3 quav ev.
System.out.println (“You need to pay first”);
: —— <
} else if (state . SOLD OUT) { . Noncof{hcsc should
System.out.println (“No gumball dispensed”); <~ ver h but if
} else if (state == HAS QUARTER) { o~ per happen but
- by : " . they do, we give ‘em an
System.out.println(“"No gumball dispensed”);
} ervor, not a gumball.

// other methods here like toString() and refill ()

you are here » 391

Download at WoweBook.Com

test the gumball machine

In-house testing

That feels like a nice solid design using a well-thought out methodology doesn’t
it? Let’s do a little in-house testing before we hand it off to Mighty Gumball to
be loaded into their actual gumball machines. Here’s our test harness:

Load .It up with

public class GumballMachineTestDrive { five g balls +otal
[m :

392

public static void main (String[] args) {

GumballMachine gumballMachine = new GumballMachine (5);

System.out.println (gumballMachine) ; . _/
Y P (9) S~ Print out the state of the machine.

gumballMachine.insertQuarter () ; @— Throw a quarter in.. /_/

gumballMachine.turnCrank () ;
S~ Turn the erank; we should get our gumball.

System.out.println(gumballMachine); «<——
Print out the state of the machine, again. /

gumballMachine.insertQuarter () ;

gumballMachine.ejectQuarter () ; wa a quarter in... /_/

gumballMachine.turnCrank () ; Ask 1Cor it back.

\ Turn the erank; we shouldn't get our qumball.

System.out.println (gumballMachine) ;
Print out the state of the mathine, again.

gumballMachine.insertQuarter () ;

gumballMachine.turnCrank() ; & Throw a quarter in..
gumballMachine.insertQuarter(); < Tuen the trank; we should get our qumball
gumballMachine.turnCrank () ; = Throw a quarter in...

Turn the trank; we should get our gumball
E—— Ask for a quarter back we didn't put in.

System.out.println (gumballMachine) ;
& Print out the state of the mathine, again. \/
e

gumballMachine.insertQuarter(); Th TWo fers i
gumballMachine.insertQuarter(); row quarters in..

gumballMachine.ejectQuarter () ;

gumballMachine.turnCrank() ; <« —— Tum the erank; we should get our gumball. /_/
gumballMachine.insertQuarter () ;
gumballMachine.turnCrank () ; N— Now for the stress testing...)

gumballMachine.insertQuarter () ;
gumballMachine.turnCrank () ;

System.out.println (gumballMachine) ; Print that mathine state one more time. /

Chapter 10

Download at WoweBook.Com

BARINN

the state pattern

File Edit Window Help mightygumball.com
%$java GumballMachineTestDrive

Mighty Gumball, Inc.

Java-enabled Standing Gumball Model #2004
Inventory: 5 gumballs

Machine 1s waiting for quarter

You inserted a quarter
You turned...
A gumball comes rolling out the slot

Mighty Gumball, Inc.

Java-enabled Standing Gumball Model #2004
Inventory: 4 gumballs

Machine 1s waiting for quarter

You inserted a guarter
Quarter returne
You turned but there’s no quarter

Mighty Gumball, Inc.

Java-enabled Standing Gumball Model #2004
Inventory: 4 gumballs

Machine 1s waiting for quarter

You inserted a quarter

You turned...

A gumball comes rolling out the slot
You inserted a quarter

You turned...

A gumball comes rolling out the slot
You haven’t inserted a quarter

Mighty Gumball, Inc.

Java-enabled Standing Gumball Model #2004
Inventory: 2 gumballs

Machine 1s waiting for quarter

You inserted a quarter

You can’t insert another quarter

You turned...)

A gumball comes rolling out the slot

You inserted a quarter

You turned...)

A gumball comes rolling out the slot

Oops, out of gumballs!

You can’t insert a quarter, the machine is sold out
You turned, but there are no gumballs

Mighty Gumball, Inc.

Java-enabled Standing Gumball Model #2004
Inventory: 0 alls

Machine 1s sold out

Download at WoweBook.Com

you are here » 393

gumball buying

You knew it was coming... a change request!

Mighty Gumball, Inc. has loaded your code into their new-
est machine and their quality assurance experts are putting
it through its paces. So far, everything’s looking great from
their perspective.

In fact, things have gone so smoothly they’d like to take
things to the next level...

We think that by turning
“gumball buying” into a game we
can significantly increase our
sales. We're going to put one of
these stickers on every machine.
We're so glad we've got Java
in the machines because this is
going to be easy, right?

ﬁ

|O°/o of the Eime,

CEO, M‘%“{\I when the trank /
ﬁumba“l Ine- is twened) the
Kev or customer oets two
Jawbred . waa“s instead
Qumdrop* of one.
amba\\s J
394

Download at WoweBook.Com

the state pattern

Design Puzz]e

Draw a state diagram for a Gumball Machine that handles the 1 in 10
contest. In this contest, 10% of the time the Sold state leads to two
balls being released, not one. Check your answer with ours (at the
end of the chapter) to make sure we agree before you go further...

/

Use Migh’cy Qumball’s s{:a*(:iona\r\/ to draw your state diagram.

you are here » 395

Download at WoweBook.Com

things get messy

The messy STATE of things...

Just because you’ve written your gumball machine using a well-thought out methodology doesn’t
mean it’s going to be easy to extend. In fact, when you go back and look at your code and think
about what you’ll have to do to modify it, well...

final static int SOLD OUT = O0;
final static int NO_QUARTER =

L heve. That isnt too bad...
final static int HAS QUARTER = 2;

final static int SOLD = 3;

public

void insertQuarter () {
insert quarter code here

void ejectQuarter () {
eject quarter code here

void turnCrank () {
turn crank code here

void dispense () {
dispense code here

First, you'd have to add a new WINNER state

. but then, you'd have to add a new tonditiona
& every single method 4o handle the WIN NER state;

/ that's a lot of eode to modif\/‘

turnCrank() will get especially messy, because
\/ou’d have to add tode to cheek to see whether
\/ou,vc 9got a WINNER and then switeh to either
4he WINNER state or the SOLD state.

@ dharpen vour pencil
ndarpenyour

Which of the following describe the state of our implementation?

(Choose all that apply.)

1 A. This code certainly isn’t adhering to the

Open Closed Principle.

[B. This code would make a FORTRAN

programmer proud.

(1 C. This design isn’t even very object

oriented.

(A C. State transitions aren’t explicit; they

are buried in the middle of a bunch of
conditional statements.

(A D. We haven’t encapsulated anything that

J

E.

varies here.

Further additions are likely to cause bugs
in working code.

396 Chapter 10

Download at WoweBook.Com

the state pattern

Okay, this isn't good. I think
our first version was great, but
it isn't going to hold up over time as Mighty
Gumball keeps asking for new behavior. The
rate of bugs is just going to make us look
bad, not to mention that CEO will drive
us crazy.

Joe: You're right about that! We need to refactor this code so that it’s easy
to maintain and modify.

Anne: We really should try to localize the behavior for each state so that if
we make changes to one state, we don’t run the risk of messing up the other
code.

Joe: Right; in other words, follow that ol’ “encapsulate what varies”
principle.

Anne: Exactly.

Joe: If we put each state’s behavior in its own class, then every state just
implements its own actions.

Anne: Right. And maybe the Gumball Machine can just delegate to the
state object that represents the current state.

Joe: Ah, youre good: favor composition... more principles at work.

Anne: Cute. Well, I'm not 100% sure how this is going to work, but I think
we’re on to something.

Joe: I wonder if this will this make it easier to add new states?

Anne: 1 think so... We’ll stll have to change code, but the changes will be
much more limited in scope because adding a new state will mean we just
have to add a new class and maybe change a few transitions here and there.

Joe: Ilike the sound of that. Let’s start hashing out this new design!

you are here » 397

Download at WoweBook.Com

a new design

The new design

It looks like we’ve got a new plan: instead of maintaining our existing code, we’re going to
rework it to encapsulate state objects in their own classes and then delegate to the current
state when an action occurs.

We’re following our design principles here, so we should end up with a design that is easier to
maintain down the road. Here’s how we’re going to do it:

0 First, we’re going to define a State interface that
contains a method for every action in the Gumball
Machine.

Q Then we’re going to implement a State class for
every state of the machine. These classes will be
responsible for the behavior of the machine when it
is in the corresponding state.

@ Finally, we’re going to get rid of all of our conditional
code and instead delegate to the state class to do
the work for us.

Not only are we following design principles, as you’ll see, we’re actually implementing the
State Pattern. But we’ll get to all the official State Pattern stuff after we rework our code...

Now we're going
put all the behavior of a

state into one class. That way,
we're localizing the behavior and
making things a lot easier to
change and understand.

398

Download at WoweBook.Com

the state pattern

Pefining the State interfaces and classes

First let’s create an interface for State, which all our states implement:

Here's the interfate for all states The methods map divectly
4o ackions that could happen to the Gumball Machine (4hese ave
£he same methods as in the previous tode).

<<interface>>

Then take each state in our design State
and encapsulate it in a class that fdsetfguit"e;)()
T . ejectQuarter
implements the State interface. mGrank)

dispense()

To -(:igwc out what

skates we need, we look SoldState SoldOutState NoQuarterState HasQuarterState
t vevious tode... insertQuarter() insertQuarter() insertQuarter() insertQuarter()
at owr p ejectQuarter() ejectQuarter() ejectQuarter() ejectQuarter()
turnCrank() turnCrank() turnCrank() turnCrank()
dispense() dispense() dispense() dispense()
—

N7~

public class GumballMachine { ... and we map eath state
diveetly to a ¢lass.

final static int SOLD OUT = O0;
final static int NO_ QUARTER = 1;
final static int HAS QUARTER = 2;
final static int SOLD = 3;

Don't forget, we need a new “winner” s{:afcc)
that implements the state interface. Well come
back to this after we veimplement the Liest
version of the Gumball Machine.

int state = SOLD OUT;
int count = 0;

WinnerState
insertQuarter()
ejectQuarter()
turnCrank()
dispense()

you are here » 399

Download at WoweBook.Com

what are all the states?

To implement our states, we first need to specify the behavior of the classes
when each action is called. Annotate the diagram below with the behavior of
each action in each class; we’ve already filled in a few for you.

Go to HasQuarterState /\
NoQuarterState
Tell the tustomer, “You haven't insevted a quav-(:cr." insertQuarter()
—\: ejectQuarter()
turnCrank()
dispense()

@ oharpen your pencil
i your p

HasQuarterState
insertQuarter()
ejectQuarter()

Qo to SoldState _% tunCrank()

dispense()

Tell the customer, “Please wait, we've already giving you a qumball.”

\5 SoldState

insertQuarter()
ejectQuarter()
turnCrank()
dispense()

Dispense one gqumball. Check mumber of qumballs; if >0,90 =
to NoRuarterState, otherwise, go to SoldOutState

SoldOutState
insertQuarter()
ejectQuarter()

\——5 tumCrank()

dispense()

Tell the eustomer, “There are no qumballs.”

WinnerState

insertQuarter()
ejectQuarter()
turnCrank()

dispense()
—

Go ahead and fill this out even though we've implementing it later.

400 Chapter 10

Download at WoweBook.Com

the state pattern

Implementing our State classes

Time to implement a state: we know what behaviors we want; we just need to get it down in code. We’re going to
closely follow the state machine code we wrote, but this time everything is broken out into different classes.

Let’s start with the NoQuarterState:

intecfate.
implem L the State nter
First we need to imflene? We get passed a referente to
the Gumball Machine through the
tonstruttor. We've Jus{: 9oing to

stash this in an instante vaviable.

public class NoQuarterState implements State {
GumballMachine gumballMachine;
£ someone inserts a quarter,
we yvin{‘, a message saying the
varter was attepted and then

thange the mathine’s state to
/ the HasQuarterState.

public NoQuarterState (GumballMachine gumballMachine) {
this.gumballMachine = gumballMachine;
}

public void insertQuarter () {
System.out.println (“You inserted a quarter”);

gumballMachine.setState (gumballMachine.getHasQuarterState()) ; Y ,” h -t
oull see how these

work in just a sec...

public void ejectQuarter() {
System.out.println (“You haven’t inserted a quarter”);
< You tant 5‘+‘ money

back if you never gave

public void turnCrank () { it to V‘S!
System.out.println (“You turned, but there’s no quarter”);

IL -{\Chd, you can't get a gumball

}

}

public void dispense () { You don't pay us.
System.out.println (“You need to pay first”); V\
} We can’t be dispensing
} 5"”‘b3”5 without Fa\/mcn‘{:.

What we're doing is
implementing the behaviors
that are appropriate for the
state we're in. In some cases, this
behavior includes moving the
Gumball Machine to a hew state.

you are here » 401

Download at WoweBook.Com

state objects in the gumball machine

Reworking the Gumball Machine

Before we finish the State classes, we'e going to rework the Gumball Machine - that way
you can see how it all fits together. We'll start with the state-related instance variables
and switch the code from using integers to using state objects:

402

public class GumballMachine {

final
final
final
final

int state
int count

4

Old eode

static
static
static
static

Chapter 10

int SOLD
int NO_QUARTER ;
int HAS QUARTER = 2;

int SOLD

SOLD OUT;
0;

OUT = 0;
. [n the éumba\\Mach\ne,
tode to use the new
the statie integers-
similav, except tha

\“{ggcrs and

= 3;

we update the

tlasses vather than
The code is auite

+ in one tlass we have
in the other ob\')cchs-..

State soldOutState;
State noQuarterState;
State hasQuarterState;

public class GumballMachine ({

State soldState;
///;’7 State soldOutState;
int count ;

New tode

All the State ob\)ccﬁs ave treated
and assigned in the tonstructor.

Download at WoweBook.Com

Th‘s now ho\ds a
Ghate ob\')cf.{) not

an in{:cgck‘-

Now, let’s look at the complete GumballMachine class...

public class GumballMachine {

—

State soldOutState;
State noQuarterState;
State hasQuarterState;
State soldState;

the state pattern

Heve ave all fhe States again--

..and the State instante variable.
The eount instance variable holds

State state =
int count = 0;

public GumballMachine (int numberGumballs) {

}

the tount of 3umba”s - ini‘Eiall\/ the
mathine is cmp{;y.

L(/”‘—‘____———i\\\ Owr consbruetor Lakes the

\s 6nd
iitial number of 3umba\ .
‘sn{-‘,t‘risn\rc in an instance vaviable:

tes the State
eath.

soldOutState;

soldOutState = new SoldOutState (this);

noQuarterState = new NoQuarterState (this); <5\\\
) |t also ered

instantes, one

hasQuarterState = new HasQuarterState (this
soldState = new SoldState (this);
this.count = numberGumballs;
if (numberGumballs > 0) {

state = noQuarterState;

I there are more than O

gumballs we set +h tate to th
} NoQuarterState. T :

Lions- These 3v¢

) s he at e
public void insertQuarter() { Now for ¥ . olement now-

state.insertQuarter(); \/ER\{ EP‘S\(to 3\\:6;\""“{" s{',a{',c-
} :)us{; deleoate o

public void ejectQuarter() {

}

public void turnCrank() {

}

S
state.ejectQuarter(); / Hﬁ +hat we don't need an
attion method for dispense() in
GumballMachine because it's just an
inkevnal action; a user tan't ask the
machine to dispense direetly. But we
do ¢all dispense() on the State object
£rom the twenCrank() method.

-

state.turnCrank() ;
state.dispense();

void setState (State state) {

}

&~ T This method allows other ob\’)ct,{:s (like
owr State ob)ccﬁ) +o transition the
mathine to a different state.

this.state = state;

void releaseBall() {

}

System.out.println (“A gumball comes rolling out the slot...”);
if (count != 0) {
count = count - 1;

The machine supports a veleaseBall()
} K_/ helper method that veleases the ball and
decrements the count instante variable.

// More methods here including getters for each State...

/t This includes methods like getNoQuarterState() for getting each
state ob\)cé‘{:, and gc‘tCouh{‘,() for ch:ins the gumba” count.

you are here » 403

Download at WoweBook.Com

more states for the gumball machine

Implementing more states

Now that you're starting to get a feel for how the Gumball Machine and the states

fit together, let’s implement the HasQuarterState and the SoldState classes...

public class HasQuarterState implements State {
GumballMachine gumballMachine;

public HasQuarterState (GumballMachine gumballMachine)

this.gumballMachine = gumballMachine;
}

public void insertQuarter () {
}

public void ejectQuarter () {
System.out.println (“Quarter returned”);

gumballMachine.setState (gumballMachine.getNoQuarterState());

}

public void turnCrank () {
System.out.println (“You turned...”);

18 s«tay\‘t\a{',cd
When he s{za\i};e: ce to the

e This s el

we Pass it ak
\oa\\Mac n ~
i:m{'xav\s'\{i\on the mathine

dikfevent state

Av\ \Y\aY VOYY-‘ a{:c

L/—\ stkion ko this

System.out.println (“You can’t insert another quarter”); s{;a{%

K Return the customer’s
quarter and
{:Y'ansi{','lon batk to the

NoQuarterState.

< When the erank is

sition
gumballMachine.setState (gumballMachine.getSoldState()) ; turned we teansi
} the mathine to the

public void dispense () { Solds‘{;a{x Late b\/
System.out.println (“*No gumball dispensed”); La"'mg ks sc{'SJca{:c()
method and passing it
the SoldState ob)cc{:.
The SoldState ob\')cc{:

}

| "
P(no{',\'\“

inappropriate is vebrieved by the
\;\:‘E“;“ or this " +SoldSta te0)
state. getter method

(+heve is one of these
getter methods for
eath state).

404 Chapter 10

Download at WoweBook.Com

the state pattern

Now, let’s check out the SoldState class... Il the
Hteve ave 3
'\V\AYYV"\W.‘a{"i\‘.
. \S
public class SoldState implements State { attions or
state

//constructor and instance variables here

public void insertQuarter() {

System.out.println (“Please wait, we’re already giving you a gumball”);

}

public void ejectQuarter() {

System.out.println (“Sorry, you already turned the crank”);

}

public void turnCrank() {
System.out.println (“"Turning twice doesn’t get you another gumball!”);

}

public void dispense () {
gumballMachine.releaseBall () ;
if (gumballMachine.getCount() > 0) {
gumballMachine.setState (gumballMachi
} else {
System.out.println (“Oops, out of
gumballMachine.setState (gumball

.getNoQuarterState());

balls!”);
chine.getSoldOutState());

) the .
d heres wheve dhich s ha
" | work begne: We've in the SO\dg‘bah\d‘.N So, Then :J..\ba\\ count 19 and i g
ved eans khe cus‘c,omcrkvi N {he o Tiom b0 the NoQuarter
" 4 sition
we ‘c'\rs{; need h:;isa 3\m\33 L ‘h\;a'{.‘)‘c cold O\A‘hg‘ta Le

mab‘\."‘c {;o ‘(C\C

B RANN
PQWEWR

Look back at the GumballMachine implementation. If the crank is turned and not successful (say
the customer didn’t insert a quarter first), we call dispense anyway, even though it's unnecessary.

How might you fix this?

you are here » 405

Download at WoweBook.Com

your turn to

We have one remaining class we haven’t implemented: SoldOutState.
Why don’t you implement it? To do this, carefully think through how
the Gumball Machine should behave in each situation. Check your
answer before moving on...

public class SoldOutState implements [:::::::::] {

GumballMachine gumballMachine;

@s.oharpen vour pencil
i’ your p

public SoldOutState (GumballMachine gumballMachine) {

public void insertQuarter () {
public void ejectQuarter () {

public void turnCrank() {

public void dispense () {

406

Download at WoweBook.Com

the state pattern

Let’s take a look at what we've done so far...

Tor starters, you now have a Gumball Machine implementation that is structurally quite different from your
first version, and yet functionally it is exactly the same. By structurally changing the implemention you've:

® Localized the behavior of each state into its own class.

® Removed all the troublesome if statements that would have been difficult to maintain.

® (losed each state for modification, and yet left the Gumball Machine open to extension by
adding new state classes (and we’ll do this in a second).

Created a code base and class structure that maps much more closely to the Mighty Gumball
diagram and is casier to read and understand.

Now let’s look a little more at the functional aspect of what we did:

éumba\\ Mathine now holds an

¢ eath Skate €255 TN eumball Machine Stafes

The
'\V\S{'ﬁ"(’c

current state

S O
Nbal) MOC\N{\

The turvent state of the

machine is always one of
these ¢elass instances.

SoldOut

you are here » 407

Download at WoweBook.Com

state transitions

ction is talled, it is o
ﬁ/:;:;ai:: {:owzhc cucrent state. ¢umball Machine Sta

L,__é tumCrank() @
Ao

turnCrank()

In this ase the turnCrank()
method is being called when the
machine is in the HasQuarter
state, so as a vesult the macthine
transitions to the Sold state.

TRANSITION To SOLD STATE \L

athine enters

The m nd 3

Ehe SO\\O\. sﬁ:e:scd... ¢umball Machine States

oumball s move qumoalls

dispense() @‘ ~.and then the

mathine will
either 90 to
the SoldOut
or NoQuarter

state depending

on the number of
gumballs vemaining

in the mathine.

4) sold out:

408 Chapter 10

Download at WoweBook.Com

the state pattern

0 harpen our pencil
S your p

Trace the steps of the Gumball Machine starting with the NoQuarter state. Also annotate the diagram with actions
and output of the machine. For this exercise you can assume there are plenty of gumballs in the machine.

@) ®

Gomball Machin Safes Gumball Machine States

() A/QsQutj

QL [.
@"’”banmocw “mbaimec™
Sol i.
Sol, Sol

Gumball Machine tates Gumball Machine States
O
IS) s Qe
“Mbalimec™

Sold Sol
g [l g
Sal @

you are here » 409

Download at WoweBook.Com

state pattern defined

The State Pattern defined

Yes, it’s true, we just implemented the State Pattern! So now, let’s take a look at what it’s all about:

The State Pattern allows an object to alter its behavior
when its internal state changes. The object will appear to
change its class.

The first part of this description makes a lot of sense, right? Because the pattern encapsulates state into
separate classes and delegates to the object representing the current state, we know that behavior changes
along with the internal state. The Gumball Machine provides a good example: when the gumball machine
1s in the NoQuarterState and you insert a quarter, you get different behavior (the machine accepts the
quarter) than if you insert a quarter when it’s in the HasQuarterState (the machine rejects the quarter).

What about the second part of the definition? What does it mean for an object to “appear to change its
class?” Think about it from the perspective of a client: if an object you’re using can completely change its
behavior, then it appears to you that the object is actually instantiated from another class. In reality, however,

you know that we are using composition to give the appearance of a class change by simply referencing
different state objects.

Okay, now it’s time to check out the State Pattern class diagram:

The State intevface defines a tommon

interface for all contrete states 4
. ; th
P f"‘{"‘{: Isb{hcoilésjc:“::{l: states all implement the same in{crfa:c
tan have 3 numbevr n o ! ,
states. In our example, the © they are interthangeable.
QumballMathine is the Context.
K» Context > State
requ?st() I handle()
‘ state.handle) ConcreteStateA ConcreteStateB >

b
ﬁ handle() I nandel Ma"y e
5{53{165 dre Possible.
-thncvcv- the request() K j
is made on the Context

. teStates handle vequests Lrom the
;ialz dzlcgaﬁd e g::i:i; Eath ContreteState provides its
e own im\?lcmcnha{:ion for a \rca\ucs’c. In {?,his
way, when the Context thanges state, its

behavior will thange as well.

410 Chapter 10

Download at WoweBook.Com

the state pattern

Wait a sec,
from what I remember
of the Strategy Pattern,
this class diagram is
EXACTLY the same.

You've got a good eye! Yes, the class diagrams are essentially the
same, but the two patterns differ in their nfent.

With the State Pattern, we have a set of behaviors encapsulated in
state objects; at any time the context is delegating to one of those
states. Over time, the current state changes across the set of state
objects to reflect the internal state of the context, so the context’s
behavior changes over time as well. The client usually knows very
little, if anything, about the state objects.

With Strategy, the client usually specifies the strategy object that

the context is composed with. Now, while the pattern provides the
flexibility to change the strategy object at runtime, often there is a
strategy object that is most appropriate for a context object. For
nstance, in Chapter 1, some of our ducks were configured to fly
with typical flying behavior (like mallard ducks), while others were
configured with a fly behavior that kept them grounded (like rubber
ducks and decoy ducks).

In general, think of the Strategy Pattern as a flexible alternative to
subclassing; if you use inheritance to define the behavior of a class,
then you’re stuck with that behavior even if you need to change it.
With Strategy you can change the behavior by composing with a
different object.

Think of the State Pattern as an alternative to putting lots of
conditionals in your context; by encapsulating the behaviors within
state objects, you can simply change the state object in context to
change its behavior.

411

Download at WoweBook.Com

q&a about the

412

therejare no

Dumb Questions

Q: In the GumballMachine, the states decide
what the next state should be. Do the ConcreteStates
always decide what state to go to next?

AZ No, not always. The alternative is to let the Context
decide on the flow of state transitions.

As a general guideline, when the state transitions are fixed
they are appropriate for putting in the Context; however,
when the transitions are more dynamic, they are typically
placed in the state classes themselves (for instance, in the

GumballMachine the choice of the transition to NoQuarter or

SoldOut depended on the runtime count of gumballs).

The disadvantage of having state transitions in the state
classes is that we create dependencies between the state
classes. In our implementation of the GumballMachine
we tried to minimize this by using getter methods on the
Context, rather than hardcoding explicit concrete state
classes.

Notice that by making this decision, you are making a
decision as to which classes are closed for modification
— the Context or the state classes — as the system evolves.

Q: Do clients ever interact directly with the
states?

AZ No. The states are used by the Context to
represent its internal state and behavior, so all requests
to the states come from the Context. Clients don't directly
change the state of the Context. Itis the Context’s job

to oversee its state, and you don't usually want a client
changing the state of a Context without that Context's
knowledge.

Q: If I have lots of instances of the Context in my
application, is it possible to share the state objects
across them?

A: Yes, absolutely, and in fact this is a very common
scenario. The only requirement is that your state objects do
not keep their own internal state; otherwise, you'd need a

unique instance per context.

To share your states, you'll typically assign each state to a
static instance variable. If your state needs to make use of
methods or instance variables in your Context, you'll also
have to give it a reference to the Context in each handler()
method.

Q} It seems like using the State Pattern always
increases the number of classes in our designs. Look
how many more classes our GumballMachine had
than the original design!

A: You're right, by encapsulating state behavior

into separate state classes, you'll always end up with
more classes in your design. That's often the price you
pay for flexibility. Unless your code is some “one off’
implementation you're going to throw away (yeah, right),
consider building it with the additional classes and you'll
probably thank yourself down the road. Note that often
what is important is the number of classes that you expose
to your clients, and there are ways to hide these extra
classes from your clients (say, by declaring them package
visible).

Also, consider the alternative: if you have an application
that has a lot of state and you decide not to use separate
objects, you'll instead end up with very large, monolithic
conditional statements. This makes your code hard to
maintain and understand. By using objects, you make
states explicit and reduce the effort needed to understand
and maintain your code.

Q} The State Pattern class diagram shows
that State is an abstract class. But didn’t you use
an interface in the implementation of the gumball
machine’s state?

AZ Yes. Given we had no common functionality to

put into an abstract class, we went with an interface. In
your own implementation, you might want to consider an
abstract class. Doing so has the benefit of allowing you to
add methods to the abstract class later, without breaking the
concrete state implementations.

Download at WoweBook.Com

the state pattern

We still need to finish the Gumball 1 in 10 game

Remember, we’re not done yet. We’ve got a game to implement; but now that we’ve got the State
Pattern implemented, it should be a breeze. First, we need to add a state to the GumballMachine class:

public class GumballMachine {

State soldOutState;

State noQuarterState; Al You need to add heve is the

State hasQuarterState; new WinnerState and initialize

State S?ldState; /—\ it in the constructor.

State winnerState;

State state = soldOutState;

int count = 0;

Don't (:orgc{: Yyou also have

// methods here / Lo add a oetter method for

} WinnerState too.

Now let’s implement the WinnerState class itself; it’s remarkably similar to the SoldState class:

public class WinnerState implements State {

// instance variables and constructor /_\ Just like SoldState:

// insertQuarter error message

[/ electuarter error message Heve we velease two gumballs and then
either 9o to the NoQuarterState or the

// turnCrank error message dpuiotate

public void dispense() {

System.out.println (“YOU’RE A WINNER! You get two gumballs for your quarter”);
gumballMachine.releaseBall () ;

if (gumballMachine.getCount () == 0) {
gumballMachine.setState (gumballMachine.getSoldOutState()) ;
} else {
gumballMachine.releaseBall () ; T Asbngaswc
if (gumballMachine.getCount () > 0) { ygvcasannd
gumballMachine.setState (gumballMachine.getNoQuarterState()) ; 5umbd|wc
b else { velease it.

System.out.println (“Oops, out of gumballs!”);
gumballMachine.setState (gumballMachine.getSoldOutState());

you are here » 413

Download at WoweBook.Com

implementing the 1 in 10 game
Finishing the game

We’ve just got one more change to make: we need to implement the random
chance game and add a transition to the WinnerState. We’re going to add both to
the HasQuarterState since that is where the customer turns the crank:

o Fiest we add 3

public class HasQuarterState implements State { vandom numbCY'

Random randomWinner = new Random(System.currentTimeMillis()) ;

o
GumballMachine gumballMachine; SC“CYa‘hOY 10%
gcncvaﬁc the :
public HasQuarterState (GumballMachine gumballMachine) { thante of winning:-

this.gumballMachine = gumballMachine;

public void insertQuarter () {
System.out.println (“You can’t insert another quarter”);

public void ejectQuarter() {
System.out.println (“Quarter returned”); .
gumballMachine.setState (gumballMachine.getNoQuarterState()) ; --~'U‘C" we de{""‘"‘c
} if this tustomer won.
public void turnCrank() {

System.out.println(“You turned...”);

int winner = randomWinner.nextInt (10);

if ((winner == 0) && (gumballMachine.getCount () > 1)) {
gumballMachine.setState (gumballMachine.getWinnerState()) ;

} else {
gumballMachine.setState (gumballMachine.getSoldState()) ; <F;>

} £ they won, and there’s

public void dispense () {
System.out.println (“No gumball dispensed”); them to 56‘{: two, we
)

enough gumballs left for

90 to the WinnerState;
otherwise, we g0 to the
SoldState (just like we

always did).

Wow, that was pretty simple to implement! We just added a new state to the GumballMachine
and then implemented it. All we had to do from there was to implement our chance game and
transition to the correct state. It looks like our new code strategy is paying off...

414 Chapter 10

Download at WoweBook.Com

the state pattern

Pemo for the CEOQ of Mighty Guwmball, Inc.

The CEO of Mighty Gumball has dropped by for a demo of your new gumball game code. Let’s
hope those states are all in order! We’ll keep the demo short and sweet (the short attention span of
CEOs 1s well documented), but hopefully long enough so that we’ll win at least once.

This tode veally hase't ehanged at all

we \')us{ chovtened it 3 bit.

Onte, again, start with a gumball
public class GumballMachineTestDrive { of' machine with & gumballs.
public static void main(String[] args) {
GumballMachine gumballMachine = new GumballMachine (5);

System.out.println (gumballMachine) ;

umballMachine.insertQuarter () ;
gumballMachine .turnCrank () ; ! é\ We want to 55{3 3 winning state,
so we 3us+, keep pumping in those
System.out.println (gumballMachine) ; o\uav-{crs and turning the evank. We
?riy\{; out the state of the 5umba||
gumballMachine.insertQuarter(); macthine every so Jicn...

gumballMachine.turnCrank() ;
gumballMachine.insertQuarter () ;
gumballMachine.turnCrank() ;

System.out.println (gumballMachine) ;

The whole engineexring Leam is waiting

oukside the tonkerente voom to see

£ the new State Pattern—based
design is 90inY +o work!!

you are here » 415

Download at WoweBook.Com

testing the gumball machine

Yes! That rocks!

File Edit Window Help Whenisagumballajawbreaker?

%java GumballMachineTestDrive

Mighty Gumball, Inc.

Java-enabled Standing Gumball Model #2004
Inventory: 5 gumballs

Machine is waiting for quarter

You inserted a quarter

You turned...

YOU’'RE A WINNER! You get two gumballs for your quarter
A gumball comes rolling out the slot...

A gumball comes rolling out the slot...

Mighty Gumball, Inc.

Java-enabled Standing Gumball Model #2004
Inventory: 3 gumballs

Machine is waiting for quarter

You inserted a quarter

You turned...

A gumball comes rolling out the slot...
You inserted a quarter

You turned...

Gee did we 5c{', \ucky or what? YOU’RE A WINNER! You get two gumballs for your quarter
! the CEO, we /7 A gumball comes rolling out the slot...

l e dcmo ‘to -

ne but twite A gumball comes rolling out the slot...

won not onte ’ Oops, out of gumballs!

Mighty Gumball, Inc.

Java-enabled Standing Gumball Model #2004
Inventory: 0 gumballs

Machine is sold out

)

therejare no

Dumb Questions

Q_: Why do we need the WinnerState? Couldn’t we just have the SoldState dispense two gumballs?

A: That's a great question. SoldState and WinnerState are almost identical, except that WinnerState dispenses two
gumballs instead of one. You certainly could put the code to dispense two gumballs into the SoldState. The downside
is, of course, that now you've got TWO states represented in one State class: the state in which you're a winner, and the
state in which you're not. So you are sacrificing clarity in your State class to reduce code duplication. Another thing to
consider is the principle you learned in the previous chapter: One class, One responsibility. By putting the WinnerState
responsibility into the SoldState, you've just given the SoldState TWO responsibilities. What happens when the
promotion ends? Or the stakes of the contest change? So, it's a tradeoff and comes down to a design decision.

416 Chapter 10

Download at WoweBook.Com

the state pattern

Bravo! Great job,
gang. Our sales are already going
through the roof with the new game.
You know, we also make soda machines,
and I was thinking we could put one of
those slot machine arms on the side and
make that a game too. We've got four
year olds gambling with the gumball
machines; why stop there?

Sanity check...

Yes, the CEO of Mighty Gumball probably needs a sanity check, but that’s
not what we’re talking about here. Let’s think through some aspects of the
GumballMachine that we might want to shore up before we ship the gold version:

" We've got a lot of duplicate code in the Sold and Winning
states and we might want to clean those up. How would we
do it? We could make State into an abstract class and build in
some default behavior for the methods; after all, error messages / Dammik Jim
amml)

like, “You already inserted a quarter,” aren’t going to be seen f ball
13 bhl : l m a 5“"\ a
by the customer. So all “error response” behavior could be athine, not 3
. . .)
generic and inherited from the abstract State class. " &]
COV'\Y\A ey

® The dispense() method always gets called, even if the crank is
turned when there is no quarter. While the machine operates
correctly and doesn’t dispense unless it’s in the right state, we
could easily fix this by having turnCrank() return a boolean,
or by introducing exceptions. Which do you think is a better
solution?

® Al of the intelligence for the state transitions is in the State
classes. What problems might this cause? Would we want to
move that logic into the Gumball Machine? What would be
the advantages and disadvantages of that?

® Will you be instantiating a lot of GumballMachine objects?
If so, you may want to move the state instances into static
instance variables and share them. What changes would this
require to the GumballMachine and the States?

417

Download at WoweBook.Com

fireside chats: state and strategy

Flre81de Oha,ts

Strategy

Hey bro. Did you hear I was in Chapter 1?

I was just over giving the Template Method guys a
hand — they needed me to help them finish off their
chapter. So, anyway, what is my noble brother up
to?

I don’t know, you always sound like you’ve just
copied what I do and you’re using different words
to describe it. Think about it: I allow objects to
incorporate different behaviors or algorithms
through composition and delegation. You’re just
copying me.

Oh yeah? How so? I don’t get it.

Yeah, that was some fine work... and I’'m sure you
can see how that’s more powerful than inheriting
your behavior, right?

Sorry, you're going to have to explain that.

418 Chapter 10

Tonight: A Strategy and State Pattern Reunion.

State

Yeah, word 1s definitely getting around.

Same as always — helping classes to exhibit different
behaviors in different states.

I admit that what we do is definitely related, but my
intent is totally different than yours. And, the way I
teach my clients to use composition and delegation
is totally different.

Well if you spent a little more time thinking about
something other than yourself, you might. Anyway;,
think about how you work: you have a class you’re
instantiating and you usually give it a strategy
object that implements some behavior. Like, in
Chapter 1 you were handing out quack behaviors,
right? Real ducks got a real quack, rubber ducks
got a quack that squeaked.

Yes, of course. Now, think about how I work; it’s
totally different.

Download at WoweBook.Com

Strategy

Hey, come on, I can change behavior at runtime
too; that’s what composition is all about!

Well, I admit, I don’t encourage my objects to have
a well-defined set of transitions between states. In
fact, I typically like to control what strategy my
objects are using,

Yeah, yeah, keep living your pipe dreams brother.
You act like you’re a big pattern like me, but check
it out: 'm in Chapter 1; they stuck you way out in
Chapter 10. I mean, how many people are actually
going to read this far?

That’s my brother, always the dreamer.

the state pattern

State

Okay, when my Context objects get created, I may
tell them the state to start in, but then they change
their own state over time.

Sure you can, but the way I work 1s built around
discrete states; my Context objects change state
over time according to some well defined state
transitions. In other words, changing behavior is
built in to my scheme — it’s how I work!

Look, we’ve already said we’re alike in structure, but
what we do is quite different in intent. Face it, the
world has uses for both of us.

Are you kidding? This is a Head First book and
Head First readers rock. Of course they’re going to
get to Chapter 10!

419

Download at WoweBook.Com

420

refill exercise

We almost forgot!

i

Mighty Gumba]], Ine.

Where the Gumball Maching
is Never Half Empty

Theve's one transition we foroot o put in the oviii,nal sicc...
we need a way +o vefill the gwnball mathine when iT's ow of
gwnba\ls! Heve's £he new diagram — tan Yot imylcmcn{; '\{:.‘co\r us?
You did suth a good job on Ehe vest of the qumball mathine we
have no doubt you tan add this in 3) \/'

— The Mighty Qumball Engineers

rc-(:i"

Chapter 10

Download at WoweBook.Com

the state pattern

@%ﬁrpen your pencl
\\k We need you to write the refill() method for the Gumball machine. It has one

argument — the number of gumballs you're adding to the machine — and should
update the gumball machine count and reset the machine’s state.

You've done some amazing work!
T've got some more ideas that
are going to change the gumball
industry and I need you to implement
them. Shhhhh! T'll let you in on these
ideas in the next chapter.

you are here » 421

Download at WoweBook.Com

who does

.*.

Match each pattern with its description:

*_
WHQ DQES wHHaT™

%

.*.

Pattern Description
Encapsulate interchangeable
State behaviors and use delegation to
decide which behavior to use
Strategy Subclasses decide how
to implement steps in an
algorithm
Témplate Method Encapsulate state-based

behavior and delegate
behavior to the current state

422

Download at WoweBook.Com

Tools for your Pesign Toolbox

It’s the end of another chapter; you’ve got enough
patterns here to breeze through any job interview!

Pasies

sbrattion

00 Printiples

Encapsuiate what varies:
N

wkante .
¥ LomYOS\hon ovex nher! Y\“sm
avor
vam Lo inkeckates: not o
fv:oa.mcn‘\’,a‘t\ons

\ed desigrs
Shrive Q“\,\ ooﬁ\l&:f\n’ce*a“

en ‘cd\’ C"‘kc“s‘on

C‘?ZL::Z"E?Z&;acag.o“. “S
: et - cntiples v
Depend o0 Jostrat \o(\ass“' - Y H\a‘h . g
dc\‘:a\d on contrete & dna?)(’“, o
Lalk to your Lrien) - bt
only

A class shovld ha

)
S our new
i thange: HCY‘C

pattern. £ you'rc
managing state in

\ a tlass, the State
. Patteen gives you
OO Pa‘h{:cv“s 5 a {:céhn'l'\uc ‘(:o\'
’ . . . Cncavsula{'jhg that
S (t S .A%M o r. | | . state.

)

Download at WoweBook.Com

BULLET POIN&

the state pattern

The State Pattern allows an
object to have many different
behaviors that are based on its
internal state.

Unlike a procedural state
machine, the State Pattern
represents state as a full-blown
class.

The Context gets its behavior
by delegating to the current
state object it is composed
with.

By encapsulating each state
into a class, we localize any
changes that will need to be
made.

The State and Strategy
Patterns have the same class
diagram, but they differ in
intent.

Strategy Pattern typically
configures Context classes
with a behavior or algorithm.

State Pattern allows a Context
to change its behavior as the
state of the Context changes.

State transitions can be
controlled by the State classes
or by the Context classes.

Using the State Pattern will
typically result in a greater
number of classes in your
design.

State classes may be shared
among Context instances.

you are here » 423

exercise solutions

SO Exercise solutions

— —

~n, Wnn™
L /

] Gum ne .6"'%" A o \
] J n 2™ N0 \ £
ere the Gumball Machine aumballs = O ¥ K] —677,
J > A S »
is Never Half Empty p / .qve :V'd'[r)

424 Chapter 10

Download at WoweBook.Com

the state pattern

Exercise so]utions

G harpen our pencil
B, /

Based on our first implementation, which of the following apply?
(Choose all that apply.)

WA This code certainly isn’t adhering to the Q/C State transitions aren’t explicit; they

Open Closed Principle! are buried in the middle of a bunch of
V B. This code would make a FORTRAN E/ conditional code.

programmer proud. D. We haven’t encapsulated anything that
J C. This design isn’t even very object varies here.

oriented. [’ E. Further additions are likely to cause bugs

in working code.

We have one remaining class we haven’t implemented: SoldOutState.
Why don’t you implement it? To do this, carefully think through how
the Gumball Machine should behave in each situation. Check your
answer before moving on...

7 harpen our pencil
S y

Out state, we veally

| someont

In the Sold - .
cant do anything r}t\‘ chine
a .
public class SoldOutState implements State { vefills the a“"‘ba\

GumballMachine gumballMachine;

public SoldOutState (GumballMachine gumballMachine) {
this.gumballMachine = gumballMachine;

}

public void insertQuarter () {
System.out.println (“You can’t insert a quarter, the machine is sold out”);

}

public void ejectQuarter() {
System.out.println(“You can’t eject, you haven’t inserted a quarter yet”);

}

public void turnCrank() {
System.out.println (“You turned, but there are no gumballs”);

}

public void dispense () {
System.out.println (“*No gumball dispensed”);

}

425

Download at WoweBook.Com

exercise solutions

0 harpen Your pencll
A To implement the states, we first need to define what the behavior will be
when the corresponding action is called. Annotate the diagram below with the
behavior of each action in each class; we’ve already filled in a few for you.

Go to HasQuarterState
Tell the tustomer * oy ” NoQuarterState
© fustomer o haven't lhscr“:cd a ﬂ"ar{:" insertQuarter()
—\D ejectQuarter()

Tell the tustomer “\/ou turned, but there’s no c\uarfer" < | tumCrank)
di 0
Tell the customer “\/ou need o pay festh = ispensef

Tell th “Sou can't i ,
ell the customer “you can't insert another quarter \ e
Give back quarter, 90 to No Quarter state insertQuarter()
6 ‘to Sol ‘{:af H ejectQuarter()
’ o ‘ % turnCrank()
dispense()

Tell the tustomer, “no gumball dispensed”

Tell the eustomer “please wait, we've alveady giving you a gumball”
\5 SoldState

Tell the tustomer “sor\r\/, YYou alvcady turned the evank” \ insertQuarter()
ejectQuarter()

Tell the customer “turning twice doesn't 9et you another qumball” == | tumCrank)

dispense()

Dispense one gumball. Cheek number of qumballs; i > O, g |
to NoQuarter state, otherwise, 90 to Sold Out state

Tell the customer “the mathine is sold out”

Tell the eustomer “\/ou haven't inserted a quarter \/c{” SoldOutState
\ insertQuarter()
Tell the tustomer “There are no qumballs” ejectQuarter()
\——> turnCrank()

Tell ’chc tustomer “no Sumball diS?cnscd" 3/ dispense()
Tell the customer “please wait, we've already giving you a qumball” :
« \5 WinnerState
Tell the customer sorry, You alrcad\/ turned the evank” \ insertQuarter()
ejectQuarter()

Tell the eustomer “turning tuice doesn’t get you another qumball’ — = | umcrank

dispense()

Disycnsc two qumballs. Cheek number of gumballs; if > 0,)
90 to NoRuarter state, otherwise, g0 to SoldOutState

426 Chapter 10

Download at WoweBook.Com

the state pattern

Behind the Scenes:
Self-Guided Tour
Solution

dclcgafcs to
Curvrent 5-{:3.&2

@

insertQuarter() byl Machine States dclcgafcs 2 ¢umball Machine States

turnCrank|
A,
turnCrank() { current state @
/
T J A/OSQu

insertQuarter()

L
MbalimeC™

machine a¢tion machine action

| 3

transitions to
HasQuarter state
transitions to
Sold state
S

¢umball Machine Sfates

¢umball Machine Sfates

&

6\(/’77[%1/”\!\0c

Heve the mathine
gives out a gumball

by calling the internal
d:/s\:cnsl:g ac{;irn. " 3 and then transitions

to NoQuarter

e e W

you are here » 427

Download at WoweBook.Com

exercise

@ oharpen vour pencil
narpenyour

. O

* *
WHO DQES wWHaAT™?

Match each pattern with its description:

Pattern Description

Encapsulate interchangeable
State behaviors and use delegation to
decide which behavior to use

Subclasses decide how

Sﬁmﬂgy
to implement steps in an
algorithm
Encapsulate state-based
Template Methed behavior and delegate

behavior to the current state

We need you to write the refill() method for the Gumball machine. It has one
argument, the number of gumballs you’re adding to the machine, and should
update the gumball machine count and reset the machine’s state.

void refill (int count) {
this.count = count;
state = noQuarterState;

428

Download at WoweBook.Com

11 the Troxy Pattern

Controlling *
+ Object Access +

With you as my Proxy, T'll be
able to friple the amount of lunch
money I can extract from friends!

Ever play good cop, bad cop? You're the good cop and you provide all your
services in a nice and friendly manner, but you don’t want everyone asking you for services,
so you have the bad cop control access to you. That's what proxies do: control and manage
access. As you’re going to see, there are lots of ways in which proxies stand in for the
objects they proxy. Proxies have been known to haul entire method calls over the Internet for

their proxied objects; they've also been known to patiently stand in the place for some pretty

lazy objects.

this is a new chapter 429

Download at WoweBook.Com

what’s the

Hey fteam, I'd
really like to get
some better monitoring for
my gumball machines. Can you
find a way to get me a report of
inventory and machine state?

Sounds easy enough. If you remember, we’ve already
got methods in the gumball machine code for getting the
count of gumballs (getCount()), and getting the current
state of the machine (getState()).

All we need to do is create a report that can be printed out
and sent back to the CEO. Hmmm, we should probably
add a location field to each gumball machine as well; that
ﬁ way the CEO can keep the machines straight.

Let’s just jump in and code this. We’ll impress the CEO
Remember the CEO of with a very fast turnaround.

Mighty GQumball, ne.?

430

Download at WoweBook.Com

the proxy pattern

Coding the Monitor

Let’s start by adding support to the GumballMachine class so that it
can handle locations:

public class GumballMachine { A btafbnisjugﬁa gfﬁha
// other instance variables
String location;

public GumballMachine (String location, int count) {
// other constructor code here

this.location = location; '_/ The lota{ion is Passcd into ‘Ehe

} tonstruttor and stored in the

instante variable.
public String getLocation () {

return location; N\

Let's also add a getter method .’co
// other methods here 5\rab +he lotation when we need it

Now let’s create another class, GumballMonitor, that retrieves the machine’s
location, inventory of gumballs and the current machine state and prints them
in a nice little report:

public class GumballMonitor {

GumballMachine machine; P The monitor takes the machine in its
|

onstruttor and assigns it to the

public GumballMonitor (GumballMachine machine) { maCMhthqunccvawaH
iable.

this.machine = machine;

public void report() {
System.out.println (“Gumball Machine: “ + machine.getLocation());
System.out.println (“Current inventory: “ + machine.getCount () + “ gumballs”);
System.out.println (“Current state: “ + machine.getState());

Our report method ; £ pri
: . Jus Prmfsa
location, mnnfo‘r)’ and the machi::' Eo:‘:a‘xt '

you are here » 431

Download at WoweBook.Com

local gumball monitor

Testing the Monitor

We implemented that in no time. The CEO is going to be thrilled and amazed by our
development skills.

Now we just need to instantiate a GumballMonitor and give it a machine to monitor:

public class GumbaliMachinefestirive (Pass in a lotation and initial # of
ubli ic voi i i .
’ int count = 0; 7 ? (5umba||s on the tommand line.
if (args.length < 2) {
System.out.println (“GumballMachine <name> <inventory>"); Don){: ‘Fwﬂc{: to 5ivc
System.exit (1) ; the tonstruetor 3
} lotation and tount...
count = Integer.parselnt(args[l]);

GumballMachine gumballMachine = new GumballMachine (args([0], count);

GumballMonitor monitor = new GumballMonitor (gumballMachine) ;

AQ .and instantiate monitor and pass it 3

// rest of test code here ‘
mathine £o provide veport on-

monitor.report();
} File Edit Window Help FlyingFish

} When we need a veport on %java GumballMachineTestDrive Seattle 112

the ma(c)h'mc,{ :cdcall the Gumball Machine: Seattle
veport() method. Current Inventory: 112 gumballs
Current State: waiting for quarter

And here's the output!

The monitor output looks great,
but I guess T wasn't clear. I need to
monitor gumball machines REMOTELY!

In fact, we already have the networks

in place for monitoring. Come on guys,
you're supposed to be the Internet
generation!

432 Chapter 11

Download at WoweBook.Com

the proxy pattern

Don't worry guys, I've
been brushing up on my design
patterns. All we need is a remote
proxy and we'll be ready to go.

Well, that will teach us to gather
some requirements before we jump
in and code. T hope we don't have
to start over...

Joe: A remote what? Joe Frank

Frank: Remote proxy. Think about it: we've already got the monitor code written, right? We give the
GumballMonitor a reference to a machine and it gives us a report. The problem is that monitor runs
in the same JVM as the gumball machine and the CEO wants to sit at his desk and remotely monitor the
machines! So what if we left our GumballMonitor class as is, but handed it a proxy to a remote object?

Joe: I'm not sure I get it.
Jim: Me neither.

Frank: Let’s start at the beginning... a proxy is a stand in for a real object. In this case, the proxy acts
just like it is a Gumball Machine object, but behind the scenes it is communicating over the network to
talk to the real, remote GumballMachine.

Jim: So you’re saying we keep our code as it is, and we give the monitor a reference to a proxy version
of the GumballMachine...

Joe: And this proxy pretends it’s the real object, but it’s really just communicating over the net to the
real object.

Frank: Yeah, that’s pretty much the story.
Joe: It sounds like something that is easier said than done.

Frank: Perhaps, but I don’t think it’ll be that bad. We have to make sure that the gumball machine
can act as a service and accept requests over the network; we also need to give our monitor a way to get
a reference to a proxy object, but we’ve got some great tools already built into Java to help us. Let’s talk
a little more about remote proxies first...

you are here » 433

Download at WoweBook.Com

remote proxy

Therole of the ‘remote proxy’

A remote proxy acts as a local representative to a remote object. What’s a “remote
object?” It’s an object that lives in the heap of a different Java Virtual Machine
(or more generally, a remote object that is running in a different address space).
What’s a “local representative?” It’s an object that you can call local methods on
and have them forwarded on to the remote object.

CEO's desktop chends 40 Remote Gumball Mathine
&7 —L:c{;‘\,\:o:;lm‘;lc o\o:)cch with a Jum

li i buk it's “)us{: a sgand n . A)
Local Heap for the Real Thing: Remote Heap

Jr,hc é\m\ba“
\x::\tov is the L\'\.a:‘h
Jbieet; it Lhinks it's
’oa%k‘mg o the Real

\m\ba“ mathing, bu.
s veally)us{: {',a.\kmg
Lo the pro®ys whith
Lhen talks to {:\r\c~ - y
Real 5um\>a\\ mathine aome 2})
over the nebwork: cobe 1, -

Your client object acts like it's making remote method calls.
But what it’s rea]ly doing is calling methods on a heap-

loca] ‘proxy” object that hand]es all the low-leve] details of
network communication.

434 Chapter 11

Download at WoweBook.Com

the proxy pattern

This is a pretty slick idea. We're
going to write some code that takes a
method invocation, somehow transfers it over
the network and invokes the same method on a
remote object. Then I presume when the call is
complete, the result gets sent back over the
network to our client. But it seems to me
this code is going to be very
tricky to write.

Hold on now, we
aren't going to write that code
ourselves, it's pretty much built
into Java's remote invocation
functionality. All we have to do
is retrofit our code so that it
takes advantage of RMI.

- @ RALN
PQWEWR
Before going further, think about how you’d design a system to enable remote method invocation.

How would you make it easy on the developer so that she has to write as little code as possible?
How would you make the remote invocation look seamless?

—@?RA"«’
TaweEw

Should making remote calls be totally transparent? Is that a good idea? What might be a problem
with that approach?

Download at WoweBook.Com

435

RMI

Adding a remote proxy to the Gumball
Machine monitoring code

On paper this looks good, but how do we create a proxy that knows how to invoke a method on an
object that lives in another JVM?

Hmmm. Well, you can’t get a reference to something on another heap, right? In other words, you
can’t say:

Duck d = <object in another heap>

Whatever the variable d is referencing must be in the same heap space as the code running the
statement. So how do we approach this? Well, that’s where Java’s Remote Method Invocation

comes in... RMI gives us a way to find objects in a remote JVM and allows us to invoke their
methods.

You may have encountered RMI in Head First Java; if not, we’re going to take a slight detour and
come up to speed on RMI before adding the proxy support to the Gumball Machine code.

So, here’s what we’re going to do:

o First, we’re going to take the RMI

Detour and check RMI out. Even if

you are familiar with RMI, you might %ﬁ
want to follow along and check out the -

scenery. An RMI Detour

Q Then we’re going to take our >
GumballMachine and make it a remote
service that provides a set of methods
calls that can be invoked remotely.

If you're new to RMI,

take the detour that runs
over the next few pages:
otherwise, you might want to
just quickly thumb through

e Then, we going to create a proxy that can the detour as a review.

talk to a remote GumballMachine, again
using RMI, and put the monitoring system
back together so that the CEO can monitor
any number of remote machines.

436

Download at WoweBook.Com

the proxy pattern

Remote methods 101

Let’s say we want to design a system that allows us to call a local object that forwards each
request to a remote object. How would we design it? We’d need a couple of helper objects
that actually do the communicating for us. The helpers make it possible for the client to

act as though it’s calling a method on a local object (which in fact, it is). The client calls a
method on the client helper, as if the client helper were the actual service. The client helper
then takes care of forwarding that request for us.

In other words, the client object thinks it’s calling a method on the remote service, because
the client helper is pretending to be the service object. Pretending to be the thing with the
method the client wants to call.

But the client helper isn’t really the remote service. Although the client helper acts like it
(because it has the same method that the service is advertising), the client helper doesn’t
have any of the actual method logic the client is expecting. Instead, the client helper
contacts the server, transfers information about the method call (e.g., name of the method,
arguments, etc.), and waits for a return from the server.

On the server side, the service helper receives the request from the client helper (through

a Socket connection), unpacks the information about the call, and then invokes the real
method on the real service object. So, to the service object, the call is local. It’s coming from
the service helper, not a remote client.

The service helper gets the return value from the service, packs it up, and ships it back (over
a Socket’s output stream) to the client helper. The client helper unpacks the information
and returns the value to the client object.

This should look Lamiliar.-

Client helper \J.V‘c{',Cnds -
Lo be the servico w _
Client heap s ")\AS’c a provy for the Server heap “:'

Real Thing,

C\\Ch‘{', o\)\')cc{', Lhinks

s talking to the
Real Cevvite-

. \S
hinks the tlient . e 900 T ke
tc\vc‘r is the thing Service helper gets the T\:‘e ‘S{w\ Geevite: c;\:’ 4
{ha{—, tan ac’cua\\‘l This is 5°i“5 requcs‘l: ‘Fkom the tlient . C ok wi e o
do the veal work be ou helper, unpacks it, and o0)F hually do¢°
to be ealls the method on the {',\'\a*l .
proXy Real Sevvice. ved\ W

you are here » 437

Download at WoweBook.Com

remote method invocation

How the method call happens
@ Client object calls doBigThing() on the client helper object.

@Cliem heap Server hﬂzl‘L:—:" I

doBigThing()

Dient pae®

@ Client helper packages up information about the call
(arguments, method name, etc.) and ships it over the
network to the service helper.

Server heap |:l

Se/., ViCe o‘O\e’

S
2
Se’"Vice' R

Service helper unpacks the information from the client helper,
finds out which method to call (and on which object) and
invokes the real method on the real service object.

] Client heap Server hﬂl———‘l:'

doBigThing() L \

438 Chapter 11

Download at WoweBook.Com

RC"‘C"‘bCY’

< ob)ct’c with the REAL

Lhis is the

method logie- The one
’c\c\akodoes Ehe veal work!

the proxy pattern

@ The method is invoked on the service object, which returns An RMI Detour
some result to the service helper. @ -
Server heap
=R
result \

&

&
Ser- g ?/\Q .
Vice \N Se”Vl'ce o

Service helper packages up information returned from the
call and ships it back over the network to the client helper.

2L packaged up result

Server heap “:l
—E

Client helper unpackages the returned values and returns
them to the client object. To the client object, this was all

transparent.

@ Client heap

result

Trent he,\Qd

Tient o2

Server heap “:' I
—iE

you are here » 439

Download at WoweBook.Com

RMI: the picture

Java RMI, the Big Picture

Okay, you’ve got the gist of how remote methods work; There is one difference between RMI calls and local
now you just need to understand how to use RMI to (normal) method calls. Remember that even though to
enable remote method invocation. the client it looks like the method call is local, the client

helper sends the method call across the network. So
there is networking and 1/0. And what do we know
about networking and I/0 methods?

What RMI does for you is build the client and service
helper objects, right down to creating a client helper
object with the same methods as the remote service. The

nice thing about RMI is that you don’t have to write They’re risky! They can fail! And so, they throw

any of the networking or I70 code yourself. With your exceptions all over the place. As a result, the client does
client, you call remote methods (i.e., the ones the Real have to acknowledge the risk. We’ll see how in a few
Service has) just like normal method calls on objects pages.

running in the client’s own local JVM.

RMI also provides all the runtime infrastructure to make
it all work, including a lookup service that the client can
use to find and access the remote objects.

RMI Nomenclature: in RMI, the client helper is a ‘stub’ and the
service helper is a ‘skeleton’.

This is 9oing IL; |'

p— Lo att as owr
Client heap proxy! Server heap [EEEE

SKELETON

NCWCV' Versions

RS ok dant
require an explieit

skeleton ochc-l:)

ut something on

Now let’s go through all the steps needed to make an object into a the server sige
service that can accept remote calls and also the steps needed to is still handlin
allow a client to make remote calls. skeleton bchav?or

You might want to make sure your seat belt is fastened; there are
a lot of steps and a few bumps and curves - but nothing to be too
worried about.

440

Download at WoweBook.Com

the proxy pattern

Making the Remote service

This is an overview of the five steps for making the remote service. In other words, the An RMI Detour
steps needed to take an ordinary object and supercharge it so it can be called by a remote

client. We’ll be doing this later to our GumballMachine. For now, let’s get the steps down

and then we’ll explain each one in detail.

Step one:
Make a Remote Interface
The remote interface defines the methods that ank che
a client can call remotely. It’s what the client ~ MyServicejava

will use as the class type for your service. Both

the Stub and actual service will implement
this!

publo ntertaos
MyRemole sxiants

s sctignsen The Real Sevvice; the tlass
- « w'rl:h the methods that do
the veal work. [+ \mv\mﬂ\b

fhe vemote interrace:

Make a Remote Implementation

This is the class that does the Real Work. It
has the real implementation of the remote MyServicelmpl.java
methods defined in the remote interface.

It’s the object that the client wants to call

methods on (e.g., our GumballMachine!).

.S j{:s ol
Step three: Running ¥mic against the ac‘cua\/sv dazm fi i‘;’: new
Generate the stubs and skeletons using rmic sevvite implementation class.- helper cbijects
These are the client and server ‘helpers’. You File Edit Window Help Eat @P
don’t have to create these classes or ever look $rmic MyServiceImpl oo

at the source code that generates them. It’s all
handled automatically when you run the rmic

MyServicelmpl_Stub.class

tool that ships with your Java development kit. oo T
Step four: oor on
Start the RMI registry (rmiregistry) MyServicelmpl_Skel.class
The rmaregistry 1s like the white pages of a phone File Edit Window Help Drink
book. It’s where the client goes to get the proxy $rmiregistry

(the client stub/helper object). Run Lhis
F cha\«a‘kc

Lecmindl

Step five:

Start the remote service

You have to get the service object up and running. Your
service implementation class instantiates an instance . .
of the service and registers it with the RMI registry. %Jjava MyServiceImpl
Registering it makes the service available for clients.

File Edit Window Help BeMerry

you are here » 441

Download at WoweBook.Com

make a remote interface

Step one: make a Remote interface

(@) Extend java.rmi.Remote
Remote 1s a ‘marker’ interface, which means it has no methods. It has special
meaning for RMI, though, so you must follow this rule. Notice that we say
‘extends’ here. One interface is allowed to extend another interface.

. the
This tells s {:\\.a{ oo be vsed
inteckate is 9oy \
public interface MyRemote extends Remote { Lo supp ock vemote calls:
@ Declare that all methods throw a RemoteException
The remote interface is the one the client uses as the type for the service. In
other words, the client invokes methods on something that implements the
remote interface. That something is the stub, of course, and since the stub is
doing networking and I/0, all kinds of Bad Things can happen. The client
has to acknowledge the risks by handling or declaring the remote exceptions. If
the methods in an interface declare exceptions, any code calling methods on a
reference of that type (the interface type) must handle or declare the exceptions.
import java.rmi.*; &—p,.ote inkerfate is in java-rm!
public interface MyRemote extends Remote { [_\ EVcry remote method eall is
public String sayHello() throws RemoteException; (onsidered ‘risky’. Dcclaring
} RCMO‘ECEXCCP‘Eion on ever
method forces the tlient
to pay attention and

@ Be sure arguments and return values are primitives or Serializable tknowl
. o acknowledge that things
Arguments and return values of a remote method must be either primitive might not work.
or Serializable. Think about it. Any argument to a remote method has to
be packaged up and shipped across the network, and that’s done through

Serialization. Same thing with return values. If you use primitives, Strings, and Check out Head First
the majority of types in the API (including arrays and collections), you’ll be fine. Java if You need to
If you are passing around your own types, just be sure that you make your classes vefresh Your memory
implement Serializable. on Sevializable.

public String sayHello() throws RemoteException;

R This veturn value is gonna be shi
server back to the tlient, so it
how args and veturn values 9et

PPed over the wire from the
must be Serializable. That's
Packaged wp and sent.

442 Chapter 11

Download at WoweBook.Com

the proxy pattern

Step two: make a Remote implementation
(@ Implement the Remote interface An RMI Detour

Your service has to implement the remote interface—the one with
the methods your client is going to call.

public class MyRemoteImpl extends UnicastRemoteObject implements MyRemote {
public String sayHello() {

return “Server says, ‘Hey’'”; The ComFilcr will make sure that

} ou've implemented all £h
// more code in class z\rom the interface You 1:‘:]‘:::::5
} In this case, there’s only one.

(@ Extend UnicastRemoteObject

In order to work as a remote service object, your object needs some functionality
related to ‘being remote’. The simplest way is to extend UnicastRemoteObject
(from the java.rmi.server package) and let that class (your superclass) do the
work for you.

public class MyRemoteImpl extends UnicastRemoteObject implements MyRemote {

(® Write a no-arg constructor that declares a RemoteException

Your new superclass, UnicastRemoteObject, has one little problem—its
constructor throws a RemoteException. The only way to deal with this is to
declare a constructor for your remote implementation, just so that you have a
place to declare the RemoteException. Remember, when a class is instantiated,
its superclass constructor is always called. If your superclass constructor throws
an exception, you have no choice but to declare that your constructor also throws

an exception. l[\ o don't have to \m{: a,\\l{;h\ng n
just need 3
public MyRemoteImpl () throws RemoteException { } the C°"‘sj’w\c£or.{:\r\\{ar‘\{):w su?cvclass
ay to detlave .
\: o:\ISchc{;ov throws an c%tcv{\on.

@ Register the service with the RMI registry

Now that you’ve got a remote service, you have to make it available to remote
clients. You do this by instantiating it and putting it into the RMI registry (which
must be running or this line of code fails). When you register the implementation
object, the RMI system actually puts the stub in the registry, since that’s what the
client really needs. Register your service using the static rebind() method of the

java.rmi.Naming class. . s
| g \vite @ name (4hat tlients tan use

try { Give Your s¢ - Ley) and veoister it
MyRemote service = new MyRemoteImpl () ; 4o look it wp in dec V‘?)‘Svt;zh :u b\n?i khe
Naming.rebind (“RemoteHello”, service); with the RMI vegistry- {hc\lscwicc for the

: . rect, RM| swaps)
} catch(Exception ex) {...} U si\ru‘l\;ﬁ;““;b“);is the stub in the vc&ys{r\/.
S

443

Download at WoweBook.Com

stubs and skeletons

Step three: generate stubs and skeletons

(@ Run rmic on the remote implementation class
(not the remote interface)

The rmic tool, which comes with the Java software
development kit, takes a service implementation and
creates two new classes, the stub and the skeleton. It uses

a naming convention that is the name of your remote .) ﬁ/‘j/‘g 9enerates two
implementation, with either _Stub or _Skel added to Notice hat you don't say .tlass cher JSEFS for the
the end. There are other options with rmic, including on the end- Just the ctlass name- objects.

not generating skeletons, seeing what the source code m

for these classes looked like, and even using IIOP as File Edit Window Help Whuffie oo

001 01

the protocol. The way we’re doing it here is the way $rmic MyRemoteImpl
you’ll usually do it. The classes will land in the current
directory (i.e. whatever you did a cd to). Remember,

rmic must be able to see your implementation class, so

MyRemotelmpl_Stub.class

101101
10 110 1
0110

001 10
001 01

you’ll probably run rmic from the directory where your
remote implementation is located. (We’re deliberately
not using packages here, to make it simpler. In the Real
World, you’ll need to account for package directory

structures and fully-qualified names).

MyRemotelmpl_Skel.class

Step four: run rmiregistry

File Edit Window Help Huh?

(@ Bring up a terminal and start the rmiregistry.

Be sure you start it from a directory that has access to trmiregistry
your classes. The simplest way is to start it from your
‘classes’ directory.

Step five: start the service

(@ Bring up another terminal and start your service

File Edit Window Help Huh?
This might be from a main() method in your remote

implementation class, or from a separate launcher class.

In this simple example, we put the starter code in the
implementation class, in a main method that instantiates the
object and registers it with RMI registry.

%java MyRemoteImpl

444 Chapter 11

Download at WoweBook.Com

the proxy pattern

Complete code for the server side
An RMI Detour

The Remote interface:

Rcmo{:cE%Lc?{:ion and R.Cmo{:c
import java.rmi.*; \n{cr(:ace are in \')ava.vm vackagc. | {:
¥ Your interface MUST extend \')ava.rm.RCmo e

public interface MyRemote extends Remote ({

public String sayHello() throws RemoteException; All of your vemote methods must
} ~—__~ declare a RemoteExeeption.

The Remote service (the implementation):

e
. . . h
serer \’af' > Ew«{:c»ding Mn\Las‘hRC"“’{cob\)cc{; is the

biect:
(asiest way Lo make 3 vemote 0b)
e
public class MyRemoteImpl extends UnicastRemoteObject implements MyRemote {

import java.rmi.*;
import java.rmi.server.*;

public String sayHello() { £ You have {o implement all the You MUST implement
return “Server says, ‘Hey’”; interface methods, of course. But remote interfacell o
} notice that you do NOT have to “
detlare the RemoteExeeption.

public MyRemoteImpl () throws RemoteException { } Vour supertlass eons teuetor (for |
~— MnicastRcmo£c0b3c££) detlares an cucg{uon, so
‘/0[/(mus{: wvi‘l’,c a COns{',\ruL{:ov, betause rl: n(v_cans
that your tonstruttor is ealling visky code vts
ey super tonstruttor).

MyRemote service = new MyRemoteImpl () ; f‘\
Naming.rebind (“RemoteHello”, service);

} catch(Exception ex) { Make £h . .
ex.printStackTrace () ; \ V"niv'cgis-l;cc:;mu:it; f{)td{, {.}‘C" bif\dl it to the

public static void main (String[] args) {

he statie N,
| " . aming. .
| ::c z y,ou re.gns{;cr it under is the h';ﬂm‘f:t','i’i(zs T’;,‘
| o look it Up in the Rm| rcgis{:\ry- h

you are here » 445

Download at Wowe