Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

3/30/2018
xX=

1/69

https://www.learnenough.com/git-tutorial

https://www.learnenough.com/
javascript://
javascript://

3/30/2018
LEARN ENOUGH

Courses

The Rails Tutorial
The LE Story,
LogIn

Register

$9
Buy eBook

Also available: over an hour of instructional screencasts that walk you step by step through the tutorial

@ Mailing List W All Access Subscription
Follow author to receive email updates about new content
Your email address Follow Author

* Git

o 1 Getting started
= 1.1 Installation and setup
» 1.2 Initializing the repo
= 1.3 Our first commit
= 1.4 Viewing the diff
= 1.5 Adding an HTML tag
= 1.6 Adding HTML structure
= 1.7 Summary

o 2 Backing up and sharing
= 2.1 Signing up for GitHub
= 2.2 Remote repo
= 2.3 Adding a README
= 2.4 Summary,

o 3 Intermediate workflow

= 3.2 Ignoring files
= 3.3 Branching and merging
= 3.4 Recovering from errors
= 3.5 Summary,

o 4 Collaborating

= 4.2 Pulling and merge conflicts
= 4.3 Pushing branches
= 4.4 A surprise bonus
= 4.5 Summary,
o 5 Conclusion
o 6 Advanced setup
= 6.1 A checkout alias
= 6.2 Prompt branches and tab completion

X

The Learn Enough Society

https://www.learnenough.com/git-tutorial

Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

2/69

https://www.learnenough.com/
https://www.learnenough.com/courses
http://www.railstutorial.org/
https://www.learnenough.com/story
https://www.learnenough.com/login
https://www.learnenough.com/subscribe
https://www.learnenough.com/buy/191?option=ebooks
https://www.learnenough.com/git-tutorial
https://www.learnenough.com/subscribe
javascript://
javascript://

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

Learn to Tech

https://www learnenough.com/git-tutorial

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

Learning to be technically sophisticated is the most important skill of the 21st century. We hope to reach and inspire as many people as possible — and we want you to be
a part of it.

THE LEARN ENOUGH STORY
Get access to all tutorials and screencasts

Learn Enough Society members get access to all the published tutorials, all screencasts, and immediate access to new tutorials (including the full Rails 5 edition of the
Rails Tutorial).

JOIN THE SOCIETY NOW

Join the Learn Enough Society today to get access to all tutorials and screencasts (including the Rails 5 edition of the Rails Tutorial)

MICHAEL HARTL

Learn Enough Git to Be Dangerous Michael Hartl

An Introduction to Version Control with Git

$19 - Buy eBook

Learn Enough Git to Be Dangerous

An introduction to version control with Git

Michael Hartl

Contents

o 1 Getting started

1.1 Installation and setup

1.2 Initializing the repo

1.3 Our first commit

1.4 Viewing the diff

1.5 Adding an HTML tag

1.6 Adding HTML structure
o 1.7 Summary

e 2 Backing up and sharing

. o 2.1 Signing up for GitHub
o 2.2 Remote repo
o 2.3 Adding a README
o 2.4 Summary

o 3 Intermediate workflow

. o 3.1 Commit, push, repeat
o 3.2 Ignoring files
o 3.3 Branching and merging
o 3.4 Recovering from errors
o 3.5 Summary

e 4 Collaborating

.
o

0 0 0 0 ©°

o 4.2 Pulling and merge conflicts
o 4.3 Pushing branches
o 4.4 A surprise bonus

https://www.learnenough.com/git-tutorial 4/69

https://www.learnenough.com/story
https://www.learnenough.com/subscriptions/new
https://www.learnenough.com/subscriptions/new
https://www.learnenough.com/git-tutorial
https://www.learnenough.com/buy/191

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

o 4.5 Summary
* 5 Conclusion
e 6 Advanced setup
. o 6.1 A checkout alias
o 6.2 Prompt branches and tab completion

Learn Enough Git to Be Dangerous is the final installment in a trilogy of tutorials on developer fundamentals designed to teach three skills essential for software
developers and those who work with them. Its only prerequisites are the first two tutorials in the trilogy, Learn Enough Command Line to Be Dangerous (covering the
Unix command line) and Learn Enough Text Editor to Be Dangerous (covering text editors). This tutorial covers a third essential skill: version control. As with its two
predecessors, Learn Enough Git to Be Dangerous doesn’t even assume you’re familiar with the category of application, so if you’re unsure about what “version control”
is, you’re in the right place. Even if you are already familiar with the subject, it’s likely you’ll still learn a lot from this tutorial. Either way, learning the material in Learn
Enough Git to Be Dangerous prepares you for the other Learn Enough tutorials while enabling an astonishing variety of applications—including a special surprise bonus at
the end (Box 1).

Note: To get the most out of this tutorial, join the Learn Enough Society, a subscription service from Learn Enough to Be Dangerous that includes integrated progress
tracking, exercise answers, live chat, and streaming videos. See learnenough.com/story for more information.

Box 1. Real artists ship

As legendary Apple cofounder Steve Jobs once said: Real artists ship. What he meant was that, as tempting as it is to privately polish in perpetuity, makers must ship their
work—that is, actually finish it and get it out into the world. This can be scary, because shipping means exposing your work not only to fans but also to critics. “What if
people don’t like what I've made?” Real artists ship.

It’s important to understand that shipping is a separate skill from making. Many makers get good at making things but never learn to ship. To keep this from happening to
us, starting in Learn Enough Git to Be Dangerous we’re going to ship at least one thing in every Learn Enough tutorial. In fact, in this tutorial we’ll actually ship two
things—a public Git repository and a surprise bonus that will give you bragging rights with all of your friends.

Version control solves a problem that might look familiar if you’ve ever seen Word documents or Excel spreadsheets with names like Report_2014_1.doc,
Report_2014_2.doc, Report_2014_3.doc, Of annual-budget-v17.x1s. These cumbersome names indicate how annoying it can be to track different versions of
documents. Nowadays, applications like Word do sometimes offer built-in version tracking, but such features are tightly coupled to the underlying application and aren’t
useful for any other document types. Many technical applications (including most websites and programming projects) require a general solution to the problem of
versions.

A version control system (or VCS) provides an automatic way to track changes in software projects, giving creators the power to view previous versions of files and
directories, develop speculative features without disrupting the main development, securely back up the project and its history, and collaborate easily and conveniently
with others. In addition, using version control also makes deploying production websites and web applications much easier. As a result, fluency in at least one version

control system is an essential component of technical sophistication (Box 2)d This applies especially to the version control system covered in this tutorial, called Git.

Box 2. Technical sophistication

A principal theme of the Learn Enough tutorials is the development of technical sophistication, the combination of hard and soft skills that make it seem like you can
magically solve any technical problem (Figure 1). Learn Enough Git to Be Dangerous is important for developing these skills because being able to use at least one
modern version control system is an essential component of technical sophistication.

In the context of Git, technical sophistication includes several things. Many Git commands print various details to the terminal screen; technical sophistication lets you
figure out which ones to pay attention to and which to ignore. There are also many Git-related resources on the web, which among other things means that Google searches
are often useful for figuring out the exact command you need at a particular time. Technical sophistication lets you figure out the best search terms for finding the answer
you’re looking for; e.g., if you need to delete a remote branch (Section 4.3.1), Googling for “git delete remote branch” is a good bet to turn up something useful. Finally,
repository hosting sites like GitHub and Bitbucket typically include commands to help guide you through various setup tasks, and technical sophistication gives you the
confidence to follow the steps even if you don’t understand every detail.

One helpful command for learning Git is git help, which by itself gives general guidelines on Git usage, and when applied to a specific command gives further
information on that command. For example, git help add shows details about the git add command. The output of git help is similar to the man pages covered in
Learn Enough Command Line to Be Dangerous: full of useful but often obscure information. As always, use your technical sophistication to help make sense of it.

https://www.learnenough.com/git-tutorial 5/69

http://learnenough.com/command-line-tutorial
http://learnenough.com/text-editor-tutorial
http://learnenough.com/
http://learnenough.com/story
http://learnenough.com/story
https://en.wikipedia.org/wiki/Version_control
http://learnenough.com/
http://github.com/
http://bitbucket.org/
https://www.learnenough.com/command-line-tutorial#sec-man_pages
http://learnenough.com/command-line-tutorial

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

DEAR VARIOUS PARENTS, GRANDPARENTS, CO-WORKERS,
AND OTHER ‘NOT COMPUTER PEORLE."

WE DON'T MAGICALLY KNOW HOW TO DO EVERYTHING IN EVERY
PROGRAM. WHEN WE HELP YOU, WE'RE USUALLY JUST DOING THIS:

FIND A
MENU ITEM OR
BUTTON WHICH LOOKS
RE\ATED TO WHAT
YoU WANT TO

T\E TRIED
THEM ALL.

y

GOOGLE THE NAME
OF THE PROGRAM

You BEEN PLS A FEW WORDS
TRYING THIS FOR RELATED To WHAT You
OVER HALF AN WANT TO DO, FOLLOW

ANY INSTRUCTIONS.

PLEASE PRINT THIS FLOWCHART OUT AND TAPE IT NEAR YOUR SCREEN.
CONGRATULATIONS; YOU'RE NOW THE LOCAL COMPUTER EXPERT!

Figure 1: “Tech Support Cheat Sheet” (via xked).

Version control has evolved considerably over the years. The family line leading to Git includes programs called RCS, CVS, and Subversion, and there are many current
alternatives as well, including Perforce, Bazaar, and Mercurial. I mention these examples not because you need to know what they are, but only to show what a
bewildering variety there is. What’s worse, when you choose a version control system, you really commit to it.2 and it is often difficult to switch from one to another.
Happily, in the last few years an undisputed winner has emerged in the open-source VCS wars: Git. This victory is the main reason this tutorial is called Learn Enough Git
to Be Dangerous rather than Learn Enough Version Control to Be Dangerous. Nevertheless, many of the ideas here are quite general, and if by some chance you need to
use a different VCS, this tutorial will still provide a useful introduction to the subject.

Originally developed by Linux creator Linus Torvalds? to host the Linux kernel, Git is a command-line program that is designed in the Unix tradition (which is why a
familiarity with the Unix command line is an important prerequisite). Git has a combination of power, speed, and community adoption that leave it few rivals, but it can be
tricky to learn, and other Git tutorials have a tendency to introduce lots of heavy theory, which can be interesting to learn but in practice is really only understood by a tiny
handful of Git users (Figure 2 and Figure 3)2 The good news is that the set of Git commands needed to be productive is relatively small; there are some pointers to more
advanced and theory-oriented resources listed in Section 5, but in this tutorial we focus on the essential commands needed to be dangerous.

https://www.learnenough.com/git-tutorial 6/69

https://m.xkcd.com/627/
http://xkcd.com/
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Kernel_(operating_system)
http://www.catb.org/esr/writings/taoup/html/
http://learnenough.com/command-line-tutorial

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

THIS IS GIT. IT TRACKS COLLABORATIVE. LIORK
ON PROJECTS THROUGH A BEAUTIFUL
DISTRIBUTED GRAPH THEORY TREE. MODEL.

CooL. HOU DO WEDSE IT?

NO IDEA. JUST MEMORIZE. THESE SHELL
COMMANDS AND TYPE THEM TO SYNC DR
IF YOU GET ERRORS, SAVE YOUR LIORK
ELSEWHERE, DELETE THE PROJECT,
AND DOWNLDAD A FRESH COPY.

Ao

Figure 2: “Git” via the webcomic xkcd. See also the title text (Figure 3).

If that doesn't fix it, git.txt contains the phone number of a friend of mine who understands git. Just wait through a few minutes of “It’s really pretty simple, just
think of branches as...” and eventually you’ll learn the commands that will fix everything.

Figure 3: The title text from Figure 2.

1 Getting started

The most common way to use Git is via a command-line program called git, which lets us transform an ordinary Unix directory into a repository (or repo for short) that

enables us to track changes to our project.i In this section, we’ll begin by installing Git (if necessary) and doing some one-time configuration. To see how Git works and
what benefits it brings, it helps to have a concrete application in mind, so we’ll be tracking changes in a simple project consisting of a small website.

For reference, important commands from this section are summarized in Table 1.
1.1 Installation and setup

Before doing anything else, we first need to verify that Git is installed on the present system. As a reminder, we’re working in the Unix tradition, so it is strongly
recommended that you use macOS or Linux (possibly via a virtual machine (Box 3)).

Box 3. Using Unix

This tutorial, as with the others in the Learn Enough to Be Dangerous series, assumes you have access to a computer running some variant of Unix. If you already run
macOS or Linux, you’re good to go, but if you’re on Windows you should install a Linux Virtual Machine as described below:

1. Install the right version of VirtualBox for your system (free).

2. Download the Learn Enough Virtual Machine (large file).

3. Once the download is complete, double-click the resulting “OVA?” file and follow the instructions to install the Virtual Machine (VM).
4. Double-click the VM itself and log in using the default user’s password, which is “foobar!”.

The result will be a Linux desktop environment (including a command-line terminal program, text editor, and Git) pre-configured for this tutorial.

In the longer run, I recommend switching to a Mac as soon as possible. (Warning: This might start a holy war.) You might have to save up a bit, as Macs are generally
more expensive than Windows machines, but in most cases the increased productivity will quickly pay for the difference. (If you find yourself liking Linux, feel free to
stick with it, but Macs are generally easier to use with a better user interface. Plus, you can always run Linux inside a VM, even on a Mac.)

The easiest way to check for Git is to start a terminal window and use which® at the command line to see if the git executable is already present:

$ which git
/usr/local/bin/git

If the result is empty or if it says the command is not found, it means you have to install Git manually. To do this, follow the instructions at “Getting Started — Installing
Git” in the official Git documentation. (This will likely give you an opportunity to apply some technical sophistication (Box 2).)

After installing Git but before starting a project, we need to perform a couple of one-time setup steps, as shown in Listing 1. These are global setups, meaning you only
have to do them once per computer. (Don’t worry about the meaning or structure of these commands at this stage.)

Listing 1: One-time global configuration settings.

$ git config --global user.name "Your Name"
$ git config --global user.email your.email@example.com

These configuration settings allow Git to identify your changes by name and email address, which is especially helpful when collaborating with others (Section 4). Note
that the name and email you use in Listing 1 will be viewable in any projects you make public, so don’t expose any information you’d rather keep private.

https://www.learnenough.com/git-tutorial 7/69

https://m.xkcd.com/1597/
http://xkcd.com/
http://www.explainxkcd.com/wiki/index.php/title_text
http://www.explainxkcd.com/wiki/index.php/title_text
http://learnenough.com/
https://www.virtualbox.org/
https://softcover-static.s3.amazonaws.com/LearnEnough-v.1.4.ova
http://www.learnenough.com/text-editor-tutorial#aside-holy_wars
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

In addition to this required configuration, Learn Enough Git to Be Dangerous includes some optional advanced setup (Section 6) that I recommend you complete at some
point. If you already have some familiarity with Git, or if you’re an experienced user of the Unix command line, I recommend completing the steps in Section 6 at this
time, but otherwise I recommend deferring the advanced setup until later.

Exercises

Solutions to exercises are available for free at learnenough.com/solutions with any Learn Enough purchase. To see other people’s answers and to record your own, join the
Learn Enough Society, at learnenough.com/society.

1.Run git help at the command line. What is the first command listed?

2. There’s a chance that the full output of git help was too big to fit in your terminal, with most of it just scrolling by. What’s the command to let us navigate the
output of git help interactively? (On some systems, you can use the mouse to scroll back in the terminal window, but it’s unwise to rely on this fact.) Hint: Pipe the
output to less.

3. Git stores global configuration settings in a hidden text file located in your home directory. By inspecting the file ~/.gitconfig with a tool of your choice (cat,
less, a text editor, etc.), confirm that the configuration set up by Listing 1 corresponds to simple text entries in this file.

1.2 Initializing the repo

Now it’s time to start creating a project and put it under version control with Git. We’ll be making a simple website consisting of two pages, a Home page and an About
page.Z We’ll begin by making a directory with the generic name website inside a directory called repos:

[~]1$ mkdir -p repos/website

Here we’ve used the “make directory” command mkdir covered in Learn Enough Command Line to Be Dangerous, together with the -p option, which arranges for mkdir
to create intermediate directories as required (in this case, repos). Note also that I've included the current directory in the prompt (in this case, [~]) as arranged by the
configuration in Listing 32.

After making the directory, we can cd into it as follows:

[~]1$ cd repos/website/
[website]$

(Recall that you can use tab completion when changing directories, so in real life I would probably type something like cd re-nw—.)

Even though the website directory is empty, we can already convert it to a repository, which you can think of as a sort of enhanced Unix directory with the additional
ability to track changes to every file and subdirectory. The way to create a new repository with Git is with the init command (short for “initialize”), which creates a
special hidden directory where Git stores the information it needs to track our project’s changes.

All Git commands consist of the command-line program git followed by the name of the command, so the full command to initialize a repository is git init,as shown
in Listing 2.
Listing 2: Initializing a Git repository.

[website]$ git init
Initialized empty Git repository in /Users/mhartl/repos/website/.git/
[website (master)]$

The prompt shown in Listing 2 reflects both the Bash customization from Learn Enough Text Editor to Be Dangerous and the advanced setup in Section 6.2, so your
prompt may differ. In particular, it shows the name of the default Git branch, called master. Don’t worry about what this means now; we’ll discuss branches starting in
Section 3.3.

Exercises

Solutions to exercises are available for free at learnenough.com/solutions with any Learn Enough purchase. To see other people’s answers and to record your own, join the
Learn Enough Society at learnenough.com/society.

1. By running 1s -a (discussed in Learn Enough Command Line to Be Dangerous), list all the files and directories in your website directory. What is the name of the
hidden directory used by the Git repository? (There is one such hidden directory per project.)

2. Using the result of the previous exercise, run 1s on the hidden directory and guess the name of the main Git configuration file. Use cat to dump its contents to the
screen.

1.3 Our first commit

Git won’t let us complete the initialization of the repository while it’s empty, so we need to make a change to the current directory. We’ll make a more substantive change
in a moment, but for now we’ll follow a common convention and simply use touch to create an empty file (as mentioned in Learn Enough Command Line to Be
Dangerous). In this case, we’re making a simple website, and the near-universal convention is to call the main page index.html:

[website (master)]$ touch index.html
Having created this first file, we can use the git status command to see the result:

[website (master)]$ git status
On branch master

Initial commit

Untracked files:
(use "git add <file>...

to include in what will be committed)
index.html

nothing added to commit but untracked files present (use "git add" to track)

We see here that the index.htm1 file is “untracked”, which means Git doesn’t yet know about it. We can add it using the git add command:

https://www.learnenough.com/git-tutorial 8/69

http://www.learnenough.com/solutions
http://learnenough.com/society
http://learnenough.com/society
https://www.learnenough.com/command-line-tutorial#sec-wordcount_and_pipes
https://www.learnenough.com/command-line-tutorial#sec-less_is_more
https://www.learnenough.com/command-line-tutorial#sec-making_directories
http://learnenough.com/command-line-tutorial
https://www.learnenough.com/command-line-tutorial#aside-tab_completion
https://www.learnenough.com/text-editor-tutorial#code-customize_prompt
http://learnenough.com/text-editor-tutorial
http://www.learnenough.com/solutions
http://learnenough.com/society
http://learnenough.com/society
https://www.learnenough.com/command-line-tutorial#sec-listing
http://learnenough.com/command-line-tutorial
https://www.learnenough.com/command-line-tutorial#code-ls_no_such
http://learnenough.com/command-line-tutorial
https://en.wikipedia.org/wiki/Webserver_directory_index

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous
[website (master)]$ git add -A
Here the -a option tells Git to add all untracked files, even though in this case there’s only one. In my experience, 99% of the time you add files you’ll want to add them

all, so this is a good habit to cultivate, and learning how to add individual files is left as an exercise (Section 1.3.1). (By the way, the equivalent command git add .,
where the dot refers to the current directory, is also common.)

We can see the result of git add -A by running git status again:

[website (master)]$ git status
On branch master

Initial commit

Changes to be committed:
(use "git rm --cached <file>...

to unstage)
new file: index.html

As implied by the word “unstage”, the status of the file has been promoted from untracked to staged, which means the file is ready to be added to the repository.
Untracked/unstaged and staged are two of the four states commonly used by Git, as shown in Figure 4. (Technically, untracked and unstaged are different states, but the
distinction is rarely important because git add tracks and stages files at the same time.)

UNTRACKED git add

UNSTAGED | ST

Figure 4: The main Git status sequence for a changing file.

As shown in Figure 4, after putting changes in the staging area we can make them part of the local repository by committing them using git commit.(We’ll cover the final
step from Figure 4, git push, in Section 2.3.) Most uses of git commit use the command-line option -m to include a message indicating the purpose of the commit
(Box 4). In this case, the purpose is to initialize the new repository, which we can indicate as follows:

[website (master)]$ git commit -m "Initialize repository"
[master (root-commit) 879392a] Initialize repository

1 file changed, 0 insertions(+), 0 deletions(-)

create mode 100644 index.html

(I’ve shown my output here for completeness, but your details will vary.)
Box 4. Committing to Git

By design, Git requires every commit to include a commit message describing the purpose of the commit. Typically, this takes the form of a single line, usually limited to
around 72 characters, with an optional longer message if desired (Section 4.2.3). Although conventions for commit messages vary (Figure 5) 8 the style adopted in this
tutorial is to write commit messages in the present tense using the imperative mood, as in “Initialize repository” rather than “Initializes repository” or “Initialized
repository”. The reason for this convention is that Git models commits as a series of text transformations, and in this context it makes sense to describe what each commit
does instead of what it did. Moreover, this usage agrees with the convention followed by the commit messages generated by Git commands themselves (e.g., “merge”
rather than “merges” or “merged”). For more information, see the GitHub article “Shiny new commit styles”.

https://www.learnenough.com/git-tutorial 9/69

https://www.learnenough.com/command-line-tutorial#sec-navigating_directories
http://en.wikipedia.org/wiki/Imperative_mood
https://github.com/blog/926-shiny-new-commit-styles

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous
DATE

COMMENT
CREATED MAIN LOOP & TIMING CONTROL.
ENABLED CONFIG FILE PARSING
MISC BUGFIXES
CODE ADDITIONS/EDITS
MORE. CODE
HERE HANE CODE.
ARAPAAAA
ADKFTSLKDFTSOKLFT
MY HANDS ARE T¥PING LJORDS
HARRAARAAANDS

AS A PROJECT DRAGS ON, MY GIT COMMIT
MESSAGES GET LESS AND LESS INFORMATIVE.

Figure 5: “Git Commit” via xked.

At this point, we can use git log to see a record of our commit:
[website (master)]$ git log

commit 879392a6bd8dd505£21876869de99d73£40299¢cc
Author: Michael Hartl <michael@michaelhartl.com>
Date: Thu Dec 17 20:00:34 2015 -0800

Initialize repository

The commit is identified by a hash, which is a unique string of letters and numbers that Git uses to label the commit and which lets Git retrieve the commit’s changes. In
my case, the hash appears as

879392a6bd8dd505£21876869de99d73£40299cc

but since each hash is unique your result will differ. The hash is often referred to as a “SHA” (pronounced shah) because of the acronym for the Secure Hash Algorithm
used to generate it. We’ll put these SHAS to use in Section 3.4, and several more advanced Git operations require them as well.

Exercises

Solutions to exercises are available for free at learnenough.com/solutions with any Learn Enough purchase. To see other people’s answers and to record your own, join the
Learn Enough Society at learnenough.com/society.

1. Using the touch command, create empty files called foo and bar in your repository directory.

2.By using git add foo, add foo to the staging area. Confirm with git status that it worked.

3.Using git commit -mand an appropriate message, add foo to the repository.

4.By using git add bar, add bar to staging area. Confirm with git status that it worked.

5.Now run git commit without the -m option. Use your Vim knowledge to add the message “Add bar”, save, and quit.
6. Using git log, confirm that the commits made in the previous exercises worked correctly.

1.4 Viewing the diff

It’s often useful to be able to view the changes represented by a potential commit before making it. To see how this works, let’s add a little bit of content to index.html by
redirecting the output of echo to make a “hello, world” page:

[website (master)]$ echo "hello, world" > index.html

Recall from Learn Enough Command Line to Be Dangerous that the Unix diff utility lets us compare two files foo and bar by typing
[website (master)]$ diff foo bar

Git has a similar function, git diff, which by default just shows the difference between the last commit and unstaged changes in the current project:
[website (master)]$ git diff

diff --git a/index.html b/index.html

index e69de29..4b5fa63 100644

--- a/index.html

+++ b/index.html

@e -0,0 +1 ee

+hello, world

Because the content added in Section 1.3 was empty, here the diff appears simply as an addition:

+hello, world

We can commit this change by passing the -a option (for “all”) to git commit, which arranges to commit all the changes in currently existing files (Listing 3).

Listing 3: Committing changes to all modified files.
[website (master)]$ git commit -a -m "Add content to index.html"

[master 03aff34] Add content to index.html
1 file changed, 1 insertion(+)

Note that the -a option includes changes only to files already added to the repository, so when there are new files it’s important to run git add -a as in Section 1.3 to
make sure they’re added properly. It’s easy to get in the habit of running git commit -a and forget to add new files explicitly; learning how to deal with this situation is
left as an exercise (Section 1.4.1).

Having added and committed the changes, there’s now no diff:

[website (master)]$ git diff
[website (master)]$

https://www.learnenough.com/git-tutorial 10/69

https://m.xkcd.com/1296/
http://xkcd.com/
https://en.wikipedia.org/wiki/SHA-1
http://www.learnenough.com/solutions
http://learnenough.com/society
http://learnenough.com/society
http://www.learnenough.com/text-editor-tutorial#sec-vim
https://www.learnenough.com/command-line-tutorial#sec-redirecting_and_appending
https://www.learnenough.com/command-line-tutorial#sec-redirecting_and_appending
http://learnenough.com/command-line-tutorial

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

(In fact, simply adding the changes is sufficient; running git add -a would also lead to there being no diff. To see the difference between staged changes and the previous
version of the repo, use git diff --staged.)

We can confirm that the change went through by running git log:
[website (master)]$ git log
commit 03aff34ec4f9690228e057a4252bccal69a868b4d
Author: Michael Hartl <michael@michaelhartl.com>
Date: Thu Dec 17 20:03:33 2015 -0800
Add content to index.html
commit 879392a6bd8dd505£21876869de99d73£40299cc
Author: Michael Hartl <michael@michaelhartl.com>

Date: Thu Dec 17 20:00:34 2015 -0800

Initialize repository
Exercises

Solutions to exercises are available for free at learnenough.com/solutions with any Learn Enough purchase. To see other people’s answers and to record your own, join the
Learn Enough Society, at learnenough.com/society.

1. Use touch to create an empty file called baz. What happens if you run git commit -am "Add baz"?

2. Add baz to the staging area using git add -a,then commit with the message "Add bazz".

3. Realizing there’s a typo in your commit message, change bazz to baz using git commit --amend.

4.Run git log to get the SHA of the last commit, then view the diff using git show <SHA> to verify that the message was amended properly.

1.5 Adding an HTML tag

We’ve now seen all of the major elements involved in the simplest Git workflow, so in this section and the next we’ll review what we’ve done and see how everything fits
together. We’ll err on the side of making more frequent commits, representing relatively modest changes, but this isn’t necessarily how you should work in real life
(Box 5). Still, it’s an excellent foundation, and it will give you a solid base on which to build your own workflow and development practices.

Box 5. Commitment issues

One common issue when learning Git involves figuring out when to make a commit. Unfortunately, there’s no simple answer, and real-life usage varies considerably
(Figure 5). My best advice is to make a commit whenever you’ve reached a natural stopping point, or when you’ve made enough changes that you’re starting to worry
about losing them. In practice, this can lead to inconsistent results, and it’s common to work for a while and make a large commit and then make a minor unrelated change
with a small commit. This mismatch between commit sizes can seem a little weird, but it’s a difficult situation to avoid.

Many teams (including most open-source projects) have their own conventions for commits, including the practice of squashing commits to combine them all into one
commit for convenience. (Per Box 2, this is exactly the kind of thing you can learn about by Googling for it.) In these circumstances, I recommend following the
conventions adopted by the project in question.

More than anything, don’t worry about it too much. Figure 5 is a only a slight exaggeration, and in any case deciding when to commit is the kind of thing that you’ll
invariably get better at with time and experience.

As in previous sections, we’ll be working on the main index.html file. Let’s start by opening this file in both a text editor and in a web browser. My preferred method for
doing this is at the command line using the atom and open commands (though the latter works only on macOS):

[website (master)]$ atom index.html
[website (master)]$ open index.html

If you’re not on a Mac (or even if you are), you can open the directory using a graphical file browser and double-clicking the file to open it in the default browser
(Figure 6). However you open the file, the results should appear approximately as shown in Figure 7 and Figure 8.

https://www.learnenough.com/git-tutorial 11/69

http://www.learnenough.com/solutions
http://learnenough.com/society
http://learnenough.com/society
http://lmgtfy.com/?q=git+squash+commits

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

[oW] "] website

indes.html

Name ~ Date Modified Size Kind

B index.html Today, 5:55 PM 13bytes HTML

& Macintosh HD s [&] Users » 7 mhartl » repos » website » & index.htmil

Figure 6: Viewing index.html in a filesystem browser.

[NoN) ¢ index.html - /Users/mhartl/repos/website - Atom

index. html

hello, world

LF UTF-8 HTML

https://www.learnenough.com/git-tutorial

12/69

3/30/2018

Figure 7: The initial HTML file opened in Atom.

hello, world

< il

Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

file:ffjUsers/mhartl/repos/website/index.ntml

Figure 8: The initial HTML file viewed in a web browser.

At this point, we’re ready to make a change, which is to promote “hello, world” from ordinary text to a top-level (Level 1) heading. In HTML, the language of the World
Wide Web, the way to do this is with a tag—in this case, the Level 1 header tag h1. Most browsers set h1 tags in a large font, so the text hello, world should look bigger
when we’re done. To make the change, replace the current contents of index.html with the contents shown in Listing 4. (In this and all other examples of editing text,
you’ll learn more if you type in everything by hand instead of copying and pasting.)

Listing 4: A top-level heading.

<hl>hello, world</hl>

Listing 4 shows the basic structure used by most HTML tags. First, there’s an opening tag that looks like <h1>, where the angle brackets < and > surround the tag name (in
this case, h1). After the content, there’s a closing tag that’s the same as the opening tag, except with an extra slash after the opening angle bracket: </h1>. (Note that, as
with addresses on the World Wide Web, this is a slash, not a backslash (Figure 9) .2)

.

g Q

AND FORMOREON | | T'M NoT ACTLALLY WHAT? WHY? WHICH 187

THE SOMMT, WETURN | | ADOCTORORATRADE | | /) TO SHARE AMESSACE| | | every TiME You SAY
TO TRADE EXPERT | | EXPERT. I JuST A WITH NEWSCASTERS. PBACKELPGH® AS PART
DR, STEEN BEREE. | | PROGRAMMER WHOLIES) OF A WEB ADDRESS ON
STEVEN? O GET ON NEWS SHOWS. AR, I DIE ALITIE.

P Q

Figure 9: “Trade expert” opines on slash vs. backslash.

Upon refreshing the web browser, the index page should appear something like Figure 10. As promised, the font size of the text for the top-level heading is bigger (and

bolder, too).

https://www.learnenough.com/git-tutorial

13/69

https://m.xkcd.com/727/

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

90O < 0 file://{Users/mhartl/repos/website/index.html &] 2 [

hello, world

Figure 10: The result of adding an h1 tag.

As before, we’ll run git status and git diff to learn more about what we’re going to commit to Git, though with experience you’ll come to run these commands only
when necessary. The status simply indicates that index.html has been modified:

[website (master)]$ git status
On branch master
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified: index.html
no changes added to commit (use "git add" and/or "git commit -a")
Meanwhile, the diff shows that one line has been deleted (indicated with -) and another added (indicated with +):

[website (master)]$ git diff

diff --git a/index.html b/index.html
index 4b5fa63..45d754a 100644

--- a/index.html

+++ b/index.html

ee -1 +1 ee

-hello, world

+<hl>hello, world</hl>

As with the Unix diff utility, modified sections of code or markup are shown as close to each other as possible so that it’s clear at a glance what changed.m

At this point, we’re ready to commit our changes. In Listing 3 we used both the -a and -m options to commit all pending changes while adding a commit message, but in
fact the two can be combined as -am (Listing 5).

Listing 5: Committing with -am.
[website (master)]$ git commit -am "Add an hl tag"

https://www.learnenough.com/git-tutorial 14/69

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

Using the -am combination as in Listing 5 is common in idiomatic Git usage.
Exercises

Solutions to exercises are available for free at learnenough.com/solutions with any Learn Enough purchase. To see other people’s answers and to record your own, join the
Learn Enough Society at learnenough.com/society.

1. The git log command shows only the commit messages, which makes for a compact display but isn’t particularly detailed. Verify by running git log -p that the
-p option shows the full diffs represented by each commit.

2. Under the h1 tag in Listing 4, use the p tag to add a paragraph consisting of the line “Call me Ishmael.” The result should appear as in Figure 11. (Don’t worry if
you get stuck; we’ll incorporate the answer to this exercise in Section 1.6 (Listing 6).)

[] ® <] file:///Users/mhart|/repos/website/index.html & t el +

hello, world

Call me Ishmael.

Figure 11: The result of adding a short paragraph.

1.6 Adding HTML structure

Although the web browser correctly rendered the h1 tag in Figure 10, properly formatted HTML pages have more structure than just bare h1 or p tags. In particular, each
page should have an html tag consisting of a head and a body (identified with head and body tags, respectively), as well as a “doctype” identifying the document type,
which in this case is a particular version of HTML called HTMLS. (Don’t worry about these details now; we’ll cover them in more depth in Learn Enough HTML to Be
Dangerous.)

Applying these general considerations to index.html leads to the full HTML structure shown in Listing 6. This includes the h1 tag from Listing 4 and the paragraph tag
from Figure 11. (The title tag, included inside the head tag, is empty, but in general every page should have a title, and adding one for index.html is left as an exercise
(Section 1.6.1).)

Listing 6: The HTML page with added structure.

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <title></title>
5 </head>

6 <body>

https://www.learnenough.com/git-tutorial 15/69

http://www.learnenough.com/solutions
http://learnenough.com/society
http://learnenough.com/society
http://learnenough.com/html-tutorial

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

7 <hl>hello, world</hl>

8 <p>Call me Ishmael.</p>
9 </body>

10 </html>

Because this is a lot more content than our previous iteration (Listing 4), it’s a good idea to go through it line by line:

. The document type declaration

. Opening html tag

. Opening head tag

. Opening and closing title tags

. Closing head tag

. Opening body tag

. Top-level heading

. Paragraph from the exercises (Section 1.5.1)
. Closing body tag

. Closing html tag

SOOI WNBAWN—

—_

As usual, we can see the changes represented by our addition using git diff (Listing 7).

Listing 7: The diff for adding HTML structure.

[website (master)]$ git diff
diff --git a/index.html b/index.html
index 4b5fa63..afcd202 100644
--- a/index.html
+++ b/index.html
@e -1 +1,10 ee
-<hl>hello, world</hl>
+<!DOCTYPE html>
+<html>
<head>
<title></title>
</head>
<body>
<hl>hello, world</hl>
<p>Call me Ishmael.</p>
</body>
+</html>

+ 4+ + o+ o+ o+

Despite the extensive diffs in Listing 7, there are hardly any user-visible differences (Figure 12); the only change from Figure 11 is a small amount of space above the top-
level heading. The structure is much better, though, and brings our page nearly into compliance with the HTMLS standard. (It’s not quite valid because a nonblank page
title is required; fixing this issue is left as an exercise (Section 1.6.1).)

https://www.learnenough.com/git-tutorial 16/69

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

90O < 0 file://{Users/mhartl/repos/website/index.html & t] IT

hello, world

Call me Ishmael.

Figure 12: Adding HTML structure makes hardly any difference in the appearance.

Since we haven’t added any files, using git commit -am suffices to commit all the changes (Listing 8).
Listing 8: The commit to add the HTML structure.

[website (master)]$ git commit -am "Add some HTML structure"

Exercises

Solutions to exercises are available for free at learnenough.com/solutions with any Learn Enough purchase. To see other people’s answers and to record your own, join the
Learn Enough Society. at learnenough.com/society.

1. Add the title “A whale of a greeting” to index.html. Browsers differ in how they display titles; the result in Google Chrome is shown in Figure 13.
2. Commit the new title with a commit message of your choice. Verify using git log -p that the change was committed as expected.

3. By pasting the contents of Listing 6 into an HTML validator, verify that it is not (quite) a valid web page.

4. Using the validator, verify that the current index.html (with nonblank page title) is valid.

https://www.learnenough.com/git-tutorial 17/69

http://www.learnenough.com/solutions
http://learnenough.com/society
http://learnenough.com/society
https://validator.w3.org/#validate_by_input

3/30/2018

ece __-I_Dﬁwhaleofagreetingl x

Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

Michael

= 2> C & D file:yyy

s{mhartlfrepos/website/index.html

2
L
n

hello, world

Call me Ishmael.

Figure 13: The page title displayed in a browser.

1.7 Summary

Important commands from this section are summarized in Table 1.

Command Description

git help Get help on a command

git config Configure Git

source <file> Activate Bash changes

mkdir -p Make intermediate directories as necessary
git status Show the status of the repository

touch <name> Create empty file

git add -A Add all files or directories to staging area
git add <name> Add given file or directory to staging area
git commit -m Commit staged changes with a message
git commit -am Stage and commit changes with a message
git diff Show diffs between commits, branches, etc.
git commit --amend Amend the last commit

git

show <SHA> Show diff vs. the SHA

Table 1: Important commands from Section 1.

2 Backing up and sharing

Example

L7 A I S B 7 S R 2T I B 7Y

git
git

help push
config --global ..

source ~/.bash profile

mkdir -p repos/website

git

status

touch foo

git
git
git
git
git
git
git

add -A

add foo

commit -m "Add thing"
commit -am "Add thing"
diff

commit --amend

show fb738e..

With the changes made in Section 1, we’re now ready to push a copy of our project to a remote repository. This will serve as a backup of our project and its history, and
will also make it easier for collaborators to work with us on our site.

https://www.learnenough.com/git-tutorial

18/69

3/30/2018

Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

We’ll start by pushing our project up to GitHub, a site designed to facilitate collaboration with Git repositories. For repositories that are publicly available, GitHub is free,
so we’ll plan to make our website’s repo public to take advantage of this. (GitHub charges for private repositories, but we’ll discuss an alternative in Section 4.4.1.) Over

time, releasing projects publicly on GitHub serves to build up a portfolio, which is one good reason to make as much work public as possible. There’s also a Secret

Reason™ for adding our repo to GitHub, which we’ll get to in Section 4.4.

For reference, important commands from this section are summarized in Table 2.

2.1 Signing up for GitHub

If you don’t already have a GitHub account, you can get started by visiting the GitHub signup page (Figure 14) and following the instructions. Use your technical

sophistication (Box 2) if you get stuck.

808) cin - Griub

L & & 8 GitHub, Inc. [US]| https://github.comjoin

GitHub Expicre Foatures Enterpeise Pricing
Join GitHub
The best way to design, build, and ship software.

Step 1:
Set up & personal account

Create your personal account

Username

Emad Adcress

Password

By clicking on *Create an account” below, you ans agresing 1o the Terms of
Servioe and the Privacy Poiic

Baahdl "

You'll love GitHub

Unlimited colaboraton

Unlimited public repositories

« Great communication
¥ Friction-less development

~ Dpen source community

Figure 14: Joining GitHub.

Once you’ve signed up for GitHub, you’ll need to add SSH keys to your account, which serve as a way to identify trusted computers without requiring passwords U Todo
this, follow the steps in the GitHub article “Generating SSH Keys” (Figure 15). This is a good application of the command-line knowledge from Learn Enough Command
Line to Be Dangerous, and is an excellent exercise in technical sophistication. In particular, following the GitHub tutorial on generating SSH keys will help you develop an

essential technical skill:

It’s important to able to follow a series of commands even if you don’t completely understand them.

Even I don’t completely understand the commands at “Generating SSH Keys”, and that’s OK. All you need is enough technical sophistication to follow the steps (and
resolve any errors that occur) even if you’re not 100% sure of what you’re doing (Figure 16

https://www.learnenough.com/git-tutorial

)12

19/69

https://github.com/join
https://help.github.com/articles/generating-ssh-keys/
http://learnenough.com/command-line-tutorial
https://help.github.com/articles/generating-ssh-keys/

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

e0e® < > G| & help.github.com &] 3 |
GitHub Help Version v Contact Support Return to GitHub
S5H / Generating an S5H key Q
Generating an SSH key Article versions
GitHub.com

MAC | WINDOWS GitHub Enterprise 2.4

GitHub Enterprise 2.3
GitHub Enterprise 2.2
GitHub Enterprise 2.1
GitHub Enterprise 2.0

SSH keys are a way to identify trusted computers without involving passwords. You can generate an
SSH key and add the public key to your GitHub account by following the procedures outlined in this
section.

We recommend that you regularly review your SSH keys list and revoke any that haven't been used in a
while.

Tip: GitHub has a desktop client! Most of your work can be done in the desktop client rather than in the command line.

Checking for existing SSH keys

Before you generate an SSH key, you can check to see if you have any existing SSH keys.

Generating a new SSH key

After you've checked for existing SSH keys, you can generate a new SSH key to use for authentication.

Adding a new SSH key to the ssh-agent

Figure 16: It’s OK—neither does anyone else.

One neat thing about the GitHub SSH keys tutorial is that it detects the system you’re on and customizes the tutorial accordingly. For example, on my system (macOS), the
SSH tutorial includes the step

https://www.learnenough.com/git-tutorial 20/69

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

$ pbcopy < ~/.ssh/id_rsa.pub
Copies the contents of the id_rsa.pub file to your clipboard

which works only on a Mac. This customization is fine for most situations, but sometimes it will fail. For example, if you are on a Macintosh or Windows computer but are
using the Linux virtual machine from Box 3, you need the instructions for Linux, not for your native OS. In that case, either use a browser on the system for which you
need instructions or look for menu items with links to the right platform (Figure 17).

[] ® <] = & help.github.com & t] +
GitHub Help Version * Contact Support Return to GitHub
SSH / Testing your S5H connection Q
Testing your SSH connection Article versions

o o | u—menu links St

GitHub Enterprise 2.3
GitHub Enterprise 2.2

Before testing your SSH connection, you should have: GitHub Enterprise 2.1
GitHub Enterprise 2.0

After you've set up your SSH key and added it to your GitHub account, you can test your connection.

» Checked for existing SSH keys

» Generated a new SSH key

» Added a new SSH key to the ssh-agent

» Added a new SSH key to your GitHub account

When you test your connection, you'll need to authenticate this action using your password, which is the
SSH key passphrase you created earlier. For more information on working with SSH key passphrases,
see Working with SSH key passphrases.

1 Open Terminal and enter:

$ ssh -T git@github.com

Attempts to ssh to GitHub

You may see one of these warnings:

The authenticity of host 'github.com (192.30.252.1)" can't be established.
RSA key fingerprint is 16:27:ac:a5:76:28:2d: :1b:56:4d:eb:df:06:48.

Are you sure you want to continue connecting (yes/no)?

Figure 17: Menu links for the SSH tutorial on different systems.
Exercises

Solutions to exercises are available for free at learnenough.com/solutions with any Learn Enough purchase. To see other people’s answers and to record your own, join the
Learn Enough Society, at learnenough.com/society.

1. Read the SSH article on Wikipedia until you finish it or run out of motivation to continue.

2.2 Remote repo

After signing up for a GitHub account, the next step is to create a remote repository. Start by selecting the menu item for adding a new repository, as shown in Figure 18,
and then fill in the repository name (“website””) and description (“A sample website for Learn Enough Git to Be Dangerous”) as shown in Figure 19. GitHub actively
develops its user interface, so Figure 18, Figure 19, and other GitHub screenshots may not match your results exactly, but this is no cause for concern. As usual, apply your
technical sophistication (Box 2) to resolve any discrepancies.

https://www.learnenough.com/git-tutorial 21/69

http://www.learnenough.com/solutions
http://learnenough.com/society
http://learnenough.com/society
https://en.wikipedia.org/wiki/Secure_Shell

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

®0 0 Oomvue x Michasl

- C # 8 GitHub, Inc. [US] | https://github.com T 8 =

O Pull roquests Issues Gist a*—' -

Bl et - Rapoaliarial ™\ organization
I soficoversoftcover 166 W
tebilva forked mbartysamphe sbibva/sample_spp £ sohcovenhan 0%k
tebilva forked mhariVsample_app_3rd_ediion 1o lebivaisample_app_dnd_edilion & sofcoveriscftcaver-app o
2 softe polytexnic 21 %
batorna starred mhartl/sampie_app_3rd_adition () 59

[] softcover/softcover_book
Pachoudd stamed mbanlsample_app_Jed_editon e
Your repositories + New repository

zhargst23 starred mhanlsample_app_Jrd_editicn

Al P Provate Sources Forks
syamaraj opened pull request rallstutorialisample_app#21 —
Py ranch2 ¥ darmenise/ruby_on_rails_tutorial_book
29 commits with 710 adgsions and 74 caletons ¥ sebastianSruby_on_ralls_tutorial_book
£ ruby_on_rails_tutorial_book

nammafunteam opened pull request rallstutorial'sample_app#20] website
Creabe Med
¥ alexeyrazuvaeviruby_on_ralls_tutorial_..
with 1 adciion and 0 deletions
[railstuorial'sample_app
4 ruby_on_rails_tutorial_solutions_manual
nammafunteam opened pull request rallstutorial'sample_app#19
pr for Branch2) rallstionalsample_spp_rails_4

| ttps:igitrest. cominew ors i iiiiiiiiiliﬂ Iﬁlii Ii

Figure 18: Adding a new repository at GitHub.

@ O ® (Yoreate s New Repositeey % e
« C & 8 GitHub, Inc. [US]| https:/fgithub.com;new i e =
O Pull requests Issues Gist a +- -

Create a new repository
A reposfiory contains all the fles for your project, including the revision history.

Owner Aepository name

lj mhartl > [website o
Greal repositony names are shoet and memonable. Need inspiration? How about iserate-octo-doodie.
Description (opticnal)

A sample webisite for Lsarn Enough Git to Be Dangerous

[] Public
ANyONg CAN 508 this MEoSA0NY. You Choose Wi can commi,

Private
Wou choose who £ 580 and commit 10 this reposiiony
Initialize this repasitory with a README

This will ket you immeciately clons e nepasilony b your computer. SKip this step il you're importing an existing repasitory.

Jigrare: Nane + Add a kcense: Mome =

===

Figure 19: Creating a new repository.

After clicking the green “Create repository” button seen in Figure 19, you should see a page like Figure 20 containing instructions for how to push your local repository up
to GitHub. The exact commands will be tailored to your personal account name; the template looks like Listing 9. (It is not important to understand these commands at this
time.)

Listing 9: A template for the first push to GitHub.

[website (master)]$ git remote add origin https://github.com/<name>/website.git
[website (master)]$ git push -u origin master

Of course, you should replace <name> with your actual username. For example, the commands for my username, which is mhart1, look like this (which you can also see in
Figure 20):

[website (master)]$ git remote add origin https://github.com/mhartl/website.git
[website (master)]$ git push -u origin master

If you’re on macOS and you ever have trouble pushing to GitHub without having to re-enter your password every time, take a look at Caching your GitHub password in
Git to learn about the git-osxkeychain helper.

The two commands in Listing 9 first set GitHub as the remote origin and then push the full repository. The —u option to git push sets GitHub as the upstream repository,
which means we’ll be able to download any changes automatically when we run git pull starting in Section 4.1. Don’t worry about these details, though; you will almost
always copy such commands from GitHub and probably won’t ever have to figure them out on your own.

https://www.learnenough.com/git-tutorial 22/69

https://help.github.com/articles/caching-your-github-password-in-git/

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

® 0 ® Cymuaniwenans x Mchast
L C i 8 GitHub, Inc. [US]| https:/fgithub.com/mhartifwebsite i 9 =
Quick setup — if you've done this kind of thing before
[31Setup in Deskiop O | HTTPS | SSH https://github. con/mhart Liwebsite.git []

We recommend every reposilory include a README, LICENSE, and gitignore.

...Of create a new repository on the command line

echo "# website" »» README.nd i)
git init

git add README.md

git commit -m “first commit"

git remote add origin https://github.com/mhartl/website.git

git push -u origin master

...or push an existing repository from the command line

git remote add origin https://github.com/mhartl/website.git B
git push -u origin master

...0r import code from another repository
You can initialize this repository with code from a Subversion, Mercurial, of TFS project

Impon code

/ ProTip! Usa the URL lor this page when adding GitHub a3 a remote

Figure 20: Instructions for pushing up the repo.

After executing the first git push as shown in Listing 9, you should reload the current page (using, e.g., 38R or the icon shown in Figure 21). The result should look
something like Figure 22. If it does, you have officially shipped your first Git repository!

€ 3 CIN https://www.googl

Figure 21: The browser reload page button.

® 0 ® Cymuaniwensie x Mechast
« C # 8 GitHub, Inc. [US] hetps:/fgithub.com/mhart]/website i s 8 =
O This repository Pull requests Issues Gist a +- jd-
mhartl / website ©Watch= 0 drStar 0 YFark 0
€3 Code Issues @ Pull requests o Wik Pulse Giraphs Satngs
A sample website for Leam Enough Git to Be Dangerous — Edit
)3 commits 141 beanch 8 releases £ 1 contributor
O DBl vesw puil requst | Mew o Findfils WTTPS~ nhttps://github.consmaart 2 1 Download 2IP
Bl mmar Add some HTML struchure Latest commit 6909554 11 minutes ago
&) indsme. hirmi Add some HTML structure 11 minutes ago
Help paapla interested in this repository understand your projoct by adding a README | Add s README |
& 2015 GitHub, Inc. Terms. Privacy Secursy Contact Help Sweus APl Traming Shop Blog About Priong

Figure 22: The remote repository at GitHub.
Exercises

Solutions to exercises are available for free at learnenough.com/solutions with any Learn Enough purchase. To see other people’s answers and to record your own, join the
Learn Enough Society at learnenough.com/society.

1. On the GitHub page for your repo, click on “Commits” to see a list of your commits. Confirm that they match the results of running git log on your local system.
2. At GitHub, click on the commit for adding HTML structure (Listing 8). Verify that the diff for the commit agrees with the one shown in Listing 7.

3. In honor of shipping your first Git repo, drink a celebratory beverage of your choice (Figure 23).ﬁ

https://www.learnenough.com/git-tutorial 23/69

http://www.learnenough.com/solutions
http://learnenough.com/society
http://learnenough.com/society

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

Figure 23: Shipping a project often calls for a celebratory beverage.

2.3 Adding a README

Now that we’ve pushed up our repository, let’s add a second file and practice the add, commit, and push sequence shown in Figure 4. You may have noticed in Figure 22
that GitHub encourages the presence of a README file via the note “Help people interested in this repository understand your project by adding a README.” Such a file

literally asks the viewer to “READ ME”, a la the DRINK ME bottle from Alice’s Adventures in Wonderland (Figure 24) Manditsa good practice to include one.

Figure 24: Alice would know to read a README file.

Figure 22 shows a green Add a README button that GitHub includes to make it easy to add a README file through the web interface, but we’ll follow the common (and
more instructive) practice of adding it by hand locally and then pushing it up. When it comes to rendering and displaying READMEs, GitHub supports several common

https://www.learnenough.com/git-tutorial 24/69

https://www.cs.indiana.edu/metastuff/wonder/ch1.html

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

formats, but my favorite format for short documents like READMEs is Markdown, a lightweight markup language discussed before in Learn Enough Text Editor to Be
Dangerous.

We can get started by opening README . md in Atom (or any other text editor), where the .md extension identifies the file as Markdown:

[website (master)]$ atom README.md

We can then fill it with the content shown in Listing 10.

Listing 10: The contents of the README file. ~/repos/website/README . md
Sample Website

This is a sample website made as part of [*Learn Enough™ Git to Be
Dangerous*] (http://learnenough.com/git-tutorial), possibly the greatest
beginner Git tutorial in the history of the Universe. You should totally [
check it out](http://learnenough.com/git-tutorial), and be sure to [join

the email list](http://learnenough.com/#email list) and [follow @learnenough
](http://twitter.com/learnenough) on Twitter.

After finishing *Learn Enough™ Git to Be Dangerous*, you'll know enough Git
to be *dangerous*. This means you'll be able to use Git to track changes in
your projects, back up data, share your work with others, and collaborate
with programmers and other users of Git.

The result in Atom appears as shown in Figure 25. As mentioned in Learn Enough Text Editor to Be Dangerous, Atom includes a Markdown previewer via the Packages
menu item shown in Figure 26, which (after resizing the window) results in the preview shown in Figure 27 3

[NON] 8| README.md - {Users/mhartl/repos/website - Atom

index.html x

Sample Website
This is a sample website made as part of
sLearn Enough™ Git to Be Dangerouss
1 inner Git tutorial in
You sh : Lly [check it out
and ire to [join the email list
follow @learnenough

to Be Dange

| u G
up data,
of Gi

README.md 13:20 E itHub Markdown

Figure 25: The README file viewed in Atom.

https://www.learnenough.com/git-tutorial 25/69

http://www.learnenough.com/text-editor-tutorial#sec-opening
http://learnenough.com/text-editor-tutorial
http://www.learnenough.com/text-editor-tutorial#sec-previewing_markdown
http://learnenough.com/text-editor-tutorial

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

Bracket Matcher
Command Palette
Dev Live Reload

Git Diff

Keybinding Resolver

y¥YyYyYyYvyy

Open On GitHub
Package Generator
Ruby Test
Select Rectangle
Settings View
Snippets
Styleguide
Symbols
Timecop

Tree View
Whitespace

Y Y Y YYYYYYYY

Figure 26: The Packages menu item for toggling the Markdown preview.

[NON) = README.md - {Users/mhartl/repos/website - Atom

index.html x CI README.md Preview x

Sample Website

Sample Webs

This is a sample website made
possibly the atest beginner Git tutorial in the hi of the Uni tutorial in the history of the Un

You should totally [check it out @learnenough on Twitter.
and be sure to [join the email list
follow @learnenough

This is a samp as part of
*Learn Enough™ Git to Be Dangerous

After finishing Learn Enough™
Git to track changes in my proj{
other users of Git.
Be Dangerous
Git to track
k up data, sha
er users of Git.

READMEmd 13:20

Figure 27: The resized Atom window with a Markdown preview.

Now that we’ve created the README .md file, we’re ready to add it to our Git repository and push it up. We can’t just run git commit -am because README.md isn’t
currently in the repository, so we have to add it first:

[website (master)]$ git add -A

(As noted in Section 1.3.1, we could also run git add README.md, but in most cases we want to add all the new files, so I suggest getting in the habit of running git add
-a unless there’s a specific reason not to.) Then we commit as usual:

https://www.learnenough.com/git-tutorial 26/69

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous
[website (master)]$ git commit -m "Add README file"

By the way, there’s no harm in including -a via the —am combination shown in Listing 5 (and despite the redundancy I often do so out of habit), so this could just as easily
read git commit -am "Add a README file".(The call to git add is still necessary, though; recall from Section 1.4 that git commit -a by itself commits changes only

to files that Git is already tracking and have been modified.)

Having added the file to the repository and made a commit, we’re now ready to push up to GitHub. Recall from Listing 9 that the first occurrence of git push included the
“set upstream” option -u, the destination origin, and master, but once these are set up we can omit all those details and just push, like this:
[website (master)]$ git push

The result of this is to push up the new README to the remote repository, which means that we’ve completed the full sequence shown in Figure 4. In this case, GitHub
uses the .md extension to identify the file as Markdown, converting it to HTML for easy Viewing,l—6 as shown in Listing 10.

e0ce ; Omhartljwebsite: Asample v X Wi\ | Michael |
« - Cf GitHub, Inc. [US] | https://github.com/mhartljwebsite e ¢ =
] " = i e
L;l mhartl Add README file Latest commit f1afcfe 10 seconds ago
&) README.md Add README file 10 seconds ago
@ index.htmil Add some HTML structure 4 minutes ago

README.md

Sample Website

This is a sample website made as part of Learn Enough™ Git to Be Dangerous, possibly the greatest beginner Git tutorial in
the history of the Universe. You should totally check it out, and be sure to join the email list and follow @learnenough on

Twitter.

After finishing Learn Enough™ Git to Be Dangerous, I'll know enough Git to be dangerous. This means I'll be able to use Git
to track changes in my projects, back up data, share my work with others, and collaborate with programmers and other

users of Git.

© 2016 GitHub, Inc. Terms Privacy Security Contact Help Status APl Training Shop Blog About Pricing

Figure 28: The README file at GitHub.

Exercises

Solutions to exercises are available for free at learnenough.com/solutions with any Learn Enough purchase. To see other people’s answers and to record your own, join the
Learn Enough Society at learnenough.com/society.

1. Using the Markdown shown in Listing 11, add a line at the end of the README with a link to the official Git documentation.

2. Commit your change with an appropriate message (Box 4). You don’t have to run git add. Why not?
3. Push your change to GitHub. By refreshing your browser, confirm that the new line has been added to the rendered README. Click on the “official Git

documentation” link to verify that it works.

Listing 11: Markdown code for adding a link to the official Git documentation. ~/repos/website/README .md

For more information on Git, see the
[official Git documentation](https://git-scm.com/).

2.4 Summary

Important commands from this section are summarized in Table 2.

https://www.learnenough.com/git-tutorial 27/69

http://www.learnenough.com/solutions
http://learnenough.com/society
http://learnenough.com/society

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

Command Description Example

git remote add Add remote repo $ git remote add origin

git push -u <loc>
 Push to branch to remote $ git push -u origin master
git push Push to default remote $ git push

Table 2: Important commands from Section 2.

3 Intermediate workflow

In this section, we’ll practice and extend the basic workflow introduced in Section 2.3. This will include adding a new directory to our project, learning how to tell Git to
ignore certain files, how to branch and merge, and how to recover from errors. Rather than providing an encyclopedic coverage of Git’s many commands, our focus is on
covering practical techniques used every day by software developers and other users of Git.

For reference, important commands from this section are summarized in Table 3.

We’ll start by adding an image to our site, which involves making a change to an existing file (index.html) while adding a new file in a new directory. The first step is to
make a directory for images:

[website (master)]$ mkdir images

Next, download the image shown in Figure 2917 t6 the local directory using curl:

$ curl -o images/breaching_whale.jpg -OL cdn.learnenough.com/breaching whale.jpg

Figure 29: An image to include in our website.

We’re now ready to include the image in our index page using the image tag img. This is a new kind of HTML tag; before we had opening and closing tags like
<p>content</p>

but the image tag is different. Unlike tags like h1 and p, the img tag is a void element (also called a self-closing tag), which means that it starts with :

Note that img has no content between tags because there’s no “between”; instead, it has a path to the source of the image, indicated by src. An alternate syntax uses />
instead of > in order to conform to constraints of XML, a markup language related to HTML:

You might sometimes see this syntax instead of the plain >, but in HTMLS the two are exactly equivalent.

By the way, in the example above the path path/to/file is meta, meaning that it talks about the path rather than referring to the literal path itself. In such cases, it’s
important to use the actual path to the file. (Successfully navigating such meta usage is a good sign of increasing technical sophistication (Box 2).) In this case, the path is
images/breaching whale.jpg, so the img tag in index.html should appear as shown in Listing 12. (This image tag is actually missing something important, which we’ll
add in Section 4.2.)

https://www.learnenough.com/git-tutorial 28/69

https://en.wikipedia.org/wiki/XML
https://www.w3.org/TR/html5/syntax.html#void-elements

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

Listing 12: Adding an image to the index page. ~/repos/website/index.html

<!DOCTYPE html>
<html>
<head>
<title>A whale of a greeting</title>
</head>
<body>
<hl>hello, world</hl>
<p>Call me Ishmael.</p>

</body>
</html>

Refreshing the browser then gives the result shown in Figure 30. (Note that Listing 12 includes the title tag content, thereby incorporating the solution to an exercise in
Section 1.6.1.)

0O <] file:///Users/mhart|/repos/website/index.html ¢ t 3 +

hello, world

Call me Ishmael.

Figure 30: Our website with an added image.
At this point, git diff confirms that the image addition is ready to go:

[website (master)]$ git diff index.html
diff --git a/index.html b/index.html
index 706albe..74043f7 100644
--- a/index.html
+++ b/index.html
@@ -6,5 +6,6 @@
<body>
<hl>hello, world</hl>
<p>Call me Ishmael.</p>
+
</body>
</html>

https://www.learnenough.com/git-tutorial 29/69

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

On the other hand, running git status shows that the entire images/ directory is untracked:
[website (master)]$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified: index.html

Untracked files:
(use "git add <file>..." to include in what will be committed)

images/
no changes added to commit (use "git add" and/or "git commit -a")
As you might guess, git add -A adds all untracked directories in addition to adding all untracked files, so we can add the image and its directory with a single command:
[website (master)]$ git add -A
We then commit and push as usual:

[website (master)]$ git commit -m "Add an image"
[website (master)]$ git push

It’s a good idea to get in the habit of pushing up to the remote repository frequently, as it serves as a guaranteed backup of the project while also allowing collaborators to
pull in any changes (Section 4).

After refreshing the GitHub repository in your browser, you should be able to confirm the presence of the new file by clicking on the images directory link, with the results
as shown in Figure 31.

O 08 Quensreimages atmasie: > Mchast
“ C & B8 GitHu Us]| hitps:fgithub.com/mhartl/website tree/masterimages % 8 =
O This reposii Pull requests Issues Gist a 4+~ -
mhartl / website © Watch = 0 W Star & ¥Fark o

€ Code Issuos § Pull requests o Puise Graphe
master ~ website / images Newfile Findfile Mistory
bl mbarts Add an image sbast comemit cObO4TT O 1

Figure 31: The new images directory on GitHub.
Exercises

Solutions to exercises are available for free at learnenough.com/solutions with any Learn Enough purchase. To see other people’s answers and to record your own, join the
Learn Enough Society at learnenough.com/society.

1. Click on the image link at GitHub to verify that the git push succeeded.

2. At this point, the number of commits is large enough that the output of git log -p is probably too big to fit in your terminal window. Confirm that running git log
-p drops you into a less interface for easier navigation.

3. Use your knowledge of 1less commands to search for the commit that added the HTML pocTypE. What is the SHA of the commit?

3.2 Ignoring files

A frequent issue when dealing with Git repositories is coming across files you don’t want to commit. These include files containing secret credentials, configuration files
that aren’t shared across computers, temporary files, log files, etc.

For example, on macOS a common side-effect of using the Finder to open directories is the creation of a hidden file called . ps_store 18 In case you haven’t run into it
yourself, we can simulate such a side-effect by using touch to create a sample .Ds_store file as follows:

[website (master)]$ touch .DS_Store

https://www.learnenough.com/git-tutorial 30/69

http://www.learnenough.com/solutions
http://learnenough.com/society
http://learnenough.com/society
https://www.learnenough.com/command-line-tutorial#table-less_commands
https://support.apple.com/en-us/HT201732

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

This file now shows up in the status:

[website (master)]$ git status
On branch master
Your branch is up-to-date with 'origin/master'.
Untracked files:
(use "git add <file>...

to include in what will be committed)
.DS_Store
nothing added to commit but untracked files present (use "git add" to track)

This is annoying, as we have no need to track this file, and indeed when collaborating with other users it could easily cause conflicts (Section 4.2) down the line.

In order to avoid this annoyance, Git lets us ignore such files using a special hidden configuration file called .gitignore. To ignore .Ds_store, create a file called
.gitignore using your favorite text editor and then fill it with the contents shown in Listing 13.

Listing 13: Configuring Git to ignore a file. ~/repos/website/.gitignore

.DS_Store

After saving the contents of Listing 13, the status now picks up the newly added .gitignore file, but it doesnt list the .Ds_store file, thereby confirming that it’s being
ignored:

[website (master)]$ git status
On branch master
Your branch is up-to-date with 'origin/master’.
Untracked files:
(use "git add <file>...

to include in what will be committed)
.gitignore
nothing added to commit but untracked files present (use "git add" to track)

This is an excellent start, but it would be inconvenient if we had to add the name of every file we want to ignore. For instance, the Vim text editor (covered briefly in Learn
Enough Command Line to Be Dangerous) sometimes creates temporary files whose names involve appending a tilde ~ to the end of the normal filename, so you might be

editing a file called foo and end up with a file called foo~ in your directory. In such a case, we would want to ignore all files ending in a tilde. To support this case, the

.gitignore file also lets us use wildcards, where the asterisk * represents “anything”:ﬁ

*~

Adding the line above to .gitignore would cause all temporary Vim files to be ignored by Git. We can also add directories to .gitignore, so that,e.g.,
tmp/

would arrange to ignore all files in the tmp/ directory.

Git ignore files can get quite complicated, but in practice you can build them up over time by running git status and looking for any files or directories you don’t want
to track, and then adding a corresponding pattern to the .gitignore file. In addition, many systems (such as the Ruby on Rails web framework and the Softcover

publishing platform) generate a good starting .gitignore file for you.& See Chapter 1 of the Ruby on Rails Tutorial for more information.

Exercises

Solutions to exercises are available for free at learnenough.com/solutions with any Learn Enough purchase. To see other people’s answers and to record your own, join the
Learn Enough Society at learnenough.com/society.

1. Commit the .gitignore file to your repository. Hint: Running git commit -amisn’t enough. Why not?
2. Push your commit up to GitHub and confirm using the web interface that the push succeeded.

3.3 Branching and merging

One of the most powerful features of Git is its ability to make branches, which are effectively complete self-contained copies of the project source, together with the
ability to merge one branch into another, thereby incorporating the changes into the original branch. The best thing about a branch is that you can make your changes to the
project in isolation from the master copy of the code, and then merge your changes in only when they’re done. This is especially helpful when collaborating with other
users (Section 4); having a separate branch lets you make changes independently from other developers, reducing the risk of accidental conflicts.

We’ll use the addition of a second HTML page, an “About page”, as an example of how to use Git branches. Our first step is to use git checkout with the -b option,
which makes a new branch called about-page and checks it out at the same time, as shown in Listing 14.

Listing 14: Checking out and creating the about-page branch.

[website (master)]$ git checkout -b about-page
[website (about-page)]$

The prompt in Listing 14 includes the new branch name for convenience, which is a result of the optional advanced setup in Section 6.2, so your prompt may differ.

Now that we’ve checked out the new branch about-page branch, we can visualize our repository as shown in Figure 32. The main repository evolution is a series of

commits, and the branch effectively represents a copy of the repo at the time the branch was made 2L Our plan is to make a series of changes on the about-page branch,
and then incorporate the changes back into the master branch using git merge.

https://www.learnenough.com/git-tutorial 31/69

http://www.learnenough.com/text-editor-tutorial#sec-vim
http://learnenough.com/command-line-tutorial
http://rubyonrails.org/
http://www.softcover.io/
https://www.railstutorial.org/book/beginning#sec-first_time_setup
http://railstutorial.org/book
http://www.learnenough.com/solutions
http://learnenough.com/society
http://learnenough.com/society

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

MASTER

Figure 32: Branching off the master branch.
We can view the current branches using the git branch command:

[website (about-page)]$ git branch
* about-page
master

This lists all the branches currently defined on the local machine, with an asterisk * indicating the currently checked-out branch. (We’ll learn how to list remote branches in
Section 4.3.)

Having checked out the branch for the About page, we’re now ready to start making some changes to our working directory. We’ll start by making a new file called
about.html to include some information about our project. Because we want the new page to have the full HTML structure (as in Figure 12), we’ll copy over the
index.html file and then edit it as necessary:

[website (about-page)]$ cp index.html about.html

If this duplication seems a little unclean, it is. For example, what if there were an error in the HTML structure of index.htm1? Having copied it over to about.html, we’d
have to make the correction in both places. As we’ll see in Section 4.3, in fact there is an error, and we will have to make the correction twice. This sort of situation is
annoying, and it’s far better to use a site template that avoids unnecessary duplication. We’ll start learning how to do that in Learn Enough CSS & Layout to Be
Dangerous.

Throughout the rest of the tutorial, we’ll be editing both index.html and about.html, so this is a good opportunity to use the preferred technique for opening a full
project in a text editor (as covered in Learn Enough Text Editor to Be Dangerous). I suggest closing all current editor windows and re-opening the project as follows:

[website (about-page)]$ atom .

By doing this, we can use “fuzzy opening” to open the files of our choice. In particular, in Atom we can use 3P to open about.html and start making the necessary
changes.

After opening about.html, fill it with the contents shown in Listing 15. As always, I recommend typing in everything by hand, which will make it easier to see the diffs
relative to Listing 12. (The only possible exception is the trademark character ™ , added to highlight character encoding issues, which you might have to copy and paste.
On a Mac, you can get ™ using Option-2.)

Listing 15: The initial HTML for the About page. ~/repos/website/about.html

<!DOCTYPE html>
<html>
<head>
<title>About Us</title>
</head>
<body>
<h1>About</h1>
<p>
This site is a sample project for the awesome Git
tutorial Learn Enough™ Git to Be Dangerous.
</p>
</body>
</html>

https://www.learnenough.com/git-tutorial 32/69

http://www.learnenough.com/css-and-layout-tutorial
http://www.learnenough.com/text-editor-tutorial#sec-editing_projects
http://learnenough.com/text-editor-tutorial
http://www.learnenough.com/text-editor-tutorial#sec-fuzzy_opening

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

Listing_15 introduces two new tags: strong (Which most browsers render as boldface text) and em for emphasis (which most browsers render as italicized text).

We’re now ready to commit the initial version of the About page. Because about .html is a new file, we have to add it and then commit, and I sometimes like to combine
these two steps using && as described in Learn Enough Command Line to Be Dangerous:

[website (about-page)]$ git add -A && git commit -m "Add About page"

At this point, the about-page branch has diverged from master, as shown in Figure 33.

MASTER

Figure 33: The about-page branch with a diff from master.

Before merging about-page back in to the master branch, we’ll make one more change. In the editor, use 38P or the equivalent to open index.html and add a /ink to the
About page, as shown in Listing 16.

Listing 16: Adding a link to the About page. ~/repos/website/index.html

<!DOCTYPE html>
<html>
<head>
<title>A whale of a greeting</title>
</head>
<body>
<hl>hello, world</hl>
About this project
<p>Call me Ishmael.</p>

</body>
</html>

Listing 16 uses the important (if confusingly named) anchor tag a, which is the HTML tag for making links. This tag contains both content (“About this project”) and a
hypertext reference, or href, which in this case is the about .html file we just created. (Because about.html is on the same site as index.html, we can link to it directly,

but when linking to external sites the href should be a fully qualified URL .2 such as http://example.com/)2

After saving the change and refreshing index.html in our browser, the result should appear as shown in Figure 34. Following the link should lead us to the About page, as
seen in Figure 35. Note that the trademark character ™ doesn’t display properly; we’ll fix this issue in Section 4.3.

https://www.learnenough.com/git-tutorial 33/69

https://www.learnenough.com/command-line-tutorial#aside-combining_commands
http://learnenough.com/command-line-tutorial
http://example.com/

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

[NON | 0 file://{Users/mhartl/repos/website/index.html & (4] t] IT

hello, world

About this project

Call me Ishmael.

Figure 34: The index page with an added link.

https://www.learnenough.com/git-tutorial 34/69

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

£

90O < 0 file://fUsers/mhartl/repos/website/about. html &

==y

About

This site is a sample project for the awesome Git tutorial Learn Enoug@Git to Be Dangerous.

Oops, the trademark character ™ in "Learn
Enough™" doesn't display correctly

Figure 35: A slightly broken About page.
Having finished with the changes to index.html, we can make a commit as usual with git commit -am:
[website (about-page)]$ git commit -am "Add a link to the About page"

With this commit, the about-page branch now appears as in Figure 36.

https://www.learnenough.com/git-tutorial 35/69

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

MASTER

ABOUT

Figure 36: The current state of the about-page branch relative to master.

We’re done making changes for now, so we’re ready to merge the About page topic branch back into the master branch. We can get a handle on which changes we’ll be
merging in by using git diff; we saw in Section 1.4 that this command can be used by itself to see the difference between unstaged changes and our last commit, but the
same command can be used to show diffs between branches. This can take the form git diff branch-1 branch-2,but if you leave the branch unspecified Git
automatically diffs against the current branch. This means we can diff about-page vs. master as follows:

[website (about-page)]$ git diff master

The result in my terminal program appears as shown in Figure 37. On my system, the diff is too long to fit on one screen, but (as we saw with git log in Section 3.1.1)
the output of git diff uses the less program in this case.

[]] 3. ~/repos/website (less)

Figure 37: Diffing two branches.

https://www.learnenough.com/git-tutorial 36/69

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous
To incorporate the changes on about-page into master, the first step is to check out the master branch:

[website (about-page)]$ git checkout master
[website (master)]$

Note that, unlike the checkout command in Listing 14, here we omit the -b option because the master branch already exists.
The next step is to merge in the changes on the other branch, which we can do with git merge:
[website (master)]$ git merge about-page

At this point, our branch structure appears as in Figure 38.

MASTER

ABOUT PAGE

Figure 38: The branches after merging about-page into master.

In the present case, the master branch didn’t change while we were working on the about-page branch, but Git excels even when the original branch has changed in the
interim. This situation is especially common when collaborating with others (Section 4), but can happen even when working alone. Suppose, for example, that we
discovered a typo on master and wanted to fix it and push up immediately. In that case the master branch would change (Figure 39), but we could still merge in the topic
branch as usual. There is a possibility that changes on master would conflict with the merged changes, but Git is good at automatically merging content. Even when
conflict is unavoidable, Git is good at marking conflicts explicitly so that we can resolve them by hand. We’ll see a concrete example of this in Section 4.2.

https://www.learnenough.com/git-tutorial 37/69

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

MASTER

ABOUT PAGE

Figure 39: The tree structure if we made a change to master.

Having merged in the changes, we can sync up the local master branch with the version at GitHub (called origin/master) as usual:
[website (master)]$ git push

Since we probably don’t need the about-page branch any longer, we can optionally delete it, which is left as an exercise (Section 3.3.2).

Rebasing

The most common way to combine branches is git merge, but there’s a second method called git rebase that you're likely to encounter at some point. My advice for
now is: ignore git rebase. The differences between merging and rebasing are subtle, and conventions for using rebase differ, so I recommend using git rebase only
when an advanced Git user tells you to; otherwise, use git merge to combine the contents of two branches.

Exercises

Solutions to exercises are available for free at learnenough.com/solutions with any Learn Enough purchase. To see other people’s answers and to record your own, join the
Learn Enough Society at learnenough.com/society.

1. Use the command git branch -d about-page to delete the topic branch. Confirm by running git branch that only the master branch is left.

2.1In Listing 14, we used git checkout -b to create a branch and check it out at the same time, but it’s also possible to break this into two steps. As a first step, use
git branch to make a branch with the name test-branch. (This involves passing an argument to git branch, as in git branch <branch name>.) Then confirm
that the new branch exists but isn’t currently checked out by running git branch without an argument.

3. Check out test-branch and use touch to add a file with a name of your choice, then add and commit it to the repository.

4. Check out the master branch and try deleting the test branch using git branch -d to confirm that it doesn’t work. The reason is that, in contrast to the about-page
branch, the test branch hasn’t been merged into master, and by design -d doesn’t work in this case. Because we don’t actually want its changes, delete the test by
using the related -p option, which deletes the branch in question even if its changes are unmerged.

3.4 Recovering from errors

One of the most useful features of Git is its ability to let us recover from errors that would otherwise be catastrophic. The error-recovery techniques themselves can be
dangerous, though, so they should always be implemented with care.

Let’s consider a common scenario where we make an unintentional change to a project and want to get back to the state of the repository as of the most recent commit (a
state known as HEAD). For example, it’s a good practice to include a newline at the end of a file so that, e.g., running tail24 gives

[website (master)]$ tail about.html

</body>
</html>
[website (master)]$

instead of

https://www.learnenough.com/git-tutorial 38/69

http://www.learnenough.com/solutions
http://learnenough.com/society
http://learnenough.com/society

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

[website (master)]$ tail about.html

</body>
</html>[website (master)]$

Of course, we could add such a newline using a text editor, but a common Unix idiom to accomplish the same thing is to use echo with the append operator >>:

[website (master)]$ echo >> about.html # Appends a newline to about.html

Unfortunately, in this context it’s easy to accidentally leave off one of the angle brackets and inadvertently use the redirect operator > instead:22
[website (master)]$ echo > about.html

Go ahead and try the command above; you will discover that the result is to overwrite about . html with a newline, thereby effectively wiping out its contents, as we can
verify with cat:

[website (master)]$ cat about.html
[website (master)]$

In a regular Unix directory, there would be no hope of recovering the contents of about.html, but in a Git repository we can undo the changes by forcing the system to
check out the most recently committed version. We start by confirming that about .html has changed by running git status:

[website (master)]$ git status
On branch master
Your branch is up-to-date with 'origin/master’.
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified: about.html

no changes added to commit (use "git add" and/or "git commit -a")
This doesn’t indicate the scope of the damage, though, which we can inspect using git diff:

diff --git a/about.html b/about.html

index 6278cf6..8b13789 100644

--- a/about.html

+++ b/about.html

@e -1,13 +1 @e

-<!DOCTYPE html>

-<html>

- <head>

- <title>About Us</title>

- </head>

- <body>

- <h1>About</h1>

- <p>

- This site is a sample project for the awesome Git
- tutorial Learn Enough™ Git to Be Dangerous.
- </p>

- </body>

-</html>

Those minus signs indicate that all of the lines of content are now gone. Happily, we can undo these changes by passing the -£ (force) option to checkout, which forces

Git to check out HEAD:2C

[website (master)]$ git checkout -f

We can then confirm that the About page has been restored:
[website (master)]$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

nothing to commit, working directory clean

The status “working directory clean” indicates that there are no changes, and you can verify by running cat about.html that its contents have been restored. Phew! That
was a close one. (It’s worth noting that git checkout -f itself is potentially dangerous, as it wipes out all the changes you’ve made, so use this trick only when you’re
100% sure you want to revert to HEAD.)

Another source of robustness against error is using branches, as described in Section 3.3. Because changes made on one branch are isolated from other branches, you can
always just delete the branch if things go horribly wrong. For example, suppose we made the same echo mistake on a test-branch:

[website (master)]$ git checkout -b test-branch
[website (test-branch)]$ echo > about.html

We can fix this by committing the changes and then deleting the branch:

[website (test-branch)]$ git commit -am "Oops"
[website (test-branch)]$ git checkout master
[website (master)]$ git branch -D test-branch

Note here that we need to use -D instead of -d to delete the branch because test-branch is unmerged (Section 3.3.2).

A final example of recovering from error involves the common case of a bug or other defect that makes its way into a project, origins unknown. In such a case, it’s

convenient to be able to check out an earlier version of the repository?—7 The way to do this is to use the SHAs from the Git log (Section 1.3). For example, to restore the
website project to the state right after the second commit, we would run git log and navigate to the beginning of the log. Because git log uses the less interface, we

https://www.learnenough.com/git-tutorial 39/69

https://www.learnenough.com/command-line-tutorial#sec-directories

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

can do this by typing G to go to the last line of the log 28 The result on my system is shown in Listing 17. (Because SHAs are by design unique identifiers, your values will
differ.)

Listing 17: Viewing the SHAs in the Git log.
[website (master)]$ git log
commit 8c19674468a67720b9ba61a783e81£97062874bf
Author: Michael Hartl <michael@michaelhartl.com>
Date: Mon Dec 21 21:27:56 2015 -0800

Add a README
commit 69b955490caf12552e83d476820d29475fa35010
Author: Michael Hartl <michael@michaelhartl.com>
Date: Mon Dec 21 21:02:20 2015 -0800

Add some HTML structure
commit 03aff34ec4f9690228e057a4252bccal69a868b4d
Author: Michael Hartl <michael@michaelhartl.com>
Date: Thu Dec 17 20:03:33 2015 -0800

Add content to index.html
commit 879392a6bd8dd505£21876869de99d73£40299cc
Author: Michael Hartl <michael@michaelhartl.com>
Date: Thu Dec 17 20:00:34 2015 -0800

Initialize repository

To check out the commit with the message “Add content to index.html”, simply copy the SHA and check it out:

[website (master)]$ git checkout 03aff34ec4f£9690228e057a4252bccal69a868b4
Note: checking out '03aff34ec4£9690228e057a4252bccal69a868b4’.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this

state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -b with the checkout command again. Example:

git checkout -b new_branch_name

HEAD is now at 03aff34... Add content to index.html
[website ((03aff34...))]$

Note that the branch name in the last line has changed to reflect the value of the SHA, and Git has issued a warning that we are in a ‘detached HEAD’ state. I recommend
using this technique to inspect the state of the project and figure out any necessary changes, then check out the master branch to apply them:

[website ((03aff34...))]$ git checkout master
[website (master)]$

At this point, you could switch to your text editor and make any necessary changes (such as fixing a bug discovered on the earlier commit).
If all this seems a little abstract, don’t worry. The main takeaways are (1) it’s possible to “go back in history” to view the project at an earlier state and (2) it’s tricky to

make changes, so if you find yourself doing anything complicated you should ask a more experienced Git user what to do. (In particular, the exact practices in such a case
could be team-dependent.)

Exercises

Solutions to exercises are available for free at learnenough.com/solutions with any Learn Enough purchase. To see other people’s answers and to record your own, join the
Learn Enough Society at learnenough.com/society.

1. The git checkout -f trick works only with files that are staged for commit or are already part of the repository, but sometimes you want to get rid of new files as
well. Using touch, create a file with a name of your choice, then git add it. Verify that running git checkout -£ gets rid of it.

2. Many Unix programs accept options in both “short form” and “long form”. Repeat the previous exercise with git checkout --force to confirm that the effects of
-f and --force are identical. Extra credit: Double-check this conclusion by finding the “force” option in the output of git help checkout.

3.5 Summary

Important commands from this section are summarized in Table 3.

Command Description Example

.gitignore Tell Git which things to ignore $ echo .DS_store >> .gitignore
git checkout
 Check out a branch $ git checkout master

git checkout -b
 Check out & create a branch $ git checkout -b about-page
git branch Display local branches $ git branch

git merge
 Merge in a branch $ git merge about-page

git rebase Do something possibly weird & confusing See Figure 2 and Figure 3

git branch -d
 Delete branch (if merged) $ git branch -d about-page

git branch -D
 Delete branch (even if unmerged) (dangerous) $ git branch -D other-branch
git checkout -f Force checkout, discarding changes (dangerous) $ git add -A && git checkout -f
Table 3: Important commands from Section 3.

https://www.learnenough.com/git-tutorial 40/69

http://www.learnenough.com/solutions
http://learnenough.com/society
http://learnenough.com/society

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

4 Collaborating

Now that we’ve covered some of the tools needed to use Git effectively on solo projects, it’s time to learn about what is perhaps Git’s greatest strength: making it easier to
collaborate with other people. This is especially the case when using repository hosts like GitHub or Bitbucket, but it is also possible to host Git repositories on private
servers (sometimes using software like GitLab to get many GitHub-like benefits).

Because this tutorial is designed for individual readers, we won’t actually be able to collaborate with others, but this section will explain how you can practice
“collaborating” with yourself. There are many different collaboration scenarios, and they vary significantly by team and by project, so we’ll focus on the important case of
multiple collaborators who all have commit rights to a particular repo. This model is appropriate for teams where everyone can make changes without explicit approval
from a project maintainer.

Open-source projects typically use a different flow involving forking and pull requests, but the details differ enough that it’s best to defer to the collaboration instructions
of each particular project. Consider, for example, the instructions for contributing to Ruby on Rails. With the commands from this tutorial and your technical
sophistication (Box 2), you’ll be in a good position to understand and follow such instructions if you decide to get involved in contributing to open-source software or
other projects under version control with Git.

For reference, important commands from this section are summarized in Table 4.

As an example of a common collaboration workflow, we’ll simulate the case of two developers working on the same project, in this case the simple website developed in

this tutorial. We’ll start with Alice (Figure 40)2 working in the original website directory, and we’ll create a second directory (website-copy) for her collaborator Bob
H 30

(Figure 41).~

Figure 41: Bob, working on website-copy.

As a first step, Alice runs git push just to make sure all her changes are on the remote repository:

m

[website (master)]$ git push

In real life, Alice would now need to add Bob as a collaborator on the website repository, which she could do at GitHub by clicking on Settings > Collaborators and
then put Bob’s GitHub username in the Add collaborator box (Figure 42). Because we’re collaborating with ourselves, we can skip this step.

https://www.learnenough.com/git-tutorial 41/69

http://github.com/
http://bitbucket.com/
https://about.gitlab.com/
http://edgeguides.rubyonrails.org/contributing_to_ruby_on_rails.html

3/30/2018

Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

mhartl / website

Options Collaborators

Collaborators
Branches
Webhooks & services

Deploy keys Search by username, full name or email address

<» Code (1) Issues o 1l Pull requests 0 [EE Wiki 4~ Pulse ul1 Graphs L} Settings

@& Watch ~

a +- A

W Star 0 Y Fork ©

Push access to the repository

This repository doesn't have any collaborators yet. Use the form below to add a collaborator.

l mhart|

‘ Add collaborator

@) mhartie2 Marc Hartley
mhartlauer
= mhartleip

© 2016 GitHub, Inc. Terms Privacy Security . mhartley

B mhartle Michael Hartle

| ¥ mhart! Michael Hartl [
e

p Blog About Pricing

o0 e / \ T, Michael
/ €)collaborators % 4 \
1
€& = C ff |@ GitHub, Inc. [US]| https://github.com/mhartl/website/settings/collaboration 7 =
O This repository Search Pull requests Issues Gist

-

Figure 42: The GitHub page to add collaborators.

Once Bob gets the notification that he’s been added to the website repository, he can go to GitHub to get the clone URL, as shown in Figure 43. This URL lets Bob make

a full copy of the repository (including its history) using git clone.

https://www.learnenough.com/git-tutorial

42/69

3/30/2018

® 00 Omnaniwessie %
« C & 8 GitHub, Inc. [US]| https:/fgithub.com/mhartljwebsite

mhartl / website
€ Code lssues @

Pull requests 0 Wiki Pulse

A sample website for Leam Enough Git to Be Dangerous — Edit

(2 & commits 1 branch

Pull requests Issues Gist

Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

Mchasl
% Q=
a +- J-

© Watch = 0 wStar ¢ YFork o

Graphs Saltings

% 1 contributor

bl mnars Acd an image

B images

README md

indes hitmi Add an image

il README.md

sample Website clone URL

New fila Find file

nrrPs https: //github. con/mhart i1 Downioad ZIP

Latey it c9B94TT 4 hours ago

copy to
clipboard

This is a sample website made as part of Leam Enough™ Git fo Be Dangerous by M 'I'ael e
beginner Git tutorial in the history of the Universe. You should totally check it out, and be sure to join the email list and

Figure 43: Finding the clone URL at GitHub.

Ordinarily, Bob would probably use his own repos directory, with a project called website as in Alice’s original, but because we’re only simulating the collaboration
we’ll use the name website-copy for clarity. In addition, when doing something a little artificial like this I like to use a temp directory called ~/tmp, >~

directory if it doesn’t already exist on your system:

$ cd
$ mkdir tmp/

Then cd to it and clone the repo to the local directory:

[~]1$ cd tmp/

[tmp]$ git clone <clone URL> website-copy
Cloning into 'website-copy'...

[tmp]$ cd website-copy/

31

so create this

Here we’ve included the argument website-copy to git clone, thereby showing how to use a different name than the original repo, but usually you just run git clone
<clone URL>, which uses the default repo name (in this case, website).

Now we’re ready to open the copy of the project and start making edits:

[website-copy (master)]$ atom .

For the purposes of this exercise, I recommend placing the editor windows for website and website-copy side by side, as shown in Figure 44.

https://www.learnenough.com/git-tutorial

43/69

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

@ Awm File Edt Selection Find View Packsges Window Help B G 4@ B o g] (ENFEE 3 4 T wosBs W () MchaslHat O =

D « index.himi - [Lisers/mhartljreged wabsits - Al

Figure 44: The website and website-copy editors running side by side.

To begin the collaboration, we’ll have Bob make a change to the site by wrapping the tutorial title on the About page in a link, like this:
..

Here the ellipsis ... represents the full title of the tutorial, Learn Enough Git to Be Dangerous. The resulting line is too long to display here, but we can wrap it, as shown
in Figure 45, with the result as shown in Figure 46.

Reload AN EL
Toggle Full Screen ~3F
Panes >
Developer >
Increase Font Size {rie=
Decrease Font Size 8-
Reset Font Size #0

Toggle Command Palette {+3P
Toggle Tree View 8\
Enter Full Screen

Figure 45: Toggling soft wrap in Atom.

https://www.learnenough.com/git-tutorial 44/69

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

[NON) & about.html — [Users/mhartl/tmp/website-copy

about.html * index.html
<! >
<html>
<head>
<title>About Us</title>
</head>
<body>
<hl>About</hl>
<p>
This site is a sample project for the awesome Git
tutorial Learn Enough™ Git
to Be Dangerous</em=.
</p>
</body>
</html>

about.html| 10:108 (1, 92) LF UTF-8 HTML

Figure 46: The About page with soft wrap activated.

If we look at the diff using git diff, we see the wrapped line (Figure 47), which appears in a browser as shown in Figure 48.

https://www.learnenough.com/git-tutorial 45/69

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

® o 3. ~ftmp/website-copy (bash)
[website-copy (master)]$ git diff

<h1>About</hl>
<p>
This site is a sample project for the awesome Git

aa

</p>
</body>
</html>
[website-copy (master)]$ |

Figure 47: The diff with a wrapped line.

[] ® < (G| file:/f{Users/mhartl/tmp/website-copyfabout.html o] th [l +

About Us

This site is a sample project for the awesome Git tutorial Learn Enoughd,, ¢ Git to Be Dangerous.

Figure 48: Linking the Git tutorial title on the About page.

https://www learnenough.com/git-tutorial 46/69

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

Having added the link, Bob can commit his changes and push up to the remote repository:

[website-copy (master)]$ git commit -am "Add link to tutorial title"
[website-copy (master)]$ git push

® [] 3. ~[repos/website (bash)
@) ~ftmp/website-cop... 31 ~freposfwebsite (ba... 32

[~1$ cd repos/website/
[website (master)]$ I

Figure 49: Using a new terminal tab for the original directory.

At this point, Bob might send Alice a notification that there’s a change ready, or Alice might just be diligent about checking for changes. In either case, Alice can get the
changes from the remote origin by running git pull. I suggest opening up a new tab in your terminal window for Alice’s directory (as shown in Figure 49) and then pull
as follows:

[website (master)]$ git pull
remote: Counting objects: 3, done.
remote: Compressing objects: 100% (1/1), done.
remote: Total 3 (delta 2), reused 3 (delta 2), pack-reused 0
Unpacking objects: 100% (3/3), done.
From https://github.com/mhartl/website
42db83e..986a487 master -> origin/master

Updating 42db83e..986a487
Fast-forward

about.html | 2 +-

1 file changed, 1 insertion(+), 1 deletion(-)

With that, Alice’s project should have Bob’s commit, and her copy of the About page should be identical to Figure 48. (Checking that Bob’s commit is present in the log is
left as an exercise.)

Exercises

Solutions to exercises are available for free at learnenough.com/solutions with any Learn Enough purchase. To see other people’s answers and to record your own, join the
Learn Enough Society, at learnenough.com/society.

1. As Alice, run git log to verify that the commit was pulled down correctly. Double-check the details using git log -p.

2. The whale picture added in Listing 12 (Figure 29) requires attribution under the Creative Commons Attribution-NoDerivs 2.0 Generic license. As Alice, link the
image to the original attribution page, as shown in Listing 18. Commit the result and push to GitHub.

3. As Bob, pull in the changes from the previous exercise. Verify by refreshing the browser and by running git log -p that Bob’s repo has been properly updated.

3

Listing 18: Linking to the whale image’s attribution page. ~/repos/website/index.html

https://www.learnenough.com/git-tutorial 47/69

http://www.learnenough.com/solutions
http://learnenough.com/society
http://learnenough.com/society
https://creativecommons.org/licenses/by-nd/2.0/

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

4.2 Pulling and merge conflicts
In Section 4.1, Alice didn’t make any changes while Bob was making his commit, so there was no chance of conflict, but this is not always the case. In particular, when
two collaborators edit the same file, it is possible that the changes might be irreconcilable. Git is pretty smart about merging in changes, and in general conflicts are

surprisingly rare, but it’s important to be able to handle them when they occur. In this section, we’ll consider both cases in turn.

Non-conflicting changes

We’ll start by having Alice and Bob make non-conflicting changes in the same file. Suppose Alice decides to change the top-level heading on the About page from
“About” to “About Us”, as shown in Listing 19.

Listing 19: Alice’s change to the About page’s hl. ~/repos/website/about.html

<!DOCTYPE html>
<html>

<hl>About Us</hl>

</body>
</html>

After making this change, Alice commits and pushes as usual:

[website (master)]$ git commit -am "Change page heading"
[website (master)]$ git push

Figure 50: An image for Bob to add to the About page.

Meanwhile, Bob decides to add a new image (Figure 50)32 to the About page. He first downloads it with curl as follows:

[website-copy (master)]$ curl -o images/polar_bear.jpg \
> -OL cdn.learnenough.com/polar_bear. jpg

(Note here that you should type the backslash character \ in the first line, but you shouldn’t type the literal angle bracket > in the second line. The \ is used for a line
continuation, and after hitting return the > will be added automatically by your shell program.) He then adds it to about . html using the img tag, as shown in Listing 20,
with the result shown in Figure 51.

Listing 20: Adding an image to the About page. ~/tmp/website-copy/about.html

<!DOCTYPE html>
<html>

https://www.learnenough.com/git-tutorial 48/69

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

</body>
</html>

Note that Bob has included an alt attribute in Listing 20, which is a text alternative to the image. The alt attribute is actually required by the HTMLS5 standard, and
including it is a good practice because it’s used by web spiders and by screen readers for the visually impaired.

e0e® < il

file:/{{Users/mhartl/tmp/website-copy/about.html

2

©

About Us

This site is a sample project for the awesome Git tutorial Learn Enoughd,, ¢ Git to Be Dangerous.

Figure 51: The About page with an added image.

Having made his change, Bob commits as usual:

[website-copy (master)]$ git add -A
[website-copy (master)]$ git commit -m "Add an image"

‘When he tries to push, though, something unexpected happens, as shown in Listing 21.

Listing 21: Bob’s push, rejected.

[website-copy (master)]$ git push
To https://github.com/mhartl/website.git

! [rejected] master -> master (fetch first)
error: failed to push some refs to 'https://github.com/mhartl/website.git'
hint: Updates were rejected because the remote contains work that you do
hint: not have locally. This is usually caused by another repository pushing
hint: to the same ref. You may want to first integrate the remote changes
hint: (e.g., 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.

https://www.learnenough.com/git-tutorial

49/69

https://en.wikipedia.org/wiki/Web_crawler

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous
Because of the changes Alice already pushed, Git won’t let Bob’s push go through. As indicated by the highlighted line above, the solution to this is for Bob to pu11:

[website-copy (master)]$ git pull

Even though Alice made changes to about.html, there is no conflict because Git figures out how to combine the diffs. In particular, git pull brings in the changes from

the remote repo and uses merge to combine them automatically, adding the option to add a commit message by dropping Bob into the default editor, which on most

systems is Vim (Eigure 52). (This is but one of many reasons why Learn Enough Text Editor to Be Dangerous covers Minimum Viable Vim.) To get the merge to go

through, you can simply quit out of Vim using :q.

[] @ 3. ~/tmp/website-copy (vim)
~[tmp/website-cop... %1

Ierge branch "master' of https://github.com/mhartl/website

@ ~frepos/website (ba... 382

Please enter a commit message to explain why this merge is necessary,
especially if it merges an updated upstream into a topic branch.

#

Lines starting with '#' will be ignored, and an empty message aborts

the commit.

"~/tmp/website-copy/.git/MERGE_MSG" 7L, 286C

Figure 52: The default editor for merging from a git pull.

We can confirm that this worked by checking the log, which shows both the merge commit and Alice’s commit from the original copy (Listing 22).

Listing 22: The Git log after Bob merges in Alice’s changes. (Exact results will differ.)

[website-copy (master)]$ git log

commit 86dccde63acl5331a068ce79fa9c83d8b784b28b
Merge: 9b7edal 5ca69e4d

Author: Michael Hartl <michael@michaelhartl.com>
Date: Mon Dec 28 13:14:44 2015 -0800

Merge branch 'master' of https://github.com/mhartl/website
commit 9b7edalb0a95740a241684b82d4474aa8fl6aed5
Author: Michael Hartl <michael@michaelhartl.com>
Date: Mon Dec 28 13:13:37 2015 -0800
Add an image
commit 5ca69e4dca9487b5cd7elbe52222¢5389392527d
Author: Michael Hartl <michael@michaelhartl.com>
Date: Mon Dec 28 13:02:42 2015 -0800
Change page heading

If Bob now pushes, it should go through as expected:

$ git push

This puts Bob’s changes on the remote repo, which means Alice can pull them in:

https://www.learnenough.com/git-tutorial

50/69

http://learnenough.com/text-editor-tutorial

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

$ git pull

Alice can confirm that her repo now includes Bob’s changes by inspecting the Git log, which should match the results you got in Listing 22. Meanwhile, she can refresh
her browser to see Bob’s cool new ursine addition (Figure 53).

0@ < 0 file://fUsers/mhartl/repos/website/about. html & t 3 ;

About

This site is a sample project for the awesome Git tutorial Learn Enoughd,, ¢ Git to Be Dangerous.

Figure 53: Confirming that Alice’s repo includes Bob’s added image.
Conflicting changes

Even though Git’s merge algorithms can often figure out how to combine changes from different collaborators, sometimes there’s no avoiding a conflict. For example,
suppose both Alice and Bob notice that the required alt attribute is missing from the image included in Listing 12 and decide to correct the issue by adding one.

Listing 23: Alice’s image alt. ~/repos/website/index.html

<!DOCTYPE html>
<html>

</body>
</html>

First, Alice adds the alt attribute “Breaching whale” (Listing 23) and then commits and pushes her change:ﬁ

https://www.learnenough.com/git-tutorial 51/69

http://www.merriam-webster.com/dictionary/ursine

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

m

[website (master)]$ git commit -am "Add necessary image alt"
[website (master)]$ git push

Listing 24: Bob’s image alt. ~/tmp/website-copy/index.html

<!DOCTYPE html>
<html>

</body>
</html>

Meanwhile, Bob adds his own alt attribute, “Whale” (Listing 24), and commits his change:

[website-copy (master)]$ git commit -am "Add an alt attribute"

If Bob tries to push, he’ll be met with the same rejection message shown in Listing 21, which means he should pull —but that comes at a cost:

[website-copy (master)]$ git pull
remote: Counting objects: 3, done.
remote: Compressing objects: 100% (1/1), done.
remote: Total 3 (delta 2), reused 3 (delta 2), pack-reused 0
Unpacking objects: 100% (3/3), done.
From https://github.com/mhartl/website
5ca69e4..7ada3b5 master -> origin/master
Auto-merging index.html
CONFLICT (content): Merge conflict in index.html
Automatic merge failed; fix conflicts and then commit the result.
[website-copy (master |MERGING)]$

As indicated in the second highlighted line, Git has detected a merge conflict from Bob’s pull, and his working copy has been put into a special branch state called
master | MERGING.

Bob can see the effect of this conflict by viewing index.html in his text editor, as shown in Figure 54. Supposing Bob prefers Alice’s more descriptive alt text, he can
resolve the conflict by deleting all but the line with alt="Breaching whale", as seen in Figure 55.

https://www.learnenough.com/git-tutorial 52/69

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

[NON) & index.html — /Users/mhartl/tmp/website-copy

about.html * index.html
<! >
<html>
<head>
<title>A whale of a greeting</title>
</head>
<body>
<hl=hello, world</hl>
<p=>Call me Ishmael.</p>

<<<<<<< HEAD

>>>>>>> T7ada3b5fc919034d71f5f33b1b7879cf70eda33e

</body>
</html>

index.htm| 14:4 96) LF UTF-8 HTML

Figure 54: A file with a merge conflict.

https://www.learnenough.com/git-tutorial

53/69

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

[NON) & index.html — /Users/mhartl/tmp/website-copy

about.html x index.html
<! >
<html>
<head>
<title>A whale of a greeting</title>
</head>
<body>
<hl=hello, world</hl>
<p=>Call me Ishmael.</p>

</body>
</html>

index.html| 11:1 LF UTF-8 HTML

Figure 55: The HTML file edited to remove the merge conflict.

After saving the file, Bob can commit his change, which causes the prompt to revert back to displaying the master branch, and at that point he’s ready to push:

.

[website-copy (master |MERGING)]$ git commit -am "Use longer alt attribute"
[website-copy (master)]$ git push

Alice’s and Bob’s repos now have the same content, but it’s still a good idea for Alice to pull in Bob’s merge commit:

m

[website (master)]$ git pull

Because of the potential for conflict, it’s a good idea to do a git pull before making any changes on a project with multiple collaborators. Even then, on a long enough
timeline some conflicts are inevitable, and with the techniques in this section you’re now in a position to handle them.

Exercises

Solutions to exercises are available for free at learnenough.com/solutions with any Learn Enough purchase. To see other people’s answers and to record your own, join the
Learn Enough Society, at learnenough.com/society.

1. Change your default Git editor from Vim to Atom. Hint: Google for it. (This is an absolutely classic application of technical sophistication (Box 2): With a well-
chosen Google search, you can often go from “I have no idea how to do this” to “It’s done” in under 30 seconds.)

2. The polar bear picture added in Listing 20 (Figure 50) requires attribution under the Creative Commons Attribution 2.0 Generic license. As Alice, link the image to
the original attribution page, as shown in Listing 25. Then run git commit -a without including -m and a command-line message. This should drop you into the
default Git editor. Quit the editor without including a message, which cancels the commit.

https://www.learnenough.com/git-tutorial 54/69

http://www.learnenough.com/solutions
http://learnenough.com/society
http://learnenough.com/society
http://lmgtfy.com/?q=git+change+default+editor+atom
https://creativecommons.org/licenses/by/2.0/

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

3.Run git commit -a again, but this time add the commit message “Add polar bear attribution link”. Then hit return a couple of times and add a longer message of

your choice. (One example appears in Figure 56.) Save the message and exit the editor.

4.Run git log to confirm that both the short and longer messages correctly appear. After pushing the changes to GitHub, navigate to the page for the commit to

confirm that both the short and longer messages correctly appear.

5. As Bob, pull in the changes to the About page. Verify by refreshing the browser and by running git log -p that Bob’s repo has been properly updated.

A

Listing 25: Linking to the polar bear image’s attribution page. ~/repos/website/about.html

[JoN) COMMIT_EDITMSG — [Users/mhartl/repos/website/.git

COMMIT_EDITMSG x

Add polar bear attribution link

The polar bear image requires attribution under the terms of the
Creative Commons Attribution 2.0 Generic license. This commit adds a
5 1link to the original attribution page at Flickr.

COMMIT_EDITMSG 5:49 LF UTF-B Git Commit Message §* gh-pages

Figure 56: Adding a longer message in a text editor.

4.3 Pushing branches

In this section, we’ll apply our newfound collaboration skills to get Alice to request a bugfix from Bob, who will make the correction and then share the result with Alice.

In the process, we’ll learn how to collaborate on branches other than master, thereby applying the material from Section 3.3 as well.

https://www.learnenough.com/git-tutorial

55/69

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

imhy
L A ,,;‘y‘ﬁ{ﬁ%?%ﬁﬁ

Figure 57: Alice has a tea party to attend and so asks Bob to fix the website.

Recall from Section 3.3 that the trademark character ™ is currently broken on the About page (Figure 35). Alice suspects the fix for this involves adding some markup to

the HTML template for the website’s pages, but she’s already agreed to attend a tea party (Figure 57)3% 50 she only has time to add a couple of HTML comments
requesting for Bob to add the relevant fix, as shown in Listing 26 and Listing 27. (We’ll cover HTML comments further in Learn Enough HTML to Be Dangerous.)

A

Listing 26: A stub for the fix to the ™ problem. ~/repos/website/about.html

<!DOCTYPE html>
<html>
<head>
<title>About Us</title>
<!-- Add something here to fix trademark -->
</head>

</html>
Listing 27: A stub to add the ™ fix to the index page. ~/repos/website/index.html

<!DOCTYPE html>
<html>
<head>
<title>A whale of a greeting</title>
<!-- Add something here to fix trademark -->
</head>

</html>

Notice that Alice has wisely asked Bob to fix the index page as well (Listing 27) even though the current error only occurs on the About page. This way, any ™ or similar
characters added to index.html will automatically work in the future. (As noted in Section 3.3, having to make such changes in multiple places is annoying, and it’s also

brittle and error-prone. The correct solution is to use templates, which we’ll cover starting in Learn Enough CSS & Layout to Be Dangerous.)

Alice has decided to follow a common convention and use a separate branch for the bugfix, which in this case she calls fix-trademark:

A

[website (master)]$ git checkout -b fix-trademark
[website (fix-trademark)]$

This shows something important: it’s possible to make changes to the working directory (in this case, the additions from Listing 26 and List

branch, as long as those changes haven’t yet been committed.

https://www.learnenough.com/git-tutorial

ing 27) before creating a new

56/69

https://www.cs.indiana.edu/metastuff/wonder/ch7.html
http://learnenough.com/html-tutorial
http://www.learnenough.com/css-and-layout-tutorial

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

Having made the new branch for the fix, Alice can make a commit and push up the branch using git push:

m

[website (fix-trademark)]$ git commit -am "Add placeholders for the TM fix"
[website (fix-trademark)]$ git push -u origin fix-trademark

Here Alice has used exactly the same push syntax used in Listing 9 to push the repo up to GitHub in the first place, with fix-trademark in place of master.

If Alice sends Bob a note before she heads off to her tea party, Bob will know to do a git pull to pull in Alice’s changes:

[website-copy (master)]$ git pull
remote: Counting objects: 4, done.
remote: Compressing objects: 100% (1/1), done.
remote: Total 4 (delta 3), reused 4 (delta 3), pack-reused 0
Unpacking objects: 100% (4/4), done.
From https://github.com/mhartl/website
* [new branch] fix-trademark -> origin/fix-trademark
Already up-to-date.

Bob can check his local working directory for the fix-trademark branch that Alice created and pushed, but it isn’t there:

[website-copy (master)]$ git branch
* master

The reason is that the branch is associated with the remote origin, and such branches aren’t displayed by default. To see it, Bob can use the -a option (for “al]”):33

[website-copy (master)]$ git branch -a
* master
remotes/origin/HEAD -> origin/master
remotes/origin/fix-trademark
remotes/origin/master

To start work on fix-trademark on his local copy, Bob just needs to check it out. By using the same name (i.e., fix-trademark), he arranges for it to be associated with
the upstream branch on GitHub, which means that git push will automatically push up his changes:

[website-copy (master)]$ git checkout fix-trademark

Branch fix-trademark set up to track remote branch fix-trademark from origin.
Switched to a new branch 'fix-trademark'

[website-copy (fix-trademark)]$

At this point, Bob can diff against master to see what he’s dealing with:

[website-copy (fix-trademark)]$ git diff master
diff --git a/about.html b/about.html
index 8a879f5..3d567eb 100644
--- a/about.html
+++ b/about.html
ee -2,6 +2,7 ee
<html>
<head>
<title>About Us</title>
+ <!-- Add something here to fix trademark display -->
</head>
<body>
<hl>About Us</hl>
diff --git a/index.html b/index.html
index fcb80f4..c4920c0 100644
--- a/index.html
+++ b/index.html
ee -2,6 +2,7 @e
<html>
<head>
<title>A whale of a greeting</title>
+ <!-- Add something here to fix trademark display -->
</head>
<body>
<hl>hello, world</hl>

Now all Bob has to do is actually implement the fix. If you’d like a challenging exercise in technical sophistication, try Googling around to see if you can figure out what
the problem might be, and also how you might fix it. In case you’d like to do this, I’ll wait here while you look...

https://www.learnenough.com/git-tutorial 57/69

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

All right, the problem is that the page doesn’t have the right character encoding to display non-ASCII characters like ™ , ®, or £. The fix involves using a tag called meta
to tell browsers to use a character set (or charset for short) called UTF-8, which will let our page display anything that’s part of the enormous set of Unicode characters.

The result, which you would not necessarily be able to guess, appears in Listing 28 and Listing 29.

Listing 28: A fix for the ™ problem. ~/tmp/website-copy/about.html

<!DOCTYPE html>
<html>
<head>
<title>About Us</title>
<meta charset="utf-8">
</head>

</html>
Listing 29: Adding the ™ fix to the index page. ~/tmp/website-copy/index.html

<!DOCTYPE html>
<html>
<head>
<title>A whale of a greeting</title>
<meta charset="utf-8">
</head>

</html>

Like the img tag introduced in Section 3.1), meta is a void element (self-closing) and so has no closing tag.

Having made the change, Bob can confirm the fix by reloading the page in his browser, as shown in Figure 58.

https://www.learnenough.com/git-tutorial

58/69

https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/Unicode

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

90O < 0 file://fUsers/mhartl/tmpjwebsite-copy/about.html & t 7

About

This site is a sample project for the awesome Git tutorial Learn Enoug@f}ir to Be Dangerous.

A working ™ character

Figure 58: Confirming a working trademark character.

Confident that his solution is correct, Bob can now make a commit and push the fix up to the remote server:

[website-copy (fix-trademark)]$ git commit -am "Fix trademark character display"
[website-copy (fix-trademark)]$ git push

With that, Bob sends a note to Alice that the fix is pushed, and heads out for some well-deserved rest (Figure 59) 36

https://www.learnenough.com/git-tutorial 59/69

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

Figure 59: Bob’s reward for a job well-done.

0@ < I file://jUsers/mhartljrepos/website/about. html &] ol

About

This site is a sample project for the awesome Git tutorial Learn Enogg@cir to Be Dangerous.

Figure 60: Reconfirming the trademark fix before merging.

Alice, now back from her tea party, gets Bob’s note and pulls in his fix:

https://www.learnenough.com/git-tutorial 60/69

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

m

[website (fix-trademark)]$ git pull

She refreshes her browser to confirm that the ™ character displays properly on her end of things (Figure 60), and then merges the changes into master:

m

[website (fix-trademark)]$ git checkout master
[website (master)]$ git merge fix-trademark
[website (master)]$ git push

With the final git push, Alice arranges for the remote master branch on GitHub to get the fix. (Syncing up Bob’s master branch is left as an exercise (Section 4.3.1).)

Of course, git push publishes the change only to a remote Git repository. Wouldn’t it be nice if there were a way to confirm that the ™ character —and the rest of the
website—displays correctly on the live Web?

Exercises

Solutions to exercises are available for free at learnenough.com/solutions with any Learn Enough purchase. To see other people’s answers and to record your own, join the
Learn Enough Society at learnenough.com/society.

1. Bob’s master branch doesn’t currently have Alice’s merge, so check out master as Bob and do a git pull. Confirm using git log that Alice’s merge commit is
now present.

2. Delete the £ix-trademark branch locally. Do you need to use the -b option (Section 3.3.2), or is -d sufficient?

3. Delete the remote f£ix-trademark branch on GitHub. Hint: If you get stuck, Google for it.

4.4 A surprise bonus

As hinted at the end of the last section, it would be nice to be able to confirm that the new character encoding works on a live web page. But this requires knowing how to
deploy a live site to the Web, and that’s beyond the scope of a humble Git tutorial, right? Amazingly, the answer is no. The reason is that GitHub offers a free service
called GitHub Pages, and any repository at GitHub containing static HTML is automatically available as a live website.

There is one minor prerequisite to using GitHub Pages, which is that you have to verify your email address with GitHub. Once you’ve done that, though, all you need to
do is configure your repository to use GitHub Pages on the master branch, which you can do by going to the settings (Figure 61) and then selecting the master and saving
the changes (Figure 62).

https://www.learnenough.com/git-tutorial 61/69

http://www.learnenough.com/solutions
http://learnenough.com/society
http://learnenough.com/society
http://lmgtfy.com/?q=git+delete+remote+branch
https://help.github.com/articles/verifying-your-email-address

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

[] ® <] github.com (o]]]l +

O This repository Pull requests Issues Marketplace Explore

@ Watch~ | 0 A Star 0 YFork 0

<> Code Issues 0 Pull requests 0 Projects 0 Wiki Insights

Edit

® 2018 GitHub, Inc. Terms Privacy Security Status Help Contact GitHub APl Training Shop Blog About

Figure 61: The settings for a GitHub repository.

https://www.learnenough.com/git-tutorial 62/69

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

0@ < G| & github.com I i =) ’T

Criduie
Users that have not been granted push access will be unable to interact with the repository.

GitHub Pages

GitHub Pages is designed to host your personal, organization, or project pages from a GitHub repository.

Source
GitHub Pages is currently disabled. Select a source below to enable GitHub Pages for this repository. Learn
more.

Il theme using the master branch. Learn more.

master branch
Use the master branch for GitHub Pages.

master branch /docs folder
Use only the /docs folder for GitHub Pages.

¥ None
| Disable GitHub Pages.

Make this repository private
Hide this repository from the public.

Make private

Transfer ownership Transfer
Transfer this repository to another user or to an organization where you have the ability to
create repositories.

Figure 62: Serving our website from the master branch.
That’s it! Our website is now available at the URL
http://<name>.github.io/website/

where <name> is your GitHub username. Since my username is mhart1, my copy of the this tutorial’s website is at mhartl.github.io/website/, as shown in Figure 63.

https://www.learnenough.com/git-tutorial 63/69

http://mhartl.github.io/website

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

® O ® [awnaie of 3 gresting x Mehasl
L N mhartlgithub.iofwebsite/ T % 9 =
hello, world

R
Call me Ishmael.

Figure 63: A production website at GitHub Pages.

Note that the URL http://<name>.github.io/website/ automatically displays index.html, which is the usual convention on the web: the index page is understood to
be the default, so there’s no need to type it in. This is not the case with other pages, though, and if you follow the link to the About page you’ll see that the filename
appears in the address bar (Figure 64). You’ll also see in Figure 64 that the trademark character ™ renders correctly on a live website, just as we hoped it would.

https://www.learnenough.com/git-tutorial 64/69

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

i

Michael

€& > C ff [mhartl.github.io/websitd/about.ntml

® T @® /[{aboutus %\
—

=
4
&
n

About Us

This site is a sample project for the awesome Git tutorial Learn Enoughtd Git to Be Dangerous.

Figure 64: The About page in production.

Because static HTML pages by definition don’t change from one page view to the next, GitHub can cache them efficiently, which makes GitHub Pages sites both fast and
cheap to serve (which is why GitHub can afford to offer them for free). This means that such sites can handle a potentially huge amount of traffic, making Pages suitable
for production websites. The example website in this tutorial is really just a toy, but it’s a great start, and we’ll build on this foundation to make a nearly industrial-grade
website in Learn Enough HTML to Be Dangerous and a fully industrial-grade site in Learn Enough CSS & Layout to Be Dangerous.

Exercises

Solutions to exercises are available for free at learnenough.com/solutions with any Learn Enough purchase. To see other people’s answers and to record your own, join the
Learn Enough Society at learnenough.com/society.

1. On the About page, add a link back to index.html. Commit and push your change and verify that the link works on the production site.

2. As covered in Learn Enough Command Line to Be Dangerous, two of the most important Unix commands are mv and rm. Git provides analogues of these
commands, which have the same effect on local files while also arranging to track the changes. Experiment with these commands via the following sequence: Create
a file with some lorem ipsum text, add & commit it, rename it with git mv & commit, then remove it with git rmand commit again. Examine the results of git
log -p to see how Git handled the operations.

3. To practice the process of making a new Git repository, make a second project called second_website in the repos directory. Create an index.html file with the
content “hello, again!” and follow the steps (starting in Section 1.2) needed to deploy it to the live Web.

4. Make a third, secret project called secret_project. Touch files called foo, bar, and baz in the main project directory, and then follow the steps to initialize the
repository and commit the initial results. Then, instead of pushing to a public repository at GitHub, create a free private repository at Bitbucket. (You may have to
sign up for a Bitbucket account and share the SSH keys you created in Section 2.1.) The result will be a repository suitable for securely sharing with private
collaborators.

4.5 Summary

Important commands from this section are summarized in Table 4.

Command Description Example

git clone <URL> Copy repo (incl. full history) to local disk $ git clone https://ex.co/repo.git
git pull Pull in changes from remote repository $ git pull

git branch -a List all branches $ git branch -a

https://www.learnenough.com/git-tutorial 65/69

https://en.wikipedia.org/wiki/Web_cache
http://learnenough.com/html-tutorial
http://www.learnenough.com/css-and-layout-tutorial
http://www.learnenough.com/solutions
http://learnenough.com/society
http://learnenough.com/society
https://www.learnenough.com/command-line-tutorial#sec-renaming_copying_deleting
http://learnenough.com/command-line-tutorial
http://lipsum.com/
http://bitbucket.org/
https://bitbucket.org/account/signup/
http://lmgtfy.com/?q=bitbucket+ssh+keys

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

git checkout
 Check out remote branch and configure for push $ git checkout fix-trademark
Table 4: Important commands from Section 4.

5 Conclusion

Congratulations! You now know enough Git to be dangerous. There’s a lot more to learn, and if you continue down this technical path you’ll keep getting better at using
Git for years to come, but with the material in this tutorial you’ve got a great start. For now, you’re probably best off working with what you’ve got, applying your
technical sophistication (Box 2) when necessary. Once you’ve gotten a little more experience under your belt, I recommend seeking out additional resources. Here are
some suggestions for getting started:

Pro Git by Scott Chacon and Ben Straub

Git path at Code School

Git tutorials by Atlassian (makers of Bitbucket)
Tower Git tutorials

At this point, you have completed the Learn Enough Developer Fundamentals and are in an excellent position to collaborate with millions of software developers
around the world. You are also well on your way to becoming a developer yourself. Regardless of your ultimate goals, you can continue improving your dev skills with the
rest of the core Learn Enough sequence:

1. Developer Fundamentals
1. Learn Enough Command Line to Be Dangerous
2. Learn Enough Text Editor to Be Dangerous
3. Learn Enough Git to Be Dangerous (you are here)
2. Web Basics
1. Learn Enough HTML to Be Dangerous
2. Learn Enough CSS & Layout to Be Dangerous
3. Learn Enough JavaScript to Be Dangerous
3. Intro Ruby Web Development
1. Learn Enough Ruby to Be Dangerous
2. Learn Enough Sinatra to Be Dangerous
3. Learn Enough Ruby on Rails to Be Dangerous
4. Professional Ruby Web Development
o The Ruby on Rails Tutorial

Good luck!

6 Advanced setup

This section contains some optional advanced Git setup. The main features are adding an alias for checking out branches, adding the branch name to the Unix prompt, and
enabling branch name tab completion. Following the steps in this section should be within your capabilities if you completed Learn Enough Command Line to Be
Dangerous and Learn Enough Text Editor to Be Dangerous, but they can be tricky, so use your technical sophistication (Box 2) if you get stuck.

6.1 A checkout alias

In Section 1, we added global configuration settings for the name and email address (Listing_1) to be included automatically when making commits. Now we’ll add a third
config setting, an alias to make it easier to check out branches.

Throughout this tutorial, we’ve used git checkout to check out branches (e.g., Listing_14), but most experienced Git users configure their systems to use the shorter

command git co3Z The way to do this is with a Git alias: much as the Bash aliases covered in Learn Enough Text Editor to Be Dangerous let us add commands to our
Bash shell, Git aliases let us add commands to our Git system. In particular, the way to add the co alias is to run the command shown in Listing 30.

Listing 30: Adding an alias for git co.

$ git config --global alias.co checkout

In effect, this adds co as a new Git command, and running Listing 30 allows us to replace checkout in commands like
$ git checkout master

with the more compact co command, as follows:

$ git co master

For maximum compatibility with systems that don’t have co configured, this tutorial has always used the full checkout command, but in real life I nearly always use git
co.

Exercises

Solutions to exercises are available for free at learnenough.com/solutions with any Learn Enough purchase. To see other people’s answers and to record your own, join the
Learn Enough Society at learnenough.com/society.

1. Create a branch called really-long-branch-name using git co -b.
2. Switch back to the master branch using git co.

6.2 Prompt branches and tab completion

In this section, we’ll add two final advanced customizations. First, we’ll arrange for the command-line prompt to include the name of the current branch. Second, we’ll add
the ability to fill in Git branch names using tab completion, which is especially convenient when dealing with longer branch names. Both of these features come as shell
scripts with the Git source code distribution, which can be downloaded as shown in Listing 31.

Listing 31: Downloading scripts for branch display and tab completion.

https://www.learnenough.com/git-tutorial 66/69

https://git-scm.com/book/en/v2
https://www.codeschool.com/paths/git
https://www.atlassian.com/git/tutorials/
http://bitbucket.org/
https://www.git-tower.com/learn/
http://www.learnenough.com/command-line-tutorial
http://www.learnenough.com/text-editor-tutorial
http://www.learnenough.com/git-tutorial
http://www.learnenough.com/html-tutorial
http://www.learnenough.com/css-and-layout-tutorial
http://www.learnenough.com/javascript-tutorial
http://www.learnenough.com/ruby-tutorial
http://www.learnenough.com/sinatra-tutorial
http://www.learnenough.com/ruby-on-rails-tutorial
http://www.railstutorial.org/
http://learnenough.com/command-line-tutorial
http://learnenough.com/text-editor-tutorial
https://www.learnenough.com/text-editor-tutorial#sec-saving_and_quitting_files
http://learnenough.com/text-editor-tutorial
http://www.learnenough.com/solutions
http://learnenough.com/society
http://learnenough.com/society
https://www.learnenough.com/command-line-tutorial#aside-tab_completion

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

$ curl -o ~/.git-prompt.sh -OL cdn.learnenough.com/git-prompt.sh
$ curl -o ~/.git-completion.bash -OL cdn.learnenough.com/git-completion.bash

Here the -o flag arranges to save the files locally under slightly different names from the ones on the server, prepending a dot . so that the files are hidden and saving them
in the home directory ~.

After downloading the scripts as in Listing 31, on some systems we need to make them executable, which we can do with the chmod command (mentioned before in Learn
Enough Text Editor to Be Dangerous):

$ chmod +x ~/.git-prompt.sh
$ chmod +x ~/.git-completion.bash

Next, we need to tell the shell about the new commands, so open up the Bash profile file in your favorite editor (which for simplicity I'll assume is Atom):
$ atom ~/.bash_profile

Then add the configuration shown in Listing 32 to the bottom of the file. Also, make sure to delete any other lines starting with ps1 (which you’ll have to do if you
modified .bash_profile as shown in Learn Enough Text Editor to Be Dangerous).

Listing 32: Git configuration in the .bash_profile file. ~/.bash_profile

Git configuration

Branch name in prompt

source ~/.git-prompt.sh

PS1="[\W$(__git _psl " (%s)")]\s

export PROMPT COMMAND='echo -ne "\033]0;${PWD/#$HOME/~}\007""
Tab completion for branch names

source ~/.git-completion.bash

Note: The vertical dots in Listing 32 indicate omitted content and should not be copied literally. This is the sort of thing you can figure out using your technical
sophistication (Box 2). Speaking of which, I have hardly any idea of what most of the code in Listing 32 means; part of having technical sophistication means be able to
copy things from the Internet and get them to work even when you have no idea what you’re doing (Figure 16).

Once we’ve saved the result of editing .bash_profile, we have to source it to make the changes active (as discussed in Learn Enough Text Editor to Be Dangerous):
$ source ~/.bash_profile

At this point, the prompt for a Git repository’s default master branch should look something like this:

[website (master)]$

If you skipped ahead from Section 1.1 to complete this section, you’ll have to wait until Section 1.2 to see this effect. Checking that tab completion is working is left as an
exercise (Section 6.2.1).

Exercises

Solutions to exercises are available for free at learnenough.com/solutions with any Learn Enough purchase. To see other people’s answers and to record your own, join the
Learn Enough Society at learnenough.com/society.

1. Check out the branch really-long-branch-name (Which was created in Section 6.1.1) using tab completion by typing git checkout r—tatthe command-line
prompt.

2. What does your prompt look like? Verify that the correct branch name appears in the prompt.

3. Check out the master branch using git co m-t. (This shows that tab completion works with the co alias set up in Listing 30.) What does the prompt look like now?

4.Use git branch -d r— to delete really-long-branch-name, thus verifying that tab completion works with git branch as well as with git checkout. (In fact,
tab completion works with most relevant Git commands.)

Learn Enough Git to Be Dangerous. Copyright © 2016 by Michael Hartl.

https://www.learnenough.com/git-tutorial 67/69

https://www.learnenough.com/command-line-tutorial#sec-hidden_files
http://www.learnenough.com/text-editor-tutorial#sec-writing_an_executable_script
http://learnenough.com/text-editor-tutorial
http://www.learnenough.com/text-editor-tutorial#code-customize_prompt
http://learnenough.com/text-editor-tutorial
http://www.learnenough.com/text-editor-tutorial#code-source_command
http://learnenough.com/text-editor-tutorial
http://www.learnenough.com/solutions
http://learnenough.com/society
http://learnenough.com/society

Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

3/30/2018

LEARN ENOUGH
68/69

https://www.learnenough.com/git-tutorial

https://www.learnenough.com/

3/30/2018 Learn Enough Git to Be Dangerous | Learn Enough to Be Dangerous

The LE Story
News
Courses
LogIn
Register

About
e Legal
e Contact

https://www.learnenough.com/git-tutorial 69/69

https://www.learnenough.com/story
http://news.learnenough.com/
https://www.learnenough.com/courses
https://www.learnenough.com/login
https://www.learnenough.com/subscribe
https://www.learnenough.com/about
https://www.learnenough.com/legal
mailto:support@learnenough.com

